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A model for the unified treatment of rotations and thermal excitations is proposed,
in which the single particle (s.p.) level density g(¢) is renormalized with respect to the liquid
drop (LDM) density grpm(e). In this way the erroneous behaviour of the smoothed s.p.
level density g(¢) as a function of the deformation of the nucleus is 1emoved. This is partic-
ularly important in the range of large deformations as encountered in fissioning nuclei.
The model is then applied to nuclei in the actinide region to study their shape and their stabil-
ity against fission. The structure of the fission barriers of rotating, heated nuclei is studied
in detail. The shell corrections to the energy, free energy and angular momentum ase calcu-
lated by means of a defo.med Saxon-Woods (SW) potential.

PACS numbers: 25.85.-w, 21.60.-n

1. Introduction

Nuclei at extremely high angular momenta can be formed in fusion reactions between
heavy ions (HI). During the early stage of the deexcitation process the compound nucleus
is cooled either by fission or by emission of light particles, mainly neutrons, protons and
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a-particles. At lower excitation energies close to the entry line, the emission of y-rays
and high-L a-particles [1] becomes the dominant process. Earlier cranking Strutinsky
(CS) — and cranking Hartree-Fock-Bogoliubov (CHFB)-calculations [2-7] described the
rotating nucleus in the zero temperature limit 7 = 0. This is a good approximation for
spins much lower than the initial angular momentum 7; of the compound system. However
for angular momenta I =~ Icgyy close to the oblate-prolate shape instability [8] it is practi-
cally impossible to form a cold nucleus in a Hl-reaction. Thus, an appropriate estimate
of the various competing deexcitation channels as well as the shape stability of the rotating
compound nucleus requires the inclusion of thermal excitations.

First calculations of rotating heated nuclei have been performed independently by
the Dubna group [9] and by Faber and Ploszajczak [10]. The Dubna group used the Nilsson
potential in the f, y-space only. Therefore, their calculations suffered from the absence
of the neck deformation which was shown to be of primary importance at I > Iy [7].
Moreover, the Dubna group calculated the excitation energies in the Strutinsky approach
as the difference between the energies of the heated system and the system at the yrast line,
respectively. It is known [11] that the smoothed s.p. level density g(¢) of realistic s.p.
potentiais shows an erroneous dependence on deformation, thus inducing a spurious de-
formation dependent contribution to the excitation energy of a heated nucleus. This dif-
ficuity can be avoided if the smoothed level density is renormalized by a suitable liquid
drop level density gipme, T = 0) [12] as described in Seccts. 2.4 and 3.2.

Recently, another approach for calculating properties of heated, rotating nuclei has
been proposed [13]. They introduced a temperature-dependent liquid drop model (TDLDM)
{14] with parameters in accord with the Thomas-Fermi model of excited nuclei {15]. The
microscopically calculated free energy surface is renormalized with respect to the classical
free energy surface of the TDLDM. This renormalization procedure corresponds to the
approach proposed in Ref. [10].

It is the aim of this work to investigate the fission and shape instability of nuclei at
high excitations. To accomplish this we develop a model based on the Strutinsky approach
extended to finite temperatures and angular momenta. The details of our model are dis-
cussed in Chapter 2. The model is used to calculate the potential energy and the free energy
surfaces in the space (f, r, y, ®), where B describes the elongation, r the neck formation,
y the axial asymmetry and o the reflection asymmetry.

In Chapter 3 we compare isentropic and isothermal nuclear processes and study the
symmetric fission of heated, fast rotating nuclei 2'°Po and 23%U. In Chapter 4 the depend-
ence of the fission barrier height on nonaxial deformation y and reflection asymmetry «
for 238U is discussed. We investigate the existence of two separate fission channels for
finite values of I and T. First evidence for the existence of two separate channels for mass
symmetric and asymmetric fission came from both experimental [16] and theoretical in-
vestigations [17] of fission at low (zero) angular momentium and low (zero) excitation
energy.

Finally, in Chapter 5 we swmmarize main results of this work.
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2. Theory

2.1. Parametrization of the nuclear shape

One may introduce the neck- and reflection asymmetry parameters as an extension
of the B, y-parametrization. In cylindrical coordinates (R, z, ) the axially symmetric
“modified spheroids” are defined by [18]:

R*(z) = R[1-(z/R,)*]F(z, R,), (2.1)
where

F(z,R,) = Zi [a2:(2/R)* +agi 1(2[R)* ). (2.2)
In practical applications one uses only the first few terms:
F(z/R,) ~ a+a(z/R,)+b(z/R,)>. (2.3)

Such a function approximates closely the family of thresholds shapes studied by Cohen
and Swiatecki [19]. Introducing the dimensionless cylindrical coordinates u, v, w(u = x/R,
=gcos p,v = y/R, = ¢sin ¢, w = z/{R)) one can write Eq. (2.1) as follows:

