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We calculate spin amplitudes in QED to order &3 for the process ete~ — v+ (), taking
into account effects due to the finite v mass. The Monte Carlo method is used to simulate
directly the production and decay of the 7 leptons. Effects of radiative corrections on the
momenta of the decay products are investigated. A quantitative discussion of the correla-
tions induced by the spin in the double = decay is presented. Z, exchange is included in the
low energy approximation.

PACS numbers: 12.20.Ds

1. Introduction

In this paper we examine the QED to order o radiative and electroweak corrections
to the process ete~ — t1~ in the energy range from the production threshold to the highest
PETRA/PEP energies. Since the 7 is observed only through its decay products, and the
parity violating decay of the 7 is sensitive to its polarization, it is essential to consider spin
effects in this process. Although collisions of unpolarized beams in the lowest order QED
yield t pairs with each 7 unpolarized, we still have correlations between the two decays
because of spin effects. Spin effects and radiative corrections depend on the 7 mass. Thus,
in order to realistically describe ete- — 11—, we have to include radiative corrections, spin
and mass effects at the same time.

The first step towards this complete description of the process was presented in Ref.
[1] where results from Ref. [2] were re-examined and simplified so that they could serve
to construct a Monte-Carlo (M.C.) program which includes mass effects but still no spin
effects.

There is, however an important technical difference between the present work and
other papers on radiative QED corrections like [1}, [2] and [3]. In this paper we calculate
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QED corrections to spin amplitudes rather than to differential cross sections. It is somewhat
similar to Ref. [4] but we do include masses and we do control the phases of the ampli-
tudes.

There are some reasons to use spin amplitudes. For example we have fewer terms on the
level of amplitudes coming from different graphs. Squaring the sum of amplitudes introduces
many interference terms. Furthermore for hard bremsstrahlung amplitudes there are useful
gauge cancellations which simplify the amplitudes before we calculate the differential cross
section with them.

In the numerical results presented in this paper we assumed that beam particles are
not polarized, but since we work with spin amplitudes it will be rather easy to include
beam polarization in the future, if necessary. That would be more difficult to do if we used
the standard (1 +7ys8) (# +m) projection operators. In the numerical applications we use
the density matrix formalism, i.e. the standard polarization vectors. Although we could
multiply directly the spin amplitudes for production and decay, we tried to avoid that
in order to keep separate both production and decay in the M. C. simulation as much as
possible. The reason is that some coupling contants for the 7 decay still have to be deter-
mined. We also want to keep open the possibility to apply our results to other heavy leptons
and quarks. Usually these particles will decay in different ways.

At PETRA/PEP energies the exchange of the weak Z, boson may produce a charge
asymmetry and a 7 polarisation. Thus we include in our calculations Z, exchange in a form
sufficient for that energy range, i.e. in the lowest order. We remark also that for the future
inclusion of Z, in the full resonance form there are two possible steps. One may include
Z, using m, < M as an approximation. That can be done relatively easy because some
results from Refs [5] and [6] still may be used. It will be more difficult to extend our cal-
culations to fermions with mass comparable with the Z, mass like the still hypothetical
t-quark or any new heavy lepton.

The layout of the paper is as follows. In Section 2 we introduce the notation and,
using the lowest order case as an example, we discuss the connection between spin ampli-
tudes and the density matrix. Also a qualitative discussion of spin correlations is given.
Section 3 contains the formulae for radiative corrections of the virtual and soft brems-
strahlung type. In Section 4 we examine hard bremsstrahlung and in Section 5 we present
results of the numerical M. C. calculations including a quantitative discussion of the decay
correlations induced by spin effects. In Section 6 we summarize our results.

2. Lowest order spin amplitudes and spin effects

In this Section we shall introduce the notation and discuss some spin effects in lowest
order. In particular we shall discuss the transition from the spin amplitudes to the density
matrix. A brief discussion of the spin correlations is also given at the end of this Section.
Some of the results presented in this Section may be found in Ref. [7] but we include them
for the sake of completeness and in order to introduce some notations, concepts and methods
on the simple example of the lowest order calcuiations.
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The lowest order one photon exchange amplitude for the process e*(p,)+e (p,)
— 1%(g;)+717(q,) reads

ie’QQ’ -

Mgd.zaxaz = (m Vﬁan;law (21)
1 2

where
V;.",;.z = d(p A Y u(p222),
17;:412 = 5(42“2)?“”(‘1 lal)'

Here Q and @’ denote the positron and t+ charges. The quantities A, and A, are spin
projections for e* and e~ onto the positron ¢.m.s. momentum P1,i.e. A, and —4, are the
helicities of e+ and e~ (up to phase conventions). Similarly, ; and —a, are the helicities
of v+ and t-. The vector vertices ¥ and ¥ can be found in Appendix A together with other
vertices like scalar, pseudoscalar, axial-vector and tensor which are used in Section 3.
Neglecting the electron mass we may write

Vis, = 2041t +id,0"),
Vs = 2o i — iy 0'*— Ma_¢'"), @22

where t = (0,1,0,0), 0 = (0,0, 1,0), ¢’ = (0,0, —sin 6, cos @) and ¢’ = (0, 0, cos 0, sin §)
in the c.m. system, defined uniquely by p, = (1,0,0,1),p, = (1,0,0, —1) and ¢, = (1, 0,
— B sin 0, B’ cos B). As in Ref. [1] we use E = ((p,+p»)?)'?/2 as an energy unit and
B = (1—M?)2 where M isthe t mass inunits of E, M = m,E. We shall put = (1 —m?)V/2
— 1 and m = mJE — 0 wherever it is possible. We also introduce the shorthand notation
oy = o, +o, and Ay = 1; 4, to make the formulae more compact. The resulting spin
amplitudes for the lowest order read

MS = iU(— Aoy | —A o, c—iMA 0 s), (2.3)

ArAzagan

where ¢ = cos ) and s =sin 6, U = e*QQ’.
On the other hand we can deal with spin 1/2 fermions using standard techniques,
i.e. projection operators

Ae(pyw)=(T1egsw)(psM). 24)

We shall show in our simple example how one can relate spin amplitudes in the form (2.3)
to the results obtained using the operators A.. With the standard techniques for unpolar-
ized beam particles, but keeping the final state polarisation vectors w, and w,, we obtain [7]

%};M"(M")* =5 U{(p; " 41> +(p1 * 42)* +(py * pIM?
2wy - wy) [(PL 4 (P 92 _% (p:- Pz)Mz}_z(“H “p) Wy p2) (P11 42)

3
—~2(wy - p2) (w2 p)(Py - ‘11)} = UZ(R80+ Z Riokwilwlé)- (2.5)

k=1
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In the last formula the index i = 1, 2, 3 numbers the three components of w, in the rest

frame of the t+ lepton and the & = 1, 2, 3 numbers the axes in the rest system of the -

lepton. In both rest frames the third axis is the spin quantisation axis as in the definition

of o, and «, and the first axis is defined to be perpendicular to the reaction plane i.c. along

7-vector. In (2.5) the absence of terms linear in w, like Y R, wh and ¥ Rf, w' means that
% k

each t* separately is not polarized in the lowest order. There are, however, correlations
between w, and w, which are controlled by the matrix Rj. We extend the matrix R} to
RS with a,b = 0, 1, 2, 3 obtaining

1+c2+M32, 0, 0, 0
o 0, —-(1-M?>»s? 0, 0
RS, = . . (2.6)
0, 0, (1+M*%s*, 2Mcs
0, 0, 2Mcs, 1+c¢2—M3s?

