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We discuss in some simple cases — where mean-field or strong coupling methods
for lattice gauge theories are applicable — the stabilizing role on first-order deconfining
phase transitions played by the spontaneous breaking of chiral invariance for euclidean
Kogut-Susskind fermions.

PACS numbers: 11.15.Ex, 11.15.Tk

One of the most interesting theoretical problems concerning the behaviour of hadronic
matter under extreme conditions is the fate of the first-order deconfining phase transition
of lattice QCD at finite temperatures, when light dynamical quarks are taken into account.
This is a delicate dynamical problem that demands a good controf of fermions effects
beyond the quenched approximation in Monte Carlo simulations of the theory. The purpose
of this talk is to review the results of some simple analytic calculations — basically the
results contained in Ref. [1] and some further work of my own — which tend to suggest
that light (or even massless) Kogut-Susskind fermions will not necessarily wash out the
latent heath of the first order transition of the pure gauge theory. These simple calculations
also indicate that the stabilizing mechanism is the spontaneous breaking of chiral symmetry:
the potentially dangerous screening effects of light fermions are depressed because they
acquire a dynamical mass through chiral symmetry breaking.

Since first order deconfining phase transitions occur even at zero temperature if the
number of space-time dimensions d is big enough (d > 5), I shall first briefly review the
role of dynamical Kogut-Susskind fermions in this case, where a systematic mean-field
expansion can be carried out. Then, I will discuss the case of a SU(N) lattice gauge theory
at finite temperature in the strong-coupling regime.

* Presented at the XXIII Cracow School on Theoretical Physics, Zakopane, Poland, May 29 — June
12, 1983. :
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1. Mean-field theory in presence of dynamical fermions

Let us consider SU(N) lattice gauge fields coupled to massless euclidean Kogut-
-Susskind fermions [2, 3]. Sites are labelled by a d-dimensional vector x whose components
(x4, ..., x;) are integers, and links are labelled by the site to which they are attached and
a unit vector in the positive u direction to be denoted f. The partition function we consider is

Z = [ [] du(Ux3) T1 dx<dix exp [Sq+Sel. (1.1)

Xp

where du(U) is the Haar measure over the gauge group, S the Wilson action

So =B X Tr{UciUsasUsiiaUss] (12)

-
xp#Ev

and Sg the fermionic action corresponding to massless Kogut-Susskind fermions.

Se = 3 2, 1(%) {H(x+ DU 5x(x) = iU ax(x + M}, (1.3)

Xyt

where 7,(x) = (=1)*"***""*-1 The Grassmann variables x(x) and y(x) carry color
(and possibly flavor) but no spin indices. We shall deal with the gauge degrees of freedom
in Eq. (1.1) by using mean-field methods, which are accurate at large d. The reason for
choosing Kogut-Susskind fermions is that their effects can also be systematically studied
in a 1/d expansion: a mean field theory can also be developed to deal with the fermionic
degrees of freedom [4]. To leading order, this will be the standard Hartree-Fock approxima-
tion, but there is a systematic way of computing corrections to it. This program has been
vigourously pursued in the strong coupling regime [4, 5]. Similar methods do not work
for ordinary Dirac fermions because in this case the number o1 spin components grow like

d
2[7], and one needs the additional assumption that N — oo in order to justity the loop
expansion.

Let us for the moment consider the mean-field approximation for the gauge theory
in the absence of fermions. The starting point of the mean-field approach is to decouple
the group variables U, ; in the Wilson action by replacing the plaquette interaction by
the interaction of U, ; with a random external field A4, at each link [6]. This leads to the
following representation of the partition function (1.1) (in the absence of fermions)

Z = J‘ [dVdA] exp {SG{V] - —;— Z Tr (Ax,;;V;f; +hc)+ Z w(Ax.;A:;;)} , (1.4

x,i x

where ¥, 3 and A, ; are now ordinary N x N matrices at each link (a fluctuating mean-
-field and external field, respectively) and w(AA4+) is the one-link integral which contains
the information on the nature of the gauge group [6]

w(AA*) = In Idﬂ(U) exp {-;— Tr (AU* +4* U)} (L.5)



981

and which is explicitly known for the case of U(1), SU(2) and SU(N) as N — oo [7]. The
mean-field expansion is just the saddle-point evaluation of Eq (1.4). Looking for a transla-
tionally invariant saddle point of the form

Vep = olys  Ap = ialy (1.6) -
one finds that:
a) For any value of the coupling constant § = f(d— 1), there is a trivial saddle point
¢=a=0;
b) For B > B., a new non-trivial saddle point ¢ # O takes over. At ., ¢ jumps to a value
slightly below 1 and « jumps to a large value (0.9 and 5.3, respectively) for the case of U(1).
As B - oo (weak coupling limit), ¢ approaches 1 and « tends to infinity. This behaviour
reflects the compactness of the underlying gauge group: one needs a huge external field
to polarize the systcm to its maximum allowed value at weak coupling. We refer the reader
to the original paper of Brezin and Drouffe for a discussion of how this approach evades
Elitzur’s theorem [6].