2 = (1-w?) (A+aw+Bw?). 29

Instead of the non-illustrative parameters 4 and B we prefer to keep the ellipsoidal
deformation parameters f and y of Bohr [20] and to introduce an additional parameter r [7]
describing the formation of a neck. The paramcter r is defined as the ratio of the neck
cross section at w = 0 and the cross section of the equivalent ellipsoid at the same position
(w = 0) (see Fig. 1). The equivalent ellipsoid has the same volume as the deformed nucleus
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Fig. 1. Schematic picture of the reflection asymmetric dumb-bell shape and the corresponding equivalent
ellipsoidal shape
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under consideration. The length of the longer axis is kept constant and equals 1. Thus,
the ellipsoid is characterized by the equivalent radius

R, 7) = VR.R, = [1+~/5/4x f cos y]™*{[1+~/5/47 B cos (y—% m)]
x [1++/5/4x B cos (y—% m)]}*/2. 2.5)
The cross section at w = 0 (see Fig. 1) is then:
S(w = 0) = nrR} = nA. (2.6)

For r = 1 one obtains ellipsoidal shapes, for r > 1 diamond-like shapes, whereas neck
ratios 0 < r < 1 (¢ = 0) describe configurations with a neck. The second equation relating
the parameters 4, B with r and R, y) can be obtained from the volume conservation
condition. The odd powers in the “neck function” F(w) change the mean values of u?
and w? as well as the center of gravity wcy which becomes:

Wem = #/5R] 2.7
for a dumb-bell configuration.

2.2. Thermodynamic description of heated, rotating nuclei

A particularly convenient description of the heated nucleus is provided by the grand
canonical ensemble. This ensemble is specified by v, = exp {—(Hy—wJ,—uN)/T} or
its trace, the grand partition function Z(T, w, p) = tr y,,.

In the deformed shell model used in this work, Z equals:

Z(T, 0,4, 9) = KI {L+exp [—(ei(w, 9 —)/T]}, (2.8)

where g is the nuclear deformation. (For simplicity, we do not write isospin indices.)
Having calculated th: grand partition function one easily obtains the total energy R in
the rotating system

R(T, w, y, E1') = ;81(60: a)nt(Ts @, i, i;)’ (29)

where n, is the occupation probability of a s.p. state, the angular momentum 7

KT, w, 4, q) = ; i@, YnT, o, p, §) (2.10)
and the energy in the laboratory system
E(T, w, 1, §) = R+ol =} [e(o, D+ 0 duln (2.11)
The differential
a0 =22 41+ 2 4oy %QJW % dj ~ —SdT—ldo-Ndp—5dg  (2.12)
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of a thermodynamical potential @ = —T'In Z allows the identification of the entropy S
and the generalized force p as conjugate quantities to the temperature T and the defor-
mation g:

S = —0Q0T|, 03 P = —0Q091,.0 (2.13)
Analogous differential of the energy and the free energy are
dE = TdS+wdl +pdN—pdq, dF = —SdT+wdl+udN—pdq (2.14)
and the driving force p can be expressed as follows:
b = 0E[0qlsn = —OF[0q|71n. .15)

Thus p depends only on the state of the system and not on the particular process leading
to this state. Consequently, the energy surface E(q) for a given I, N, T,[S(q) = S, I,
Ny, T,)] reminds closely the free energy surface F(g) for I, Ny, S;[T(q) = T(q, I,, N1, S1)]
providing the mean value of entropy S in the state I,, N, T, equals S, or the mean value
of temperature T in the state 7,, Ny, S, equals T,. To see this let us consider the difference
of F and E around § = S, and T, respectively.
J
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where 85(q, T,) = S(g, t,)—S. This difference is extremely small because both 8S(g, T;)
and 0p/dS are small.

The energy variations in isothermal and isentropic processes may differ significantly
(dE|7 = dE|s+TdS). For isothermal processes a heat bath is required to supply the thermal
energy dQ = TdS. In nuclei the source of this additional energy is the collective kinetic
energy. If the collective coordinate g changes from a2 minimum towards a saddle point
then the entropy increases (dS > 0) and the heat dQ is transferred from the collective
kinetic energy to the internal excitation energy. Creation of these additional p-h excitations
can be achieved either by inelastic collisions between the nucleons or by friction forces. One
expects that fusion of two colliding ions is predominantly an isothermal process.

For the opposite deformation change, namely from the saddle to the scission point
an isothermal process is impossible. The entropy cannot decrease and heat energy cannot
be transformed into energy of collective motion. So one can infer that fission is predomi-
nantly an isentropic process.
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2.3. Temperature dependent liquid drop mode! (TDLDM)

Particle-hole (p-h) excitations in heated nuclei lead to a change in the occupancy
of s.p. orbitals around the Fermi level. Nucleons are excited from occupied levels below
the Fermi surface into higher shells. This induces changes in the average potential decreasing
the depth and increasing the surface thickness of the potential. In the framework of the
Strutinsky model these variations can be taken into account by introducing a temperature
dependence into the liquid drop energy [13-15, 21].