In order to calculate the matrix RS as given by equation (2.6) directly from our spin
amplitudes defined in Eq. (2.3), we have to translate the bispinor indices in the joint density
matrix given by

0 1 0 0 *
Quidrazas = & Z Mlllzalaz(Mﬂ.xlzaﬁz)
Ardz

i
=1y? [|a+&+| to de e+ MAPa G — 7 (oc+&_——oc_6c+)2Mcs] 2.7)

into vector indices @ and b, see (2.6). The answer may be read off from Eq. (2.4) by sub-
stituting in the operator A.(p, w) as polarisation vectors the three space-like vectors
e, =(0,1,0,0), &, = (0,0,1,0) and e; = (0,0,0, 1) and comparing the results with
the bispinor quantities u(p, o)u(p, @) in the t rest frame, p = (M, 0, 0, 0), « being the spin
projection onto ;. The result is

A(p, &)~ A4(p, 0) = A.(p, e;) = u(p, +)i(p, =) +u(p, —)i(p, +),
A(p, &)= A.(p,0) = A (p, e;) = iu(p, =)i(p, +)~—iu(p, +)i(p, =),
A(p, &)= A.(p,0) = A(p, e5) = u(p, +)a(p, +)—u(p, —)i(p, -), (2.8)
and in addition
A(p,0) = A.(p,0) = u(p, +)i(p, +)+u(p, —)i(p, —).

Similarly A4.- can be expressed in terms of v(p, ®)v(p, &), see Appendix A. In practice,
instead of employing directly the relations (2.8) to translate the sixteen elements of the
joint density matrix in spinor notation into the sixteen elements of R,, we rather introduce
some sort of vocabulary which maps factors like |o404], ooy ete. into elements of R,,. For
instance g,,z,4,2, = SU?|es0;| yields the non-zero elements Ry = 1,Ryy = —1, Ry = 1,
Ry; = 1; all other elements vanish. The complete set of the relations of this type is also
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given in Appendix A. Using these relations we obtain from (2.7) the same result for R,, as
in Eq. (2.6). In the M.C. calculations the transition from the spin amplitudes to the joint
density matrix R,, will usually be done numerically. Thus we deal with spin amplitudes in
the analytical calculations and use the density matrix formalism for the M. C. simulation.

Having calculated the matrix RJ, let us now discuss briefly and qualitatively the spin
correlations in the lowest order in two limits. In the energy range far above the threshold
(M - 0 limit) the matrix RY, simplifies to the following form

[1+¢2, 0, 0, 0

. o, —s%, 0, 0

RS = o o 2 . . (2.9)
LO, 0, 0, 1+¢c?

The positive spin correlation resulting from R3; = 1+4¢? is called here the longitudinal
spin correlation. As we shall see in Section 5, it causes positive correlations between c.m.
energies of the decay products. Longitudinal spin correlation results from helicity conser-
vation. Note that because the electron is nearly massless, the intermediate photon has its
spin aligned with the beam axis. That explains why we have the positive spin correlation
for the second axis, R9, = s2, which is perpendicular to the © momentum but coplanar
with the beam. Finally the correlation RS, = —s2 simply reflects the angular momentum
conservation. The two latter correlations we call transverse spin correlations. They induce
specific correlations in the transverse momenta of the decay products with respect to the
t+ momentum which will be discussed in Section 5.

The second energy regime is the energy near threshold, (3 — 1 limit). There we
have R9y, =2, R, = 252, R3; = 2¢%, RY9; = R3, = 2cs, the other elements vanish.
As we see, the spins of the 's try to align both in the same direction along the beam axis.
Summarizing, the pattern of the correlations is not simple and varies with energy. There
is no doubt that a M.C. simulation is the most efficient way to examine these correlations
quantitatively and to include them in the data analysis.

3. Virtual and soft photon corrections

In this Section we discuss the O(a*) corrections to the spin amplitudes in the case when
no hard photon is emitted. First we examine the corrections to the spin amplitudes which
are proportional to the lowest order spin amplitudes. They include the vacuum polariza-
tion, the electric part F, of the initial and final state vertex correction and the soft photon
bremsstrahlung. Then we come to the box diagram contributions and to the contribution
from the magnetic part F, of the final state vertex correction. Lowest order amplitudes do
not factorize for the second group of corrections and this is why we discuss them separately.

The lowest order spin amplitudes together with the electric part F; of the initial
and final state vertex correction and vacuum polarization IT may be written as follows

MY = MY, (1+F ,(m*)+F(M*—II), 3.1)
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where M), is defined in Eq. (2.3). The amplitude for the soft photon emission factorizes
into M° and the typical infrared-divergent factor

e~ oo (2= 2 )]
k- p, k-p,
2-11/2
4 4z
+Qe*| — — - , 3.2
o [ (k"h k-q:.):l } G2

where k = (E,, k) is the momentum of photon and ¢ is the angle between the planes
spanned by (&, p,) and (k, ,) as in Ref. [4]. The + sign denotes the two possible circular
polarizations of the emitted soft photon. The formula (3.2) can be obtained easily as an
E, - 0 limit of the hard bremsstrahlung amplitudes calculated in the next Section. In order
to obtain the differential cross section or the density matrix elements we take the square!
of (3.1) and of (3.2), then integrate over the photon momentum with the usual cut-off
E, < ko and add them, summing over the photon polarizations + and fermion spins 4;, o;
if necessary. Infrared divergences of the C-even part of the soft bremsstrahlung cancel with
the infrared divergences of vertex corrections F, and F, for density matrix elements in
the same way as for spin-summed unpolarized cross sections. The reason is that all spin
dependence is isolated in the factor M ‘}m. As a result the corrected correlation matrix
R, takes the simple factorized form

s 4
RS, = RS, {1 +6%(m?, ko) + 0¥ (M?, ko)—2 Re 1+ — QQ'
T

x [4 In kg In iT-—f;é +D(B'c)——D(—[3'c)]}. (3.3)

The functions 6%*(m, k,) and D(B'c) are defined in Ref. [1]. In Eq. (3.3) we included
also the infrared singular part of the box diagrams which cancel the infrared divergence
from the C-odd part of the soft bremsstrahlung. We remark that formula (3.3) generalizes
trivially to the case of polarized beams. Obviously R, agrees also with the spin-summed
differential cross section obtained in Ref. [1]. Formula (3.3) was also verified independently
using the operators (2.4) instead of spin amplitudes.

The useful property of factorization in Eq. (3.2) and (3.3) does not hold any more
for box diagrams. Instead of presenting the complete but lengthy derivation of the spin
amplitudes for the box diagrams we shall give in this Section a brief summary of the results
for box amplitudes and we refer the reader to Appendix B for more details.

The final result for the spin amplitudes of an uncrossed box diagram reads

a a 4 . .
M = 5“7; Q0 {(-—11\/12,1)XO—U(M+0(+!X1 +)~+°‘+X2+'}~+05—MX3)}- (34)

! Only the lowest order and O(«®) terms are kept.
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All functions X; can be expressed in terms of four basic functions 4, B, F, and F4 which
are defined in Appendix B. The decomposition is

2
Xo = —11.'A~+i/f lnz"
and for k=1,2,3
6

Xk = Z ijAj = CkliA.‘+Ck2(—7'CAv+iE)+ck3F2

=1
, .4 4 ) 4 4
+eFotos | 2n+iln e +iln Ve +c6i | In oz —lnl\? . (3.5)

The (small) photon mass is denoted by i and the coefficients ¢;; depend on ¢ = cos 0,
s=sinh, w=2-2pc—M? and are listed in Table I

TABLE I
The coefficients ¢ in the formula (3.5) for function X; in the box amplitude
J
N 1 2 3 4 5 6
N
TR A [ S I T T
w 28252 20252 2s2p’ 2w
— 1 1—-p2
2 P S A P (PP IO/ S S B i
w 20252 2825 2s2p’ 28 28w
3 K w | » cw 0 s
- - sli1= 2
1) 2825 20252 28's o