In the mean-field approximation, the vacuum expectation value of a Wilson loop
{W(c)) behaves like ¢%, L being the length of the path c. If ¢ # 0 (orderced phas<) this is the
perimeter law. If ¢ = 0 (disordered phase), the result can be interpreted as an area law with
infinite string tension, which is the infinite coupling (f = 0) result. The mean-field g is then
order parameter related to the first-order deconfining phase transition. Moreover, 1/d
corrections to the mean-field approximation can be computed by using by now well
established methods [1, 7, 8].

Let us now switch on the Kogut-Susskind feimions and consider the full partition
function (1.1). One would be tempted to replace the gauge field U, ; in the fermionic
action (1.3) by the fluctuating mean-field V, ;, and to carry out right away the Grassmann
integration. However, it has been emphasized in Ref. [1] that this proccdure does not match
the known strong-coupling results [4], and that it is important to keep the fermions interact-
ing with the compact gauge variable U, ;. Therefore, the correct procedure is to consider
the fermion bilinears xy coupled to U,; as part of the fluctuating external field A,3.
This yields the same representation (1.4) for the partition function, up to the following
modifications [1]:

a) Include the fermion integration [ || di.dix

b) Replace, in the argument of the one-link integral

gty VA = A (00(x + M x(x)
A=) {Ai’.z = AL — 1, ()T + ),

where color indices are understood: y,x, is to be interpreted as a matrix in color space.
An effective Lagrangian for the Fermi fields thus emerges by expanding the one link integral
o in the Grassmann variables y(x), y(x+ i), x(x) and x(x+ ). This expansion of course
satures at some given order which depends on the number of color indices. This effective
Lagrangian contains multifermion near-neighbour interactions with coefficients which
depend on A, ;.
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To leading order in a 1/d expansion, Kogut-Susskind fermions decouple from the
gauge field and the results of the mean-field approximation remain valid. The reason
is trivial to understand: since there is only one-spin degree of freedom per site, the number
of gauge degrees of freedom grows with d faster than the number of matter field degrees
of freedom. The fermion contribution to the free energy per link starts at order 1/d with
respect to the gauge mean-field result, and they are of the same order as the corrections
to the mean-field approximation in the pure gauge sector [1]. In order to compute the
leading 1/d contributions to the free energy arising from the fermion contribution, one can
then safely neglect the fluctuations of A, 7 and replace it by its saddle-point value, One
then has to deal with an effective Lagrangian which reads, in the case of an U(1) lattice
gauge theory

Leg = ), 7 AN (x) {T(x+ Rx(x) - Z)x(x + £)}

+ 22 B [1x)xx)] i+ Pr(x+ )], (1.7)
where ™
_ Ig(@)
A(r) = @-? (1.8)
_ 1l L@\ 1 2
B(a) = 5 [1 (Io(a)> ] =z (1-¢°). (1.9)

In Eqs (1.8) and (1.9) the zeroth order saddle-point equations have been used to write
A(a) and B(«) in terms of the mean-field ¢, which is in turn a function of the coupling
constant § having the behaviour described above. For the SU(N) gauge group, the effective
Lagrangian contains interactions higher than the four-fermion interaction in Eq. (1.7).
However, only the four-fermion interaction is important in the calculation of the leading
1/d -contributions to the free energy [1, 4].