Sauer and Chandra [21] have studied the thermal properties of infinite nuclear matter
in the Hartree-Fock (HF) approximation using a Skyrme force. In this approximation,
the temperature dependence of the nucleon density n and the nuclear radius R are given by:

n(T) = n(0) [1—-a,T?], (2.17)
R(T) = R(0) [1+axT?], (2.18)

where a, = 1.23 - 103 MeV-2, ap = 4.2 - 10-* MeV~2. The temperature T is given in
units of MeV. This density variation induces a change of the volume term in the liquid
drop binding energy:

E(T) = E0) [1—«,T?], «, = a, (2.19)

In Ref. [21], the volume energy contains contributions from statistical p-b-cxcitations.
Consequently, the temperature variations of FE, are almost three times smaller
(2, = 3.4 10-* MeV-?) as compared to Eq. (2.19). Since we determine the energy of
p-h excitations directly from the s.p. spectium, therefore, it is sufficient to include the
temperature variations of E, only through its dependence on n(T) (Eq. (2.29)).

Three effccts contribute to a change of the surface energy E, with temperature: the
decrease of the nucleon density, the increase of the nuclear surface and the increase of the
surface thickness. For a constant nuclear radius, E; is proportional to the nucleon density
and becomes zero in the limit of vanishing nucleon density. Consequently, the change of
E, caused by variations of n is —E{0)2,T2. An increase of the nuclear surface increases

2 L
3" T2. Thus, these two contributions cancel to a large extent.

The contribution coming from increasing surface thickness a(T) has been climinated in
the HF-approximation with Skyrme forces [21]. Using this result we obtain:

the surface energy by F,(0)

a(T) = a(0) [1 +«,T?], (2.20)
E(T) = E(0) [1 +a,T?], (2.21)

where o, = 8.10-3 MeV-? and a, = 9.10-3 MeV-2,

The Coulomb energy E, decreases with increasing temperature due to the increase
of both the nuclear radius and the surface thickness. The change of E, caused by the tem-
perature dependence of R is equal to —E(0) («,/3)T2. Its dependence on the surface thick-
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ness is given by [22]

. 2
E.(a) = E(a = 0) [1—% (E) ] (2.22)

and therefore the change of E. is equal to —EJ0)5[a(0)/ R(0O)*(o,+ o,/3)T2. Thus, the
temperature dependence of the Coulomb energy is

ELT) = E(0) {1 - [«,/3+5(a(0)/R(0))* (ot +t,/3)] T2} (2.23)

From the HF studies of Ref. [16] one can estimate the change of the volume asymmetry
energy E, with temperature:

E(T) = E(0)[1+0,T*] (N=Z)* /4, o, = 2.107* MeV?. (2.24)

To complete the study of TDLDM let us consider variations of the moment of inertia 6
with temperature. In the rotating liquid drop model (RLDM) 8 is determined by integrating
over a uniform mass distribution inside the nuclear surface. Such a geometrical moment
of inertia O,.,(7, q) increase with temperature due to the increase of both the nuclear
radius and the surface diffuseness:

2
Ogeom(T> @) = Ogeom(©, 3) [1 + (% o, + 42 Ri{ ocs) TZ]. (2.25)

In heavy nuclei a change of temperature from 7 = 0 to T = 1 MeV (3 MeV) leads to
an increase of 0, of roughly 2°/,, (2%). In the LDM the temperature dependence of the

8
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Fig. 2. The liquid drop fission barrier of 233U along the liquid drop valley for isothermal (full lines) and
isentropic (dashed lines) processes
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free energy F can easily be determined from Eq. (2.14) after solving a linear differential
equation
S = —0F[0T\; (2.26)

with the initial condition F(T = 0) = E(T = 0). Assuming a quadratic deperdence of
the LD-energy on T, one obtains

Fipm(T) = Epm(0) [1- “Tz]a Siom(T) = 2TaE;pu(0), (2.27)
where
o = {—a,E 0)+ (ty—t/3)E{(0) ~ [,/3 + 5(a0/Ro)* (o5 + %, /3)]EL0) + 2 E(0)} Eppe(0).
(2.28)

It is interesting to study the influence of temperature on the height of the fission
barrier in the isothermal (E(q)|) limit, Fig. 2 shows isothermal (solid lines) and isentropic.
(dashed lines) LD-fission barriers of ?38U. These curves have been obtained along the
fission valley by solving Eqs. (2.26-2.28). The isothermal barrier increases with 7. The
saddle point moves towards larger elongations and smaller neck cross sections. On the
contrary, the isentropic barrier decreases with T and the corresponding saddle point
move towards the spherical shape. These qualitative features of isothermal and isentropic
fission barriers are quite general and can be deduced directly from Egs. (2.26-2.28).