The contribution from the second, crossed box diagram may be obtained by the replace-
ment Xy(c, s) > +X;(—c, —s) where the minus sign should be taken only for i = 1.
To obtain the O(«®) contribution to the cross section and to the density matrix we

take the interference of the box amplitude with the lowest order amplitudes. Averaging
over the electron spins we obtain

Q:ﬁ: = 711-_ ; (M:.'ai(MgiEi)* + Mgiai(M:iii)*)

o
=00 —

;& _
Q;)lixrlziz Im X0+QQ - U2 [|a+a+l Im X1
n 2n

i
ta docIm X, 40 g M2Im Xy— — (0, 8- —0_6,)M
s 3 9

Im (sX,+eX3)+3 (0 @ +a_d, )M Re (—sX, +cX3)] . (3.6)
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Using relations from Appendix A, we can write down explicit expressions for the box
contribution to the correlation matrix. The non-zero elements are as follows

4
‘60 = ; QQ' Im (Xl +C.X2+MZSX3),

a
Rll

a
; QQ’ Im(‘_‘XI +CX2+M28X3),

I

o

52 = — Q0" Im (X, —cX,+MsXy),
T
o

333 = 7{‘ QQ’Im (X1+CX2—M2SX3),

o
33 = Rj, = ~ Q0'Im (MsX,+McX,),
a
01 = Rip = = 00Q' Re (—MsX,+McX,). 3.7

o ~ A
We have neglected the infrared singular part — QQ’'R% A4 In ) which has been already
n

absorbed into the previously discussed group of corrections given in Eq. (3.3). The second,
crossed box contribution is

Ro(c,s) = —Ri(—c, —s3). (3.8)

We have checked that R§, agrees with the result obtained in Ref. [1]. We have also
verified that one obtains the same result for R., using spin projection operators (2.4)
instead of spin amplitudes (3.4).

The contribution from the magnetic part of the final vertex correction is not proportio-

nal to Mg, , like in the case of the box diagram contribution. This may be seen from its

spin amplitudes which are given by
1.
i;{FZ(M)(——}).,rou,|M—i),+a_s—).+oc+Mc). 3.9
The contribution to the R-matrix is obtained by taking the interference of (3.9) with the
lowest order amplitudes. The following non-zero elements are obtained:
RY, = 4Re F,,
RE, = R7y = —2(1—M?)cs Im F,/M,
™ = 452 Re F,,
RY, = 4c’ Re F,,
RY, = R%, = 2(1+M?*)cs Re F,/M, (3.10)
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where

M?*  14p
In ——,

48 1-p

ImF, = —aQ'2M?*/4p'.

T * 12
ReF2= - ‘;Q

This contribudon is one of the pure QED contributions of order a3 to our process which
produces non-zero polarization of a single 7. The polarization is of order RY,/RS, and
numerically it is rather negligible. It should be noted however that this polarization only
has components perpendicular to the production plane and is therefore parity conserving.
A similar correction from the initial state vertex vanishes in the limit m — 0.

At beam energies around 20 GeV the influence of the weak boson exchange cannot
be neglected. We take it into account by including the y—Z, interference in the form of
a correction to the lowest order density matrix:

3% MOy + MEMOy*
Ay

= 3 0Q'e*Z{|as8+12(v0 + caa) +a &, 2c(aa + cvd)
(et |8y |+ oy [&4) [(1+cP)va +2cad]]. 3.11)
Here, v (0) and a (a) are the vector and axial coupling of the Z, to the electron (z) and
Z = (1—-MZ/(p, +p,)*)". We have taken in (3.11) the limit M — 0 because the Z, contribu-

tion is important only in the energy range E > m,. The contribution of the y—Z, inter-
ference to the R-matrix reads

R = R%3 = 2Z(QQ) '[(1+c*)vb +2caa],
R}y = =R}, = —2Z(QQ') " 'vis?,
R%; = R, = 22(QQ") '[(1 + *)va +2cad], (3.12)

with all other elements equal to zero.

The longitudinal polarization of the t resulting from the Z, exchange is given by the
ratio:

RZ,[RS, = 2Z(QQ')™ Y(va +2cad|(1 +c)). (3.13

The total result for the R-matrix coming from the lowest order and from all corrections

discussed in this Section is obtained by summing expressions (3.3), (3.7), (3.8), (3.10)
and (3.12)

R%" = R+ Rl +R5,+ Ry, +RE. (3.14)

4. Hard photon bremsstrahlung

The differential cross section for the process

et (p)+e(py) = v (qy) + 77 (g) +y(k) 4.1
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is defined by

i 2%(0Q')* dq,d>q,d%k
g =
327°E*  q9q9k°

54(P1 +P2— 41— g2~ k)A(wy, wy), 4.2)

where w, are the polarization vectors of the t*(g,) with w, - g, = 0. The unpolarized cross
section was given in Ref. [1]:

A(O, 0) = 2(Aini+Afin+Aim) (4-3)’
and the bilinear term in the decomposition
3
A(wy, wy) = A(0,0)0+ Y Rywiwh 4.4
ik=1

contains a correlation matrix R;, as in the lowest order. The absence of linear terms implies
zero polarization for a single 7. Components of w) and w% are defined in certain rest frames
of the t* and 1, respectively. In this Section we shall concentrate on the calculation of all
32 spin amplitudes for the process (4.1) and we shall calculate Ry from them. In Appendix C
we give also a manifestly Lorentz invariant expression for 4(w,, w,) obtained with standard
techniques.

In order to calculate spin amplitudes we introduce two reference frames with two
orthogonal sets of basic vectors e, and e, which are related to the particle momenta as
follows:

k = k(éy+é3), k= yk(é+é3),
p1 = éo—Psié,+Pciés,  qy = Y(éo+vs,8;+0c,83),
P2 = €5+ Ps é,—Beiés, gy = y(€g—0s5,€;,—1C,83), 4.5)

where

P a A

€q° € =ea;'él; = Bab>
v=A-M»H"2 M =My, y= (1-k)'?,
ci=cosf, s;=sinh, k=k/y.

The reference system with basis e, is a rotated c.m. system with the third axis along the
photon momentum instead of the initial positive lepton momentum and we shall call it the
PMK system. The second system will be referred to as the QMK system. They are related
to each other by a simple Lorentz transformation;

- bar
é, = A&,

(4,7} = 0 (4.6)
{0
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where ¢, = cos ¢, 5, = sin ¢, B = k/2y, y = (2—k)/2y. The momenta of all five particles
in (4.1) may be expressed using the four variables k € (ko, 1 —M?2), 6; € (0, =), ¢ € (0, 2x).
The same variables are used to parametrize the phase space integral and to simulate M. C.
events. For the latter purpose the fifth variable — the overall azimuthal angle around
beam axis is also used. The spins of the initial fermions 4; will be projected on ;e\; in PMK

and the spins «; of the final fermions on -e':; in QMK. The 7% rest frames e’ used to define
W, in (4.4) are then obtained from QMK by a 0,-rotation and a boost along ¢, or q,.
More precisely

éf = &1, & = cy8,—s,8,
6% = (08} +5,854c,63)|M. 4.7)

The hard bremsstrahlung spin amplitudes may be written in the following form:
Miay = iUe(T)f;ziw + T§:°27

ieQ ~ ite N
= U Tttt o Vol 49

where the vector vertices
V = 2[|1,1é; +id,(c1é,+5,63)],
V= 2y[la €y — oy (€265 —5,€3) — Mo_(s,é, +¢,63)] 4.9)
are taken from Appendix A and the bremsstrahlung parts