The physics contained in the effective Lagrangian (1.7) is easy to understand. In the
strong coupling disordered phase (f small) the mean-field ¢ vanishes. Therefore, from
Eq. (1.8) it follows that there is no free quark propagation and we are only left with the
four-fermion interaction which is known to induce spontaneous chiral symmetry breaking
[4]. As we move towards the weak-coupling ordered phase (f — ) g tends to 1. Then
the four-fermion interaction fades away and we are left with just a free fermion Lagrangian.
Somewhere in the way chiral symmetry has been restored. The effective Lagrangian (1.7)
can be studied by mean-field (Hartree-Fock) methods, which allows one to set up a system-
atic 1/d expansion for the fermion contributions to the free energy. We shall not review
here the technical details of these calculations, which are similar in spirit to the one we shall
describe in more detail in the next section, and refer the reader to the original papers for
more details [1, 4]. To leading order in a 1/d expansion, the dynamical quark mass 4
satisfies a Nambu-Jona-Lasinio equation:

r/2 ‘
Ao d’p Ao
—_— B e 1.10
Bd J n? 23+¢* Y sin? Py (1.10)
—n/2 )



983

This equation admits at any g-the trivial solution 4, = 0. For g? < 1/2 there is also a non-
-trivial solution:

Ao = [(G—e)d]'? [1+0(/d)], (1.11)

which breaks chiral smmyetry and dominates-the free-energy whenever it exists. As a func-
tion of g, chiral symmetry is then restored at ¢ = 1/2: However, the mean-field is not
a free parameter but rather a function of the coupling constant § through the mean-field
equations for the gauge field. We know that, as the gauge system deconfines, ¢ jumps
from zero to a value close to 1 and in any case bigger than 1 /\/ 2. Then, we conclude that
chiral symmetry is restored as soon as the gauge system deconfines. The¢ leading -1/d calcula-
tion gives the fermion free energy as a sum of uncorrelated fermion loops of fermions of
mass Ao. This is equivalent to the quenched approximation made in Monte-Carlo simula-
tions of lattice gauge theories, with the fluctuating gauge degrees of freedom replaced by
a mean-field. We then see that in this quenched approximation the sudden transition of the
mean-field ¢ from the strong coupling to the weak coupling region drives the restoration
of chiral invariance. Had ¢ jumped at B to a value smaller than 1/,/2, we would have
seen a phase where the gauge system is not confined but chiral symmetry is still broken.
But this phase does not exist (in the quenched approximation) for fermions in the funda-
mental representation of the gauge group.

Strictly speaking, once fermions have been included in the theory, there is no order
parameter for deconfinement. One would expect a non-vanishing mean field — related
to a perimeter law for Wilson loops — even at strong coupling, arising from screening
effects. A careful analysis of this problem — by using arguments close in splrlt to the ones
developed in the next section — reveals that, in the presence of dynamical quarks, the
expectation value of W(c) behaves at strong coupling as;

1 L

W(e ~,<A—) . (1:.12)
Y]

We see here the stabilizing role played by chiral symmetry breaking; because there is a dy-

namical quark mass 1, the effective mean-field at strong coupling is very tiny, namely

0 oc d” Y%, The latent heath of the transition is not washed out at large. d.

All the results we have describcd here follow. essentially from the simple and rather
trivial remark that Kogut-Susskind fermlons are harmless at large d, provided chiral sym-
metry breaking is properly taken into account. The question of whethe1 d = 4is big enough
is of course. beyond the reach of this kind of mean-field arguments

2. SU(N) lattice gauge theory at finite temperature in the strong coupling regime

We now turn to the discussion of the deconfining phase transition that occur in SU(N)
lattice gauge theories at finite temperature 7, when light Kogut-Susskind fermions are
turned on. In the absence of fermions, this deconfining phase transition is known to bz
related to the spontaneous breaking of a global Z(N) symmetry [9]. This symmetry is
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induced by the periodic boundary conditions in euclidean time for the gauge fields, needed
in order to describe finite temperature effects in the path integral formulation of the theory.
It arises in the following way: let us consider a lattice of finite length La in the euclidean
time direction. In the rest of this section, d will be number of space directions. Sites in the
lattice will be labelled by (%, 1), X being a d-dimensional vector and 7 the discrete time coordi-
nate. If one imposes periodic boundary conditions in the Euclidean time direction for the
gauge field variables pointing in space directions

U(%,0) = U(x, La)(i = 1, ..., d) 2.1)

both the action and the boundary conditions (2.1) are invariant under gauge transforma-
tions which are periodic up to a constant element z of the center of the gauge group, Z(N)

(%, 0) = Q(%, La)z. (2.2)

The order parameter related to the deconfining phase transition is the thermal Wilson
loop W(X), a Wilson loop that winds along the time direction, which is not invariant
under the class of gauge transformations (2.2)

W(x) - W(X)z 2.3)
and which carries information about the free energy excess F_ of a single quark at point X
(W(R)) = e T, 2.4)

Therefore, if (W(X)) = 0, the center symmetry Z(N) is unbroken, F; = ¢c and the gauge
system is in a confining phase. If (W{(%)) # 0, the Z(N) symmetry is spontaneously broken,
F, is finite and the gauge system is in an unconfined phase.