2.4, Strutinsky shell correction approach for heated nuclei

The Strutinsky shell correction method was originally proposed to calculate the
deformation energy at T = 0. It has been suggestcd in Refs. {9] and [23] that a deteimi-
nation of the behavior of heated nuclei requires a Strutinsky renormalization for T = 0
only. However, such a procedure leads to serious errors at large deformations f and small
neck ratios r as can be seen in the lower two diagrams of Fig. 7. These errors are due to the
spurious deformation dependence of the smoothed s.p. level density g at the Fermi surface
for realistic s.p. potentials [11]. This error is then also present in the calculated excita-
tion energy. Consequently, the thermal excitation energy (E(T, © = 0, §)~ Eg;pw(® = 0, q)
or E(S, v =0, Zj)—ER,_DM(w =0, g)] shows a deformation dependence even if shell
effects vanish. This problem can be avoided if a smoothed s.p. level density g(€) is replaced
by a LDM density g; pu(€). This procedure is equivalent to the replacement of the smooth
part of the thermodynamical potential by a phenomenological function:

Quom(®@) = —T | grow(®) In {1+exp [(u—e)/TT}de, (2.29)

where gy pm(€) is constrained by the conditions

"

B
N = J; giom(e)de, Eypy = 5 egpm(e)de (2.30)

o

and p is the chemical potential. Unfortunately, the functional form of gypm(e) cannot
be defined uniquely [12, 14]. Here, we use a formula which was derived for the Fermi gas
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enclosed in a finite volume [24]. Adding a Coulomb contribution to the density function
one obtains [12]

giomle) = X, /e~ X~ x[\/e. (2.31)

The deformation dependent parameters x,(q), x.(4) and the parameter x, are adjusted for
each nucleus. As subsidiary conditions one requires a consistency between g, pu(€) and the
droplet formula [25] for the depth of a potential as well as an agreement between calculated
and experimental nucleon separation energies. In addition, the deformation dependence
of the liquid drop binding energy E; pm(@) must be reproduced exactly. This can be achieved
by the following iterative procedure.

One begins by choosing x, for which volume energy E, is calculated

o
{ x,Jeede = E,, (2.32)
]

u'' follows from the particle number conservation
§ x,\/ede = N. (2.33)

Then, for a given x, one determines x(q) by

'3 [x, V& =x(@)Jede = E,+E(9), (2.34)
where p' is given by
‘j [x, V& —x(@))de = N (2.35)
and x,(q) by ’
{ [ e %@ -5 @IElede = B, + E@+EGD, 2.36)
| [ Ve —5@=xDIele = N. @37

In the above expression E(q) and E.(g) denote the surface and Coulomb energies of the
LDM. The integrations are performed only over the physically significant, positive values
of the density. After determining x,(g), x,(g) and u(q) the sum of separation energies for
protons and neutrons is calculated for the ground state deformation g, and compared with
the experimental value S{™*" +S{*P, This iterative procedure is repeated until a correct
value of x, for the ground state is obtained. For other deformation x, is kept nearly con-
stant by fixing the level density at the Fermi energy. Therefore Eqs. (2.32-2.37) have to
be solved iteratively. In Table I the results for 24°Pu are given. The values of xs(Ej) and
x,(q) are almost the same as the deformation dependent factors By(q) and B/(q) of the
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TABLE I

The parameters x,, xs and x. of the LDM-density g1 pyM, the LD-chemical poientials p(L‘BM (pfng) for protons

(neutrons) and values of the liquid diop deformation enetgy Eppm for 24°Pu. Eppm is defined with respect

to the energy of the cold, nonrotating, spherical liquid drop. Deformation changes of the coefficients x; and
xc follow the corresponding variations of the liquid drop shape factors By() and Bc(?q')

B, Xp Xs Xc By B, ,uf"BM /‘EBM e M B EEBM(M%M) Eipm
| |

0.0, 1.0 1.220 [ 0.725 {1 2918 | 1.0 1.0 311 39.7 4 5.55 6.50 0.00

0.3, 1.0 1.220 : 0.733 | 2.894 | 1.013 1 0.993 ; 31.1 39.7 5.55 6.50 1139

0.6, 1.0 1.224 10.758 ; 2.838 | 1.046 | 0.975 | 31.1 39.7 5.55 6 50 | 4.30

0.9, 1.0 1.228 E 0.794 | 2.746 | 1.097 i 0.947 | 31.0 | 39.7 5.55 6.50 7.98

surface and Coulomb energies. One can further simplify the calculations introducing
a deformation dependent scaling function s,(¢):

é[sq(ai)] = groml® 9)- (2.38)

The Strutinsky renormalization for heated nuclei is then obvious, since the smoothed
energy for scaled s.p. levels ¢;:

elq) = s,[e@)] (2.39)

and the LD-energy cancel exactly. Therefore, all equations of Section 2.2. can be used
without further renormalization.