Hjy = H(p1A)E(— P+ K+ mpyu(py)
2k - py

B(p AV (F2— K+ m)¢,u(pz4,),

" 2k p,
ﬁgﬁ = 2% - Py (g0, (— g1 — ¥+ M)¢,o(q,2,)
+ 2k-gq U(q,02)¢,(4 2+ K + M)y v(g121), (4.10)
2

are calculated in Appendix D. The polarization vectors of the bremsstrahlung photon
are chosento be e, = €, 6, = e,, 7 = 1,2 or &;, = e, &, = e, 9y = 1’, 2". The Lorentz
transformation (4.6) gives the relation between them. Neglecting terms which do not
contribute to the cross section in the limit m — 0, we have

2 . . . .
H; = 772 {(]/'L+|s1—lm]i_])ez—(ll+sl—mcll_)clel},
m* 453
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2
H, = B(m 2 {(1/14-1?51'*‘”"['1 |B)e1+(l,1+ys1+mc11 B) (c1é3+7 ls1é§)},

H, = e 2{vsz[ oty |65 —iotyc 87 +iMla_|é5+ Ma_vcié)},

t

2
27 = B*h(Mz_i_vzsz {052[1“4-1731—m+(}’czeé_szes)}
2

—iMlo_|Béy + Ma_v[(B—7s3)é)—s,¢,65]}. @.11)
It should be noted that both H and H are manifestly gauge invariant i.e. Hi(q,+4q5),
= Hy(pl+p2)u = 0 -
In the soft photon limit k¥ — 0 both H, and H,. are negligible and we have

25 ~

H, V= V-V,
2 m2+sf
. 28's, .
B, V= MR % (4.12)

Even if it is not immediately obvious, both quantities in Eq. (4.12) are proportional to the
same product ¥ - V as the lowest order amplitude in Eq. (2.1). The apparent dissimilarity
results from the different definitions of the axes which are transverse to the spin quantiza-
tion axis.

The formulae for the spin amplitudes are now obtained by substituting (4.11) and
(4.9) into (4.8);

; Q
Tlm =
Y yB(m*+5d)

Hflae )+ (s —ma ) (o | /i, +fhila_ |+ )

Tfin — Q '
A T

{(M sy —im|A_1&,) (flslos| +fTpios +/fT5ila—]

{24! (glalas |+ gl ziay +glsila_|+gla%-)

+id(ghilos | +aqdqioy +ghsila_|+ ghaa ), (4.13)

where & = ¢,, —c,ffy for y = 1, 2 respectively and the coefficients f;} and g}, are listed
in Table II. Note that the index y is different in the Table II for £} and for g,. Before
we add the amplitudes for initial state and final state bremsstrahlung we have to rotate
one of them. For example,

gh = Colir —So8ir  8ir = So8ik +Co8ir (4.14)
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TABLE II
The coefficients f;’k and g, in the formula (4.13) for hard photon bremsstrahlung amplitudes
J 1 2 3 4
fij —Bso Beacy 0 MBsc,
fij Beicy Beicasy 0 A}Bclszs.;,
] —ycg —Veasyp 0 — Mysys,
135 ~yeise Yer1€ao—5153 0 M(c15200+512)
&l — Bosas, Busacaco A}Bs¢ —MBucic,
g 5:1' Bvszcx% Bvs;czclsq, - ?‘"}chc‘q’ - Mgvcgcisq,
Jf] —yus1€q — YU53€15¢ A?ch, — Mu(ys2— Bse
2% — PUS1C1Se 082(YC1 €260 —5182) MBe,s, ]\}u(@sg—ﬁ)clc,,,-f- $2284)

If one is interested only in the case of unpolarized beam particles then the following re-
placement may be introduced;

(s lsy —imlA_IE) e = V) (5T +mPE) f e = 1241 f 1o
(R181=mA_E) [ = iAo (3 +m*E)N 2fh = idofy). (4.15)
In that case the spin amplitudes may be written in a more compact form:
Taay = Trgat Thag

= A4 ] (Bl |+ hY iy, 4 hYsiloa_|+h]ax )

+idp(hSqloy | + Y picy +hYsila_j 4k, ), (4.16)
where
Q Q'
hh = - PAES - 7. 4.17
Y Tt e @17

The matrix R,, is calculated using the relations (A.9) from Appendix A:

Roo = (1, D+(2,2)+(3,3)+4, 4),
Ryy = ~(1,1D)4(2,2)—(3,3)+4, 4),
Ry, = (1L,D—-(2,2)—(3,3)+(4, 4),
Ryz = (1,1)+(2,2)—(3,3)—4,4),

Ri = 2A(L2)+G, 8], Ry = 2[(1,2)~(, 4)],
R13 = 2[(1’ 4)"'(25 3)]s R31 = 2[(15 4)+(27 3)]’
Ry =2[-(2,4)—(1,3)], R, =2[-(2,9)+(1, 3)], (4.18)
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where (k, ) = Z hLhY. In practice it is rather easy to do the transition from Table II to

R, defined in Eqs (4.17) numerically.
We have checked that the algebraic expression in terms of ¢, 5; and k obtained from
the formula

Afin = ; 4,
fin 2B2(M2+v $2)? Z (gl)* (4.19)
Pyisk
and from Ay;, as defined in Ref. [1] agree. The same agreement was found for the initial
state cross section
Aini = —"L“— (ffl)z- (4.20)
2y B2 (m* +53)? ’
7,ik

Another test was done numerically: We have compared R,, obtained from the formulae
given in the Appendix D with R, calculated from Eqs. (4.18) for a series of M.C. events.
We have obtained good agreement also separately for every part like initial state, final
state radiation and their interference.

5. Numerical results

In ete- experiments the t lepton is only observed through its decay products. The
experimental sample of the v+t~ events is isolated using kinematical cuts even more compli-
cated than for stable leptons.

In practice the influence of experimental cuts.is taken into account by M. C. simula-
tion. Furthermore QED radiative corrections to order «® change the total and differential
cross section [2]. In the case of hard photon bremsstrahlung, M.C. simulation is again
the most useful way to introduce QED corrections into the data analysis, see Refs. [3],
[5] and [6]. Spin effects of the type discussed in this paper do not change the total cross
section but they enhance the differential cross section in some parts of the phase space
of the observed decay products and decrease it in other parts. When kinematical cuts are
introduced the M.C. method is the best way to include such effects. Mass effects are hardly
separable from spin effects and radiative corrections.

1n our numerical calculations we shall estimate quantitatively effects resulting from
spin correlations. Generally we expect that they will be stronger in the case of the lowest
order than in order a3 because the hard bremsstrahlung smears out asymmetries resulting
from the spin effects. We shall investigate the influence of the radiative corrections on the
energy and angular distributions of the decay products.

The effects of weak boson (Z,) exchange are also discussed. We examine its influence
on the charge asymmetry and c.m.s. energy distribution of the charged decay products
of the 7. The energy distribution is modified in a characteristic way by 7 polarization due to
Z, exchange.

In our M.C. calculations we take for simplicity only the decays of the 7 into one charged
particle

1¥(q) — £*(p;) +neutrals, CR))
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with the following decay probability distribution in the 7 rest system:

dPer) _ 1 L4 O - 7) = — 14+h%) - % 5.2
—oix = 2. Uglon - w) = - a(x) A+ w), (5.2)

where x = 2E/M,, n = p/|p¢l, h¥> = +ng(x) and w is the 7 polarization vector in its
rest frame. The functions a(x) and g(x) are listed in Table III for f = e, p, 7, Q.