As pointed out by Svetitsky and Yaffe [10], if an effective action for the thermal Wilson
loops W(X) is computed in the pure gauge sector by integrating away the gauge degrees
of freedom U(X,1) (i = 1, ..., d), the result is Z(N) invariant. Explicit strong-coupling
calculations [11-12] as well as Monte-Carlo studies [13] have verified their conjecture,
namely, that the deconfining phase transition is of second order for SU(2) and of first
order for SU(3). When quark matter fields in the fundamental representation are coupled
to the gauge field, their contribution to the effective action for W(X) breaks explicitly the
global Z(N) symmetry, the reason being that the fermionic action in a periodic lattice is not
invariant under the class of gauge transformations (2.2). By analogy with a Z(X) spin
system in an external magnetic field, one can immediately see that the fermion-induced
term in the effective action for W(X) will reduce the latent heath of the first-order transition
of the SU(3) theory or, if strong enough, will wash the transition away.

This problem has been examined in the strong-coupling limit, for Wilson and Xogut-
-Susskind fermions [14]. Even at strong coupling, the fermion dynamics is not exactly
soluble, and further approximations are needed such as, for example, the hopping param-
eter expansion K = (my+d+1)-! for Wilson fermions with r = 1, m, being the bare
quarks mass. One obtains in this case that the strength of the Z(N) symmetry breaking
term in the effective action for W(%) induced by the quark fields is proportional to K* [14].
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The same analysis for Kogut-Susskind fermions gives a strength proportional to mg*
[14], so it looks as if in this case the first-order phase transition is doomed to disappear
as soon as the quarks are light enough.

We reexamine in the rest of this section the strong coupling problem for Kogut-
-Susskind fermions and exhibit once again the stabilizing role played by spontaneous chiral
symmetry breaking. Indeed, we shall find that, when this effect is taken into account,
the Z(N) symmetry breaking effects are no longer controlled by the bare quark mass but
rather by the dynamical mass acquired by the fermions through the spontaneous breaking
of chiral symmetry. We shall use a 1/d expansion to compute the fermion path integral.
The leading term in this expansion contains terms to all orders in the hopping parameter
K=my'. ,

We consider again the SU(N) lattice gauge theory defined by Egs (1.1)-(1.3). Our
lattice has a finite size La in the euclidean time direction, and the physical temperature
is given by T = (La)'. Fermi fields satisfy antiperiodic boundary conditions at t = 0
and T = La. We shall take the integer L to be even. The basic reason is that a consistent
reinterpretation of Kogut-Susskind fermions in terms of quark fields with flavor quantum
numbers requires the introduction of a lattice of lattice spacing 2a [2]. Likewise, a transfer
matrix for flavor-carrying quark fields can only be defined between time slices separated
by 2 units of a.

In the presence of the periodic boundary conditions (2.1), a gauge can always be found
in which the gauge variables Uy(X, 1) sitting on time-like links are time-independent and
diagonal [12}

Uo(%, 1) = diag ('™, ..., ¥, (2.5)

N

where the angles ¢,(X) obey the SU(N) constraint ) ¢, = 0 (mod 2r) and their range is
1

a=

L
(1.1) takes the form:

/L
z= |11
-x/L 3

x 4[¢.) exp {S[Uo, Us; x> 11} (2.6)

where A[¢,] is a term arising from a partial integration of the Haar measurc of the Uy(X)
variables.

Next, we perform the U(X, 1) integration in the strong-coupling region. As far as
the Z(N)-symmetric piece of the effective action is concerned, everything goes as described
in Ref. [12], so we shall only discuss here the fermion contribution. The fermionic action
(1.3) being linear in the U, variables, the integration can be performed explicitly at strong
coupling (where the pure gauge piece of the action is neglected). This integration yields
an effective fermion Lagrangian involving interactions between Fermi fields at equal times
T and sitting on nearest neighbour sites in space.