For the SW potential, the smoothed rotational energy 4 wl is approximately equal
to the rigid body rotational energy + olgipm = ©*/(20geom)- Therefore, g, (e) = 2o=ol€)
= grpm(€) and the same scaling function s,(¢) can be used for all w. In principle the tem-
perature dependence of the LD-energy could be hidden in the parameters x,, x, and x, of
2uom(®). However, the relative changes of the level density at the Fermi surface are negli-
gible for T 5 5 MeV. Hence, we use the temperature independent parameters x,, x; and x,
and add the temperature dependent contributions to the LD-energy in the total energy
expression:

Ex(T, ®, §) = Y. [eo, §)+ 0>l T, @, @) +a(@)Enom(0, 0, T*

N

+[EqLom(0; 0, Zisph)'— Zi: (0, asph)] (2.40)
where n(T, o, q) is calculated for the scaled s.p. energies e;. The first term in Ex(7, w, )
includes thermal, rotation and deformation energies as well as the corresponding tem-
perature dependent shell effects. The second term accounts for the temperature variations
of both the radius and the diffuseness of the average potential. The third term is a constant
and has no physical significance. Other renormalized quantities like the angular momen-
tum 7 (2.10), the entropy Sg (2.13) and the free energy Fp = Ex~ TSy are constructed
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TABLE H

A comparison of the renormalized E ¥ and unrenormalized E* thermal excitation energies calculated for
the strongly deformed (8 = 0.8, r = 0.8) configuration of 2*°Pu for various temperatures. ar and a are the
effective leve!l density parameteis corresponding to E ¥ and E*

] | |
T [MeV] ’ 0.2 0.4 ! 06 | 08 | 1.0 | 1.2 | 1.5 | 1.8 l 20 | 25 | 3.0
] ‘
~ ! } \ } ! ‘ _
EX[MeV] | 1779 5521 11.24 | 19.28 | 29.41 | 41.69  64.15 | 91.62 {112.77 [175.79 |253.13
ar 4448 . 3451 3123 30,12 | 29.41 | 28.95 | 28.51 | 28.28 | 28.19 | 28.13 | 28.13
E*[MeV] | 1476 © 4217 | 8397 14.22 | 21.64 | 30.57 | 46.96 | 67.11 . 82.69 129.26 (186.39
a 3690 . 2636 123322223 21.64 | 21.23 | 20.87 | 20.71 | 20.67 | 20.68 | 20.71

similarly as Eg(T, @, ). In Table II the unrenormalized excitation energy E* = E(T, w
=0,q)—E@©O,w = 0, q) is compared with the renormalized one Er = Ex(T, 0 = 0, q)
—E@©, w = 0, g) for the nucleas **°Pu at various temperaiures and at a deformation
close to the second saddle (8 = 0.8, r = 0.8). The effcctive level density parameters given
in Table II are defined as a = E*/T?. These parameters converge to the largely different
limits @z ~ A/8 5 and a ~ A/11.5 due to the different bulk properties of gx(€) = g, pm(e)
and g(¢).

3. Symmetric fission of heated fast rotating nuclei

In this work we will restrict the discussion of the various properties of rotating heated
nuclei to exemplary nuclei 2:°Po and 238U. The s.p. energies ¢; and expectation valuaes of
the angular momentum compenent j, are calculated in a deformed SW potential paramet-
rized in terms of quadrupole deformations § and y, the neck parameter r and the asymmetry
parameter . The Hamiltonian in the rotating frame is given as the sum of the kinetic
energy operator 7, the cranking term — wj,, ithe central potential V, the spin-orbit potential
V.o and the Coulomb potential Vc,,, approximated by a uniformly charged drop with
Z—1 protons. The eigenfunctions of this Hamiltonian are expanded in a three dimensional
harmonic oscillator basis [7]. The eigenstaies can be classified using the g-pa:ity
g = (—1)™X,. The n-parity is a gocd quantum number only for reflection symmetric
potentizls V(x, y, —z) = V(x, y, z). The !ime reversal symmetry of the Hamiltonian leads
for non-rotating potentials to a degeneracy of levels with opposite sign of the g-parity.
This degeneracy is removed by the crenking term. Analytical expressions for the matrix
elements of ¢, V., V., and j, are given in Ref. [7]. As basis states we have included only
those states which fulfill the condifion:

Edef(nx’ ny! nz) = (nx+—%)hwx+(ny+%)h(})y+(n2+%)hwz g (N'0+%)hw0a
No = 10. (2.41)

The parameters of the SW average ficld e the same as given in Table 2 of Ref. [7]. Pairing
correlations have always been neglec ed.



960

Actinide nuclei in their equilibrium configuration at high spins show a weak tendency
towards triaxial shapes. Thus the spherical or prolate ground state configuration is relatively
stable up to the critical angular momentum Iy, Where the equilibrium shape changes
rapidly and the lowest energy minimum corresponds to strongly elongated configurations
(B > 0,y ~ 0°. This justifies the omission of y-deformations at high spins. For rotating
nuclei close to the fission limit, it is more important to include the neck parameter 7 than
the y-deformation. Therefore, in most of the calculations discussed in Sects. 3-5 we restrict
the shape variations to axially and reflection symmetric (¢ = 0, y = 0°) configurations
in the B, r-plane.