TABLE III

Properties of the T decays used in the Monte Carlo calculations. Functions a(x) and g(x) are defined in Eq.
(5.2). Branching ratios are taken from Ref. [8]

] I
Decay mode Bran-chmg a(x) gx) Comments
ratio
- ! '
T > € VeV 189, 2x—1
T o uve 18% 2x2(3 - 2x)6(1 — x) 3o ne = my =0
1—-20% mg *

- 00 él 2_ = 0.4 2 e = 0.17
T 7Y 23% (1+p*—x) 15207 0.48 1 <mr> 5
T T 10% (1~ x) 1 ¢ mp =20

The differential cross section for the process
e*(py)+e7(p2) = 1T (@) +17(g2) + (k)
1 I— £~(p_)+neutrals
- £*(p,)+neutrals (5.3)
is given by the formula
3
do = (Y rahi"hdo, dP.dP_, (5.4)

ab=0

where r,, = R,,/Roo, do,, is the spin summed/averaged differential cross section for e*e~
- t+1=(y) and dP. is the differential probability distribution for the decay of an unpolar-
ized 1%, i.e. dP = a(x)dQ[4n. Vectors h*) are supplemented with the components
BT = hS) = 1in order to make formula (5.4) more compact. All spin effects are coming
from the first factor in Eq. (5.4). The formal proof of the formula (5.4) is given at the
end of Appendix A. For some comments sec also Ref. [7].

The M.C. simulation algorithm consists of the following steps:
1) The four-vectors of t+1~(y) are gencrated according to the spin summed/averaged
differential cross section do,, using methods described in Refs. [1] and [9]. The joint density
matrix r,, is calculated.
2) For each 7 the decay is simulated, i.e. x and 1 are chosen in the 7 rest frame assuming
an unpolarized 7. The basis in which n is defined is described in Sections 2 (e*e~ — 7777)
and 4 (ete- — t*1-y). These bases are used in all amplitude calculations. Vectors R and
h¢™) are calculated in the corresponding rest systems.
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3) The weight
3

w=73 ;_O ra(d1> 4205V (p )RS (p ) (5.5
is calculated and compared with the uniform random number r & (0, 1). The weight obeys
the inequality 0 << w <{ 1. When w < r the event as a whole is accepted, otherwise it is
rejected. On the average half of the events are rejected.

4) For the accepted event the momenta of the decay products are transformed from the
respective T rest systems to the c.m. system.

We would like to stress that the algorithm is built in such a way that the decay
mechanism may be easily changed, modified and improved without any changes in the 1
pair production part.

Before we come to the numerical results let us try to understand the decay correla-
tions in the simplest example of both 7’s decaying into nv in the lowest order and in the
limit M — 0. The correlation between the pion momenta are controlled by the weight

_ §2
w=7% [1 —cos 6, cos 8,+sin 6 sin 6, cos (¢, + @,) 1?5] s (5.6)
¢

where the direction of the = in the corresponding t rest system is n; = (sin 6; cos i
sin §; sin ¢;, cos 8)), i = 1, 2. Averaging over 0, ¢; and relating 6; to the ©n c.m. energy
y:€(0,1) we obtain
1 do
¢ dydy,

= 14+Q2y; - 2y,—1). 5.7

As we see we have more fast-fast and slow-slow pairs than fast-slow pairs. The longitudinal
asymmetry Aj,,, defined as

11

E 3
,f d}’1d)’2)(/)j0§ dydy, (5.8)

is equal to 1/4 in this case. The same result is obtained from M.C. calculations, see Table IV.

The decay of each 7 into mv is rather rare as can be seen from the branching ratios
in Table III. In the more realistic case of the t decaying either into nv or pv we obtain an
Ajoqg around 1/10 in the lowest order, see Table IV. The reason is that the p-decay is about
twice less sensitive to the © polarisation (g, = 0.48) than the n-decay (g, = 1) as indicated
in Table III. The purely leptonic decays are even less semsitive as a spin analyzer,
86,p = | a(x)g(x)dx = 0.17.

In Table IV we show the M.C. results for 4,,,, at two beam energies, E = 5 GeV and
E = 20 GeV. We compare results from lowest order and O(x?) calculations, with and with-
out spin for each energy, see Table IV.

We first consider the spinless case. If only the decay © — mv is considered, 4o, = 0
in the lowest order as expected. Including also the decay t — @v, due to the finite @ mass,
Ajqaqg 10 longer vanishes even in the lowest order. Going to O(«*) a small positive correla-



1167

TABLE IV

Longitudinal and transverse asymmetries defined in Egs. (5.8) and (5.10), calculated using samples of

105 M.C. events at beam energies E = 5 GeV and E = 20 GeV. Asymmetries are given in percents, Statistical

errors are 0.3% for Ajong and 0.7 % for Airan. In the calculation of Airan We use the cut-off on the energies
of the decay products |1/2—y;| < 0.2. The Z, contribution is not included

2 3
i Decay 0@ 0@®)
mode spin off spin on spin off spin on
v -0.2 24.4 5.4 252
20 GeV Tv+py 2.2 12.2 4.8 12.7
Along
F2Y) 0.2 22.0 2.7 22.2
5 GeV Tv+py 2.2 113 3.1 11.7
v 1.1 24.1 —19.2 —4.9
20 GeV T+ pv 1.4 9.4 —20.6 —14.5
Atran
- 1.6 19.6 —5.2 11.3
5 GeV T+ py 0.2 6.8 —6.4 —0.6

tion is observed, because hard bremsstrahlung tends to decrease the c.m.s. pion energies.
At the lower beam energy (E = 5 GeV) the influence of hard bremsstrahlung is weaker
as compared to E = 20 GeV, leading to smaller values of A, in the O(a?) results. Spin
effects on the other hand do not change 4,,,, substantially going from E = 5 GeV to
E =20 GeV.

When spin effects are switched on, the difference between Ao, calculated with and
without spin remains similar in both the lowest order and in O(e®) results. The value of
Ajong 18 increased by spin effects by about 20-259 in the case of each ¢ decaying into
nv and by 7-12%, in the case of each 7 decaying into ©v or @v. These effects are seen also
clearly in Fig. 1 where we plot do/(ody,dy,). This distribution is uniform in the lowest
order spinless case. In Fig. la we show do/(ody;dy,) in O(e®) without spin effects. As
compared to lowest order the distribution is enhanced in the low y; region due to hard
bremsstrahlung. In Fig. 1b we give the O(¢®) result for the same distribution with spin
effects included. The net decrease of do/(ody;dy,) in regions around (¥, y2) = (0, 1), (1, 0)
(slow-fast configurations) and enhancements in region (¥, ;) = (0,0), (1, 1) (fast-fast,
slow-slow configurations) are due to spin effects and they are also the source of the 207,
increase of A, in Table IV.

The other type of spin-induced correlations are the correlations between the transverse
momenta of the decay products. They are strongest when both 7’s decay in the transverse
direction, i.e. 6; = n/2. For the lowest order both 7’s decaying into v the correlation
factor reads

SZ
w=% (1 +cos (@, + @2) e c2> s (5.9



dN /dy, dy,

Fig. 1. The differential cross section do/dy;dy- (in arbitrary units) from O(«®) QED calculations a) without
and b) with spin effects included, at E = 20 GeV. Each t decays into nv. The pion energies y; are given
in units of the beam energy E

where ¢; is the azimuthal angle of the pion momentum with respect to t+ ¢.m. momentum,
for simplicity we assume y; = 1/2. Since we do not observe the direction of the r momentum
directly we study asymmetry in the angle a € (0, #/2) defined in c.m.s. as the angle between
the reaction plane (p,, p+) and the plane of decay products (p+, p-). The two planes, as can
be deducted from (5.9), tend to be orthogonal and we introduce the transverse asymmetry,
defined as

n/2 /4 ®/2

Aiean = (f - 5 dd)/s da, (510)
=4 o 0

to measure the strength of the effect.