. n T . . . . L. .
restricted to ¢, € [— —, —i:| to avoid Gribov copies. In this gauge, the partition function

N

[ deu(%) JTTIT duw(Ugz, )

« T X
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£ = 3 Y 1o(X) {HE 1+ DU (DUE, D)= I(E, DU(D(F, 1+ 1)}

1 X )
+ N ; E [Hx+1, Dx(E+1, D] [Z(X, DFE, )]+ ... (2.7
-

where contractions over color indices are understood inside the brackets. The dots in Eq.
(2.7) represent higher-order between composite yy fields (as well as baryon fields) which
can be neglected to leading order in a 1/d expansion [4]. The next step is to integrate the
Grassmann variables y, y. Following the procedure of Ref. [4], a scalar field A(%, 1) can
be introduced to linearize the four-fermion interaction:

exp {3 3, 11X, 0 (V7 Dz 5%, 1)}

x,x

= (det V)% { H dA(%, )y exp {— % Z_ ME, DV(E, DX, 1)

+ X AME, DIE, Ox(F, 1)}, (2.8)

where we have defined:
(V—l . {Ox x+x+6;’,§—§}’ (2'9)

The Lagrangian for the Feimi fields is now local in space, but quarks can propagate in the
time direction and the mass term is time dependent. However, the A(X, 1) integration will
be performed next by a saddle point method, and, because of the choice of gauge (2.5),
there is a time-independent saddle point A,(X). For a time-independent 1 = A(X) the Grass-
mann integration, with antiperiodic boundary conditions at T = 0 and 1 = La, gives .he
following effective action

Sr = =2 Y ABDVE-XAME)+1Trin v

N Lj2
D3I P B
a=1 = k=0

This expression still has to be minimized with respect to A(X). The corresponding saddle-
-point equation is

b
"I

N Lj2

_Z V(%—F)E) = Z Z M%) G ] @2.11)

A3(%)+sin [qﬁa( X)+ 3
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which admits always the trivial solution 25(X) = 0. Any non-trivial solution will-necessarily
be X dependent due to the presence of the phases ¢,(X). But it can easily be verified that
this lack of translational invariance is a 1/d effect. Indeed, from the relation ) V(¥—X')

X

= 2Nd-', [4] it follows that Eq. (2.11) admits a non-trivial solution of the form:

Ao(E) = \/ % [1+0(1/d)]. (2.12)

1t can also be verified that this saddle point dominates over the trivial one. To leading
order in the 1/d expansion there is thereforc a dynamical mass 4, = (d/2)"/?, as expected.
Finally, introducing the thermal Wilson loop phzises’ 04(X) = LX), the part of S
which explicitly depends on this variable reads

N Li2
E : E : E 03)+(2k+1
Setr = in {}.g-‘}-sinz (_()i)__g___,_q)lt)}
L
a=1 * k=0

N o
=Y ¥ &0,+nf, (2.13)

a=1n=—~a

o« K
3 1 (=% K\ . »
= Z K (22 Z <s)°"‘“'"” @19
K=1 5=0

At large d, the leading term in the expansion (9) is then given by

N
1
S = - — 6,, 2.15
eff L(2}.O)L Z Cos U, ( )
a=1

which explicitly breaks the Z(N) symmetry, because of Eq. (2.2). Eq. (11) shows the desired
result: in spite of the fact that we started from massless Kogut-Susskind fermions, the
dynamical mass A, controls the strength of the symmetry breaking effective interaction.

The calculation we have outlined above has a simple interpretation in terms of fer-
mionic paths in the lattice. Eq. (2.15) represents thermal Wilson loops with a renormalized
hopping parameter, K = (my+4,)~*. The renormalization of the hopping parameter
in the time direction arises from the sum over all fermion paths which generate planar
zero area loops in the space directions. These are the diagrams responsible for spontaneous
breaking of chiral symmetry in the strong-coupling d-dimensional theory. In the case of
Wilson fermions these diagrams do not contribute becausz, a it is well known, fermion
paths are self-avoiding. Nevertheless, the term proportional to (d+1) in the expression
for the hopping parameter K = (mg+(d+1))-* for Wilson fermions can evidently be
interpreted as a “dynamical’” mass generated by the explirit breaking of chiral symmetry

where
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in this formulation. Therefore, the strong coupling physics for Wilson and Kogut-Susskind
fermions is not so different after all: the effects of light quarks on the deconfining phase
transition at finite temperature are stabilized by the explicit (or spontaneous) breaking
of chiral symmetry.

Itis a pleasure to acknowledge the organizers of the XXIII Cracow School on Theoret-
ical Physics for the warm and stimulating aimosphere of the meeting.
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