3.1. Rotating nuclei at T = 0

The nucleus 228U belongs to the deformed actinide nuclei at the f-stability line. Its
deformation energy surface (DES) for various angular momenta at 7 = 0 is shown in Fig. 3.
The characteristic feature of these energy diagrams is the “valley structure” which displays
the strong coupling of the elongation f and the neck parameter r. This coupling results
from the approximate conservation of the shell closures for shape deformations that
leave the ratio of the potential axes unchanged. A simultaneous increase (decrease) of
the B, r parameters leaves the ratio of axes approximately constant and thus preserves
the shell closures. The classical rotation tends to fill the neck. Since the deformation B
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Fig. 3. Deformation energy surfaces at 7 = 0 obtained using the SW-potential and the cranked Strutinsky

approach. The energy of 238U is calculated in the §—r (¢ = 0,y = 0°) plane for angular momenta / = 0,

30, 60 and 90%. The dashed areas indicate local minima. The equienergy lines are spaced by 2 MeV and
are labelled relative to the energy of the spherical liquid drop at I =0
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and r are strongly coupled along the valley, the filling of the neck initiates changes of f.
At the ground state valley the decrease of r leads to a shrinking of the nucleus. At the
second valley the increase of r results in a stretching of the nucleus. Consequently, the
difference of the quadrupole deformations of both minima increases. At I = 0 this difference
is 48 ~ 0.25 and increases further to 48 ~ 0.60 at I = 90h. The filling of the neck by the
rotation also changes the shape of the fission valley in the f, r-plane. At I = 0 this valley
connects the diamond-like shapes at the first minimum, the spheroidal shapes at the first
saddle and the dumb-bell shapes at the second minimum and the second saddle. However,
at I = 90h the first and the second minimum as well as the first saddle correspond to
ellipsoidal shapes and the fission valley begins to tilt towards the dumb-bell configurations
around the second saddle.

3.2. Isentropic and isothermal process

Figure 4 shows for 238U the RLD-energy surface at T = 0 as well as the free energy
surfaces at 7= 1, 1.5and 2 MeV. At I = 60h the RLD-energy no longer prevents the
nucleus from fission. Therefore, the minimum of the potential energy (T = 0) at § ~ 0.55,
r~ 0.9 (see Fig. 3) is stabilized solely by shell effects. The thermal excitations destroy
the shell effects and the isothermal fission barrier disappears completely at 7~ 2 MeV.
According to the TDLDM the height of the fission barrier for isothermal processes increases
with temperature (see Fig. 2). This increase is small for temperatures 7' < 1 MeV and be-
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Fig. 5. Isothermal energy suifaces of 23*U at T = 2 MeV and I = 0, 30, 60 and 90%. For more details
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comes more and more important for higher temperatures since E;py depends quadratically
on T.

Up to temperature T < 3 MeV the smooth behavior of the energy in the LDM is
modified by the shell structure. The variation of isothermal DES’s with angular momentum
and temperature can be studied in Figs. 3, 5. At T = 2 MeV both first and second energy
barriers exist up to I 2 100h, whereas in isentropic processes at comparable excitation
energies the fission stability is mainly determined by the LDM (compare Fig. 6).
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Fig. 7. The sum of the shell enei1gy and the thermal p-h excitation energy for 2381J at I == 60%. The upper

two diagrams are calculated using the renormalized smoothed density of s.p. states g(¢). In the left diagrams

the entropy values S—SrpLpm correspond to an average temperature of 1 MeV, in the right two diagrams
to 2 MeV. For further details see the caption of Fig. 4

The energy surface for a constant entropy agrees up to a constant with the respective
free energy surface for a constant temperature. This has been discussed in Sect. 2.2 and can
be seen by comparing the lower right diagram in Fig. 5 and the lower left diagram in
Fig. 6 (S = 112 <> T = 2 MeV).

A sizeable flattening of the energy surfaces occurs around minima and saddle points
when going from S = 0 (Fig. 3) to S = 112 (« T = 2MeV) (Fig. 6). For S =0 the
first and second barriers exist at I > 90h, whereas for S = 112 they disappear already
at I > 60h. In Fig. 6 one can further study the dependence of the LD-barrier on the ex-
citation energy. The height of the barrier equals ~ 4.5 MeV for T = 0, I = 0 and becomes
< 2.5MeV at S = 112. (The shell structure at S = 112 gives only a slight modification
of the liquid drop behavior.)
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The disappearance of the shell effects at high thermal excitation energies is demonstra-
ted in Fig. 7, where the sum of the shell energy and the thermal p-h excitation energy
SEgq 4w = E~Egripy 18 shown for isentropic processes of the rotating (I = 60h) nucleus
2381, The entropy S—Skipm = 38 in the upper left diagram corresponds to an average
value of the temperature T = 1 MeV. Similarly, S—Sgpm = 76 in the upper right diagram
corresponds to T = 2 MeV. The lower part of Fig. 7 shows the unrenormalized energies
OENS w (9, 23] for T = 1 and 2 MeV. In our approach the renormalized shell coitections
SE,, . tend towards a deformation independent constant, whereas the unrenormalized
values SELY ., show alveady at T = 2 MeV a large unphysical deformation dependence at
large elongation and small neck cross section. Thus, the estimate of the excitation energy
dependence of the level density parameter for fission a; and particle emission a,(a,) is not
meaningful for unrenormalized smoo:hed level densities g(e).