In Table IV, together with value of A,q,, We give also the M.C. results for A,,. They
are obtained imposing the condition |y;—1/2| < 1/5 which reduces the number of events
(cross section) approximately by factor four. Comparing the results for 4,,, from the
lowest order and from O(«®) calculations we find similar effects due to hard bremsstrahlung
as for Ajoq The net increase of A4,,, due to spin correlations is varying from 20-257%,
in the case of the 1’s decaying into nv to 5-109% in the case of each 7 decaying into mv
or gv. This net spin effect in 4,,, depends rather weakly on the beam energy.

In Fig. 2 the acollinearity distribution do/d{ is shown for two beam energies E = 5 GeV
and E = 20 GeV with and without O(¢®) radiative corrections. The acollinearity angle
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Fig. 3. The energy distribution do/dy where y is energy (in units of E) of the charged decay product being
a) m, b) p, ¢) p (or electron). Fat and slim curves show O(@®) and O(«?) QED results at the beam energy
E = 20 GeV

{ = X(ps, p-) is defined using the momenta of the charged decay products. Each t is
decaying into mv or @v. At both energies the increase of do/d{ at large acollinearity, see
Fig. 2, is due to hard bremsstrahlung and, as expected, is larger at the higher beam energy.

In Fig. 3 we show the energy distribution do/dy for the charged decay products from
the decays T — mv, v, uvv at E = 20 GeV. For each decay mode the two curves represent
the result of the lowest order and O(e®) calculations. For all three decays in O(a®) the
energy distribution is increased at low y as compared to the lowest order. As was already
pointed out this increase is due to hard bremsstrahlung. The gap at low y in do/dy for
7 — gv (Fig. 3b) is caused by finite mass of the ¢ and is partly smeared out when hard
bremsstrahlung is switched on.

In Figs. 1, 2, 3 we did not include Z, contribution because we have been discussing
so far pure QED effects. But even if Z, was included (with standard model coupling con-
stants) these distributions would not change noticeably. At beam energies around 20 GeV
we expect to observe two phenomena related to Z, exchange. One is charge asymmetry
in the differential cross section do/d cos 6dp for the charged decay products and the second
is polarization of the .
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In our discussion on the charged asymmetry we limit ourselves to the decays t — mv, gv.
The scattering angle § is defined as the angle between et and #n+ or g*. Since QED O(«®)
radiative corrections also contribute to the charged asymmetry one has to subtract QED
effects in order to obtain pure electroweak contribution.

The angular dependence of the differential cross section do/dQ2 is shown in Fig. 4.
We employed typical experimental cuts to select the event sample, i.e. { < 30° and visible
energy > 0.2 (y,+y; > 0.4). The slim curve represents pure QED O(a®) result and the
fat curve includes in addition y—Z, interference in the way described in Section 3. The
values of the weak coupling constant and the Z, mass are chosen as in the standard GWS
model [11] with sin? 8y, = 0.23. The angular asymmetry which is slightly positive in the
case of pure QED O(a®) (+1.7%) changes to negative value (—10.69) after Z, exchange
1s included.

Longitudinal t-polarization resulting from Z, exchange depends on cos §, see Eq.
(3.13). Since the c.m. energy distribution do/dy of the charged decay products is sensitive
to the polarization of the 7 we determine this distribution in the forward and backward
hemisphere separately. In Fig. 5 we show these two energy distributions for 7 — nv using
coupling constants given by the standard GWS model with sin® 8y, = 0.23. Both curves
are normalised to unity, and the cut-off { < 45° was used in the calculations. There is no
visible effect due to the fact that sin? 6y, is close to 0.25 (vector coupling constant v = 0).
To show how such effect might look like we change o for the final lepton 7, setting o = dgws.
The result, again for © — 7v, is shown in Fig. 6a where do/dy differs for two hemispheres.
A similar effect is seen in Fig. 6b where we show the result for T — pvv with the same
choice of coupling constants in order to increase the polarization of the 7. The effect is
weaker than for mv decay, but still visible.

6. Conclusions

In this article we investigate the electron-positron annihilation into a pair of heavy
unstable fermions (t leptons) in QED to order «. In the numerical calculations we include
also the decay of the final fermions. Our work is relevant first of all to ete~ » 11~ from
threshold to \/E ~ 40 GeV. In this process spin effects in the final state cannot be neglected
even in the case of unpolarized incident beams because the parity violating decay of 7 is
sensitive to its spin.

We calculated the complete set of QED spin amplitudes to O(«®) both for virtual
corrections and for soft/hard bremsstrahlung for the reaction e*e~ — t*t=(y). The mass
of the final fermion is kept through the calculations. The contribution from an inter-
mediate boson Z, is also included in the lowest order in the low energy approximation
(s < M3).

To obtain the numerical results we use the direct M.C. simulation of the process
including the decay. Theve are various reasons to use the M.C. method:

a) Tt was found [2, 3, 5] that the M.C. method is the best suited to investigate the effects
of hard bremsstrahlung.
b) The 7 lepton cannot be observed directly but only through its decay products. Thus
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the production process cannot be isolated and discussed separately from the decay. The
decay of t is easily included in M.C. simulation.

¢) Spin effects cannot be eliminated from the process because one is not able to measure
the  momentum and the decay of 7 is scnsitive to its spin. We found an easy way to include
the polarization of the t and other spin effects in the M.C. simulation.

d) In a typical experiment a sample of 7¥7~ events is isolated using a complicated set of
kinematical cuts. The M.C. simulation provides an easy and natural way to control the
influence of these cuts.

In our M.C. algorithm the connection between the production and decay is made in
terms of spin density matrices which we calculate from the spin amplitudes. This method
allows us to keep separate the production and the decay parts of the M.C. algorithm.
One may change easily the decay matrix element without any intervention in the production
part.

In the examples of the numerical results based on the M.C. calculations we show
the influence of radiative corrections including hard bremsstrahlung, mass effects, spin
effects and electroweak effects due to Z, exchange on the spectra of the charged decay
products. We limit ourselves to the decays of the 7 into one charged particle such as
T — evy, pvv, v, ov. The energy and angtﬂar distributions show typical QED radiative
corrections of order 10-20% in the energy range /s from 10 to 40 GeV.

We concentrate on the effects induced by spin correlations in the decay of the two
7’s in lowest order and in O(z®). We find that the momenta of the decay products from
two 1 leptons are correlated in a specific way and that the magnitude of the correlations
depends on the decay mode. In the case of 1 — ©v, @v the spin effects can be as important
as the radiative corrections.

The effect of the Z, exchange is also taken into account in the calculations in the
form of the y—Z, interference.

In our numerical examples we determine the charge asymmetry in the angular distribu-
tion of the t decay products arising from Z,-exchange. We also discuss the effects due
to t-polarization induced by weak neutral currents.

It should be remarked that there exist two natural future extensions of this work,
i.e. the inclusion of beam polarization and of the Z, in the resonance form. It will be rather
straightforward to include the beam polarization because we already calculated the spin
amplitudes and only the transition from the spin amplitudes to the density matrices has
to be changed. The inclusion of the Z, boson in the full resonance form together with
QED corrections to Z, exchange can be done relatively easily for light final fermions like
7 leptons because the approximation m, < M, can be used. It would be more difficult
to extend our calculations to the case of heavy fermions with the masses compatible to
the Z, mass.

One of authors (S.J.) wishes to acknowledge the warm hospitality of the Lorentz
Institute, Leiden, and of the Max-Planck-Institut fiir Physik und Astrophysik, Miinchen,
where the part of the work presented here was done. Helpful discussions with drs. C. Kies-
ling, F. Berends and R. Kleiss are also acknowledged.
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APPENDIX A

In this Appendix we give some formulae which relate products of two spinors with
well-defined spin projections to other quantities like scalars, vectors etc. and to projection
operators A..

