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We discuss the possible applications of Bragg reflection in future detection schemes
for low energy (and non-zero mass) cosmic neutrinos based on their coherent interaction
with bulk matter. The reflection coefficient for laminated targets is shown to consist of two
dominant parts arising from the mean and oscillating components of the target density,
and the dependence of each of these terms on both the neutrino and target properties is
discussed in detail. The Bragg reflection term provides an enhanced reflectivity for a selected
band of neutrino wavelengths, which could be used to increase the detection sensitivity for
cosmic neutrinos accelerated into the galaxy by its gravitational potential. For clustered