4. The angular momentum and temperature dependence of the fission barrier

This section is devoted to studies of the fission barrier and its structure in 2'°Po and
23847 at high angular momenta and thermal excitations. We determine the fission barriers
from the energy surfaces at a constant entropy or equivalently from the free energy surfaces
for a constant temperature. To study the I- and T-deperidence of the fission barrier we have

“chosen the spherical nucleus 2!°Po with two protons ouiside a double magic 2°%Pb-core.
This nucleus is unstable and it belongs to the neutron-rich side of the p-stability line.
The free energy surfaces are minimized in the space of the deformation parameters § and
r for y = 0°. This is certainly a simplificaiion since nonaxial deformations are important
at the first saddle, whereas both the nonaxial and reflection asymmetric deformations
play an important role at the sccond saddle. Both parameters will be included in the detailed
investigation of the structure of the fission barrier. At T = 0 and finite angular momenta
the fission barriers of 2'°Po were studied in Ref. {7] (see Fig. 15 of Ref. [7]). In this work
we present details about barriers at 7 > 0 which are obtained from the free energy surfaces
at T = 0.5, 1.0, 1.5 and 2 MeV.

Fig. 8 shows ihe first barrier (F,—F)), the second barrier (Fp—Fy) as well as the
energy difference between the first and second energy minima ({Fy~ F|) for 2'°Po at
various temperatures and angular momenta. The heights of both barriers (F,—Fy, Fg—Fy)
decrease smoothly with increasing temperature due to the destructive influence of tempera-
ture on shell effects. For T < 2 MeV first barrier disappears at I ~ 80h independent
of the thermal excitation energy. The critical spin corresponding to the vanishing second
barrier decreases from I 2 160h at T = 0 to I~ 110h at T'= 1.5 MeV. At T = 2 MeV
the shell effects are already too weak to generate a second minimum. Consequently, the
fission barrier nearly coincides with the LD-barrier and has to be compared with Fp—F
at lower temperatures. The critical angular momentum Jcg,r for the shape transition
from the first to the second minimum (|F;— F,| = 0) iflcreases slightly with temperature.
Moreover, the energy difference [F;—F;| at I > Igyp increases slowlier at higher tempera-
tures than at low temperatures.

Generally, the shell effects shift up the limiting angular momentum corresponding
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to the vanishing fission barrier. The thermal excitations dissolve shell effects and bring
the results of the RLDM at T = 0 and the CS-approach at T > 0 closer to each oiher.
At temperatuies higher than T~ 1.5 MeV both models p.cdict similar heights of the
fission barsier although the equilibrium deformation and entropy still reflcct ihe presence
of the shell struciure.

Below, we will also show that the mass distribuiion of fission fragments may indicate
the presence of shell effects cven at T 2 | MeV. Thus, the remnants of shell cffects at high
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Fig. 8. The first barrie1 (F4— F}), the second barrier (Fg— Fy) and the energy difference between the first
and the second free energy minima ({Fy— Fjl) are plotted as a function of the total angular momentum
for various temperatures in 2:°Po

excitation energies can still be seen in the compciition beiween particle emissicn and
fission for various angular momenta [1}.

The mass distribution of the fission preducts at 7 = 0 in the aciinide rcgion often
shows a sizeable asymmetry resulting from the reflection asymmetry of the nuclear potential
in the region of the fission barrier. The observation of a triple-humped mass distribution
by Jensen and Fairhall [26] in 22%Ra suggested that the struciure of the fission barrier
might be even more complicated allowing for the coexistence of mass symmetric and mass
asymmetric fission channels. This would indicate also that in certain nuclei one has iwo
separate minima at the fission barrier which correspond to refleciion symmetric ard re-
fleciion asymmetric shapes, respeciively. Konecny ard Schmitt showed that the raiio
of symmetric to asymmetric fission increases with the thesmal excitation energy and that
symmetric fission becomes dominating at £* > 11 MeV [27] (T 2 0.65 McV). The final
argument for the coexistence of both the refleciion symmetric and asymmetric shapes
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E(I-30h)

Fig. 9. Deformation energy surfaces of 2*%U at § = 0.9, r = 0.9 are shown in the plane of the reflection
asymmetry parameter ® and the nonaxial deformation y for I = 0, 30, 60 and 90%. The equienergy lines
are drawn in steps of 1 MeV
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Fig. 10. Energy surfaces of 223U at I = 60% (8 = 0.9, r = 0.9) are plotted as a function of the deforma-

tion parameters « and y. The left upper map shows the rotating liquid drop eneigy surface. The right upper

and the lower two maps present the isentropic energy surfaces at § = 28, 56 and 84 corresponding to average
temperatures of 0.5, 1 and 1.5 MeV. The equienergy lines are drawn in steps of 1 MeV
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at the fission barrier of Ra-isotopes was given by Weber et al. [16] who observed that
symmetric and asymmetric fission are associated with different thresholds. Similar prop-
erties of the fission process were found also in Ac [28] and U [17] isotopes.