Consider a pair of two fermions with mass m and c.m. momenta p;, = (1, 0,0, f8),
p. = (1,0,0, —B). We shall express the vertices

Vi, = 0(p AT u(pats), (A1)

where I'; = {1, Vus, [y,,y,,], VsV Vs J =S, V, T, A, P in terms of four basic c.m. system
vectors (e,)* = &%, e, ey = g,p With eo = (p;+p>)2and e; = (p; —p,)/2p. In the following
we shall often use directly the symbol J = S, V, T, A, P instead of V;, for example we write
V¥, T* instead of V¥, V. The spin projections i; and 2, are both taken along the c.m.
vector e; i.e. A, and — A, are the helicities (up to phase conventions). The decomposition
is given by

= —2BA_, P= —2A_|,
= 2(|A |68 +il, é5—mA_éY),
= 2(BA, & +iBA,1&5—mlA_|éE),
3 T = 204153 —iBlA_|t5y —m|A|th) — imA 1 153), (A2)

where t4; = e“eﬁ eleh Ay = A +A,. We also use in this paper (for final fermions) other
types of vertices

IN/J,MA; = i(paA )T u(pidy)- (A.3)

They are related to the former ones through simple relations

Vi = (Vo)™ (A.4)

The minus sign should be used for J = P, T. The vertices u(q,, a,) ;0(q;, ;) used in
Sections 2 and 3 and in Appendices B and D may be obtained from (A.4) and (A.2) by
the formal substitutions p; — ¢;, 4; = a;, €, => e,, f — p’ etc. and by adding in Eq. (A.2)
an overall factor y = ((q,+¢.)%/(p1+p2)?)">.

The Fierz identity has the simple form in our notation

Iaplya = 7;1‘ ; FJ,MSF:[{' (A.5)

Here we introduced the matrices I/ which are equal to I'yexcept for two matrices:
I"= —r;/8 and I'* = —T,. The vertices ¥/ = vI'’u are related to ¥; in the same way.

We now turn to the problem of translating the double spin indices in the density
MatriX @,z 4z, iNto vector indices a, b = 0, 1,2, 3. The relation from Eq. (2.8) may be
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rewritten in more formal way as follows:
AP wa) = T Caiaat(p, )P, ),
A=(p, we) = T, Caast(p: Y0P @), (A-6)

with w; = e, i = 1,2, 3 and wy = 0. The matrices C* are simply Clebsch-Gordan coeffi-
cients coupling two spins 1/2 into a spin one and spin zero. They have the following form

1 1 0 0
0 0 +1 =1
c* = o o i il (A7)
—1 1
1 -1 0 0

where columns are numbered by (xa) = (++), (= =), (+-), (—+) and rows by
a = 0,1, 2, 3. For the final fermion pair the elements of the density matriX 9,,z 4,z come
from v(q,a)0(q,%4) ... u(q.a2)u(g.2,) and they should be translated into vector notation
according to?

UzRab = 2 C;alilcl;t&zazga;&m;iz' (A'8)

aidy

For example, 0,308, = 5 Uas0y, when substituted into above formula, yields the
matrix R with nonzero elements Ry, = R;, = —R;; = Ry; = 1. This maping oo
= Roo+Ry1— Ry, + R, 3, together with other relations of this type obtained from Eq. (A.8),
read as follows

o, @, = 2(Rgo+ Ry — Ryp+ R3y),

Joe &) = 2(I’éoo_ﬁu +ﬁ22+ﬁ33)a

o _ = 2(ﬁ00+§11+ﬁ22-ﬁ33),

lor&_{ = Z(Roo—ﬁu_‘ﬁzz—ﬁaa)a
o8y 02184 = 4(Ros +Ra0), oo |- +0_[8-] = 4(—Ros+Rs0)s
lot 16y — 04 [y ] = 4i(Ryp+Ryy),  [ao|@—ald-| = 4i(—Ryp+Ryy),
oy |E- +o_|Fe} = 4Ry +Rsy), oy +oyld-| = 4(— R 5+Rs)),
I 18—y | = 4i(Rop +Rpo), 0|y —ary |&| = 4i(— Rop+Rao),

a8 +ody = HRoi+Ryo),  fasdo|+ad.] = 4(Roy—Ryo),s

0 d_—a_&, = 4Ry +Ryy), a8 |—lu @] = 4i(—Ry;s+Ryy).  (A9)

2 In the case of the hard bremsstrahlung factor U? in Eq. (A.8) should be replaced by e*U?.
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This is the complete set of relations for one fermion-antifermion pair which translate the
double spin index into a vector index.
In the last part of this Appendix we shall show how one should connect the density
matrix of the produced unstable spin 1/2 fermion with the decay differential cross section.
In spinor notation, let us denote the production amplitude as u(g)M, and the decay
amplitude as M,u(g). They are combined with the fermion propagator as follows:

M, ~ My(g+M)M,. (A.10)
The differential cross section for production and decay is

+M g+ M

lMc‘z ~ M2
2M 2M

M, = X. (A.11)

Using twice the Fierz identity it may be rewritten as

X = 5 %, M\LDLM, Tr (I'LI°L)M,LI LM, (A.12)

where L = L? = (g'+ M)[2M. All traces can easily be calculated and using gL = Lg =
M g we obtain

— — — qudv\ v
X = ':lz' [M1LM1M2LM2“M1L)’5?"M1 (guv— #) M,Lysy Mz:l
3
= %(Roho’*‘ z R,’hi), (A.13)
i=1

where
— 3 ;
MyL(1+75 wIMy=Rge 3 R, w',
i=
M‘ZL(hysw)MZ:ho*,% h; wi
=

weg=0, w=(0,w).

The tau rest system, g = (M, 0,0,0), was used in the last two equations.
The decomposition (A.13) generalizes easily to two or more fermions. Eq. (5.4) is
a direct generalization of (A.13) to the case of a fermion-antifermion pair.

APPENDIX B

The contribution from one uncrossed box diagram may be written as follows:

M, = (ezQQl)z(zn)‘4 1'! (p A" K (7 u(paA2)H(q 0,y (K 2 + M)y,v(g194), (B.1)
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where
ky=k—po, k= k—g'¢,

[ k()
f 1= J F,F,F F_’
k

F, = k?=2Bk-o—1+is, F,=k*-2B'k-o —1+ie
Fy=Kk*+2k-n+l+ie, 7n=(p+p2)2, o =(pi—p2)/2B

The vector @’ is defined in Section 2. The electron mass will be neglected in the numerator
of the integral.

Using twice the Fierz identity, see Eq. (A.5), we separate the initial and final pairs
of spinors in the form of the Fierz vertices ¥; and V5 which were given in Appendix A

A = (eZQQ')2(27T)"4k5 T 3 WP AT u(P2ls)

i

x Tr (I'y" ¥17") Tt (3, + M)y, I9)ii(g,02) T 0(q 001

= (200"’ 2n) 4 [T V'S (B.2)

k1
Out of the 25 elements of Sy7, only five are non-zero which can be calculated easily:
Myy = VS5V, =2V - Vky - ky+2V - k(V - ky,
Myx = ASA, = =24 Aky - ky+24 < kA - ks,
Mz = V,S%S = —2MV - k,S,
Mz = 4,835 3 To, = 3 iMey i T (B.3)

As it was shown in Appendix A, all Fierz vertices can be expressed in terms of basic vectors
{e,} = (n,7,0,0) and {e;} = (n, 7,0, ¢0), a=0,1,2,3, where 7, g, 0", ¢’ were defined
in Section 2

V =2(ls]t+ids ),
A = 2(A,t+ili,lo),
V = 2(jo, |t —ia,6'—Ma_g"),
A = Ao, Br—ila,|f'c’'—Mia_|m),
1T =2—a_[n, o']—ila_|f [z, ']+ iM[r, 1] —ie  M[xn, 0"],
S=-28a_,
[a, b]" = a*b"—a’b". (B.4)
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We now substitute Egs. (B.4) into M® = Myy+ M5+ Myg+ M7, obtaining as a result
Eq. (3.4) with the following expressions for functions X;:

4
)(0 = 2(1 “ﬁyC) 3 j. l,
kY
k

4 '
X, = PJ[—(k'T)Z—ﬁ'(k'U)(k'6')—(1—13 o (1=K,
k

4
X2=— f[—ﬁ'(k 0 (k- o)k o) +2B' — )k o
k

+2(1—- Bk - @' +(B'—c) 1—kY)],
4
X5 = = f [—(k- @) +clk- o)k ¢)+ee—B)k" ¢

+(2B'c*=2c—pk - o' —s* (1 —kP)]. (B.5)

Allintegrals of thetype [k - o, [ (k- @) (k - @), [ k? etc. may be expressed in terms of seven
k k k

functions B; given by the following formulae:
4 7 A
B, = —2J 1 =idln’- —na,
7 4
k

32 = lA,
2 » .
By = — { (1~k") = iB—nA,
T
k
B4 = F:! = 4FA/?I2:
Bs = Fy = 4Fy/n”,

4
B() iln_z‘ +7t,
m

4
B7 = IIHW + . (BG)

The real functions 4 and B and the complex function Fp and F, are defined in Ref. [2].
In order to obtain the final result for the function X; we first eliminate (k - 7)? using the
identity &% = (k- n)>~(k - )2 —(k - )>—(k - 0)?, then we express ¢ and ¢’ in terms
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TABLE V

4 7
The coefficients dix 1n the decomposition of the typical box integrals gy j fik) = % dijB;. The func-
K j=1
tions B; are defined in Eq. (B.6)

N .
AN T 2 3 4 , 5 6 7
! N
ko 0| o -1 0 -1 0 0
Bk-¢ 0 0 -1 -1 0 0 0
(k - ) 1 2 -1 0 0 0 0
28252 ¢ i—pc 1—fc ¢
. 0)? 1 0 ER | — ——
(k Q) 0 ® 2 ( + Y ) (I) P ﬂ;
28%s* BB -0 B -
2(L - p'\2 1 g — -8 -
B2k - ) 0 — 1| 1a+p0 0 ~ Bc -
, 26252 (B ~c) 1-pc
Ph-pyk-¢) |0 = 1 1 i _F ~ -

of ¢ and ¢’ and finally all k-integrals in X; may be found in Table V. In formula (3.5} we
introduced for convenience the functions 4 = 2(1—p'c)4 and B = 2(1—p'c)B. In Ref.
[1] the four functions 4, B, Im F,; and Im F, were calculated in the limit m — 0. We list
them for the sake of completeness including also real parts of Fy and F

i=2m it
= — +In——,
n an M?
- 1__ ’ 2_2 ’ _“M2 4 4
Bom2 P Liz—-ﬁ—c;-———%lnz—z—%ln?-—i,
2 2(1—-p'c) m M
, (1.2 4 n? 4
Fy=ilzIn _m—2+? +7r1n;§,
i 1+8 (=148 n? n 1+4p
Fh=—[1m*— 32Li (—_—_—)+—~ +—1In . B.7
Q BI(Z l_ﬁr 2 1+ﬁ/ 6 ﬁr 1"}9' ( )
APPENDIX C

In this Appendix we present the formulae for the hard bremsstrahlung differential
cross section A(wy, w,) in Eq. (4.2) obtained using standard methods, i.e. projection opera-
tors defined in Eq. (2.4) and an algebraic computer program [10]. We give separately the
results for initial and final state radiation and for their interference:

A(wy, wy) = Aji(wy, wo)+ Agn(wy, wo) + Aj(wy, wy), (C.1)
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with
Aini(Wys wo) = (L—wy - wp)Ay;
2
X X
Q {wl W, <(t+u) +(t1+u1) —m s1< ! + —2))
x1x251 X, X

—2aybyx;—2a,b,%, +2((ashy —azb )i +(a, b3—a1b2)u)<1— =

4

- - m? x,
+2((azbs—azbt +(asb,—abu){1— =— —= )5,

Sy Xy

Agin(We, w2) = (1—w; - wy)Ag,

2
+ Q = {wl ‘W, (xf+x§+2§§1——M2§ <2+ 1 tv.i))
Y128 Y2 ¥t

~(a.b,+a,by) (§+s1 M? <2+ 1 yz))
Y2 W1

M? 2 - M? 2
+(a1b2—~a2b1)((t—u1)(l— _'(1+ )) +(t,—u) (1— ‘:‘“(14" ﬁ)))
S Y2 s Y1

~2a;byx;—2a,b,x,+a,b, (214 M? (1+ yl)) +a,b; (Z;I*Mz (1+ X-{))
\ Y2 Y2

+a3b1 (2t "‘M2 (1+ yz)) +a3bz (21;1"'M2 <1+ ‘y“%))} s
Y1 3 41

Ai(Wis w2) = (1—wy - w)A;,

Q' - - ~ ~ . -
srm——{([ X2+ 11X,y —UX2y — U X1 3) (W * wof +u)?

581X1%2¥1Y2
+W1 M W2(;1 +&1)2‘-2a1b1x2_‘2a2b2x1 +2a1b3u+203b2§1 +2a3b1;

+2a,b3t, —2a,b,( +1,)—2a,b,(1+u,))

_Mz(g "‘51) ((a,bs ——a3b1)§x2 +(asb, —a2b3)§x1 +2(a;b,—a,by)x,x,)},

where

~ -~

S=pi"py» T=Dpy"q, U=Dpy

51 =41°q2 f1=D1 s &1 = Dz 41,
a; =W("py, Gy =W "Dpy, az3=w "k
by =wy p;, by=wy'pyy by=wyk

We used the same definitions for 4;,;, A, and A4;, as in Ref. [1].

(C2)
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APPENDIX D

In this Appendix we shall calculate one of the two bremsstrahlung factors fl{:ﬂ. The
derivation of H},, is completely analogous. As in the case of the box diagrams, we isolate
the final state spinors in Eq. (4.10) using the Fierz identity for each one of the two terms

in Eq. (4.10). For example, the first term may be rewritten as

1 -
Sk q Z Tr (V(— g1 — ¥+ M)e,IYi(g,0) 70(q,01). (D.1)

¥

Some of the traces vanish and H takes the following form

. 1 ~
Hi, = 2k—q -5 Tr ("(K+ g )¢V,
1

+ 1 Tr (P(K+ g )¢757")A, +MSeh+1 MT*(e,),}

1 ~ -
+ 2% - qﬁ {2 Tr (K + g )0V +3 Tr (K + g )¢y A,
2

+MSet—% MT*(e,),}. (D.2)
We substitute in this equation the Fierz vertices, which are taken from Appendix A:

S = —2yva_, P = 2yla_f,

<

= 2y(lo4 6] —iay0’' — Ma_g'),

e

= 2y(a, v8; —iloc, oo’ — Mla_|é}),
LT, = 29(—a_[&, o']1—ila_|v[é], 0']
+ o, | M[ &, €] —ia, M[é5, 6’1,

where ¢’ = ¢85 —s5,8}, @' = 5,0, +¢,5. As a result we obtain H as given in Eq. (4.11).
The function Hf,, may be obtained from Hj, by formal substitutionse; — 4;, ¢; — ¢,
5, —5;, M >m, k> —k, e; > ¢, or by direct calculation in the same way as H.
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