The fission mass yields of 238U at various thermal excitations and at 7 ~ 0 were stud-
ied by Colby et al. [29]. A sizeable asymmetry in the mass yields was found but no clear
maximum was observed for symmetric fission. Figs. 9 and 10 exhibit results of calculations
for 238U at the second barrier. Fig. 9 shows the energy surface in the o —y-plane at constant
deformation parameters f and r (f = 0.9, r = 0.9) which correspond approximately to the
fission saddle point at I = 0. The energy surfaces in Fig. 10 were calculaied at T = 0 and
for angular momenta I = 0, 30, 60 and 90 &. At I = 0 one can see the double degenerate
(+«) mass asymmetric minimum, a hill at « = y = 0 and a small minimum at « = 0,
y ~ +75° With increasing spin negative y-deformations become favored.

The results for various models applied to the calculation of DES’s in the «, y-plane
(B =0.9, r=0.9) at I =90 © are shown in Fig. 10. The RLDM surface in the upper left
diagram shows a slight tendency towards negative y-values but is symmetric around o = 0.
It is known that the reflection asymmetry of nuclear shapes at the second barrier is due to
the shell effects. The other three contour plots in Fig. 10 show the energy surfaces at S = 28
(T =0.5MeV), S =56 («T =1MeV) and S = 84 (T = 1.5 MeV). The increase
in entropy leads to a rapid decrcase of the energy difference between the mass asymmetric
and the mass symmetric minima from ~5MeV at § = 0 to ~1 MeV at § = 56. Also the
reflection asymmetric minimum becomes more shallow corresponding to a broader width
of the peaks in the fission fragment mass spectium. A similar T-dependence of the full
width half maximum (FWHM) has been reported e.g. by Colby ct al. {29] in 238U, At
S = 84 (E* ~ 80 MeV) the separaie mass asymmetric channel practically disappears
and one can see that the fission saddle is very flat in the «, y-plane. The shell effects which
are still present at « # 0 and S = 84 leads to a significant increase of the shallow region
of the «, y-plane as compared with the RLDM results.

In conclusion, the influence of thermal excitations on the mass spectrum of fission
products can be discussed in three distinct regions. At low temperatures (T < 0.5 to
1.0 MeV) one observes a sharp increase of the ratio of symmetric Py(sym) to asymmetric
P j(asym) fission. The FWHM for symmetric and asymmetric fission becomes larger. In the
second region (1.0 MeV < T < 2.0 MeV) the amplitude of the shell corrections of the
reflection asymmetric configurations is comparable with the variations of the classical
energy when going from o = 0 to «,,;, at the minimum of 6E,. In this temperature region
the FWHM approaches a maximum:

Amax &= MH—ML+Ag.s. (41)
where My, M, denote the average mass numbers in the group of heavy and light fission
fragments respectively and 4, is the FWHM value at I = 0. Finally at 7> 2 MeV the
FWHM decreases slowly and tends to a limit which is determined by the curvature of the
classical free energy surface in the a—y (f—r) space.
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5. Summary

In this paper we have proposed a new model for the investigation of rotating heated
nuclei. This model is based on the Strutinsky shell correction method for finite I and T,
but is essentially free from such shortcomings as the spurious contribation of the smoothed
density of s.p. states g(¢) to the nuclear excitation energy at large deformations or the inaccu-
racies in the classical free energy. The essence of this model is a renormalization of g(e)
by a LDM-density g; pu(e). The resulting function gg(e) is essentially independent of the
thermal energy for T < 5 MeV and, for the SW average potential, it is basically not modified
by a rotation. Therefore, the theoretical model described in this work provides a systematic
tool for studies of highly excited nuclei and allows to check assumpiions made for g, pu(e)
by a detailed comparison with the experimental data in various regions of mass and excita-
tion energies.

We have compared the properties of the heated, rotating nuclei 2'°Po and 238U in the
isothermal and isentropic limits. Nuclear properties around the fission saddle point can
be discussed in three regions of thermal excitations. The first region (T < 1 MeV) is char-
acterized by relatively strong shell effects which determine the shape changes, fission
stability and decay properties of nuclei. For isentropic processes one obse1ves in this region
a large decrease of the temperature variations with deformation and a large increase in the
ratio P (sym)/P(asym). In the second region of temperature (1 < 7 < 1.5 MeV), varia-
tions of 6E, as a function of deformation are comparable with corresponding changes
of Exypm- Thus, one finds that the FWHM approaches a maximum and symmetric fission
becomes dominant (P (sym) > P (asym)). Moreover, the stiffness of the equilibrium shape
shows a sharp minimum at the angular momenta close to Iegr. In the third region of
temperatures (1.5 £ T < 2 MeV) the classical part of the energy is decisive and determines
the properties of highly excited nuclei. Thus, the asymmetric ccmponent in the fission
fragment mass distribution disappears and the FWHM approaches the limit governed
by the RLDM.

The calculations of properties of heated, rotating nuclei indicate several characteristic
features which result from sheli effects at finite J and T ard could be studied experimentally.
Among the most promising experiments are the detailed measurements of the competition
between fission and particle emission (n, p, ) at very high spins ard at relatively low
temperatures (7 < 1.5 MeV). Such data will give information on the nuclear stability and

shape changes for spins close to the limiting angular momenta for the stability of compound
nuclei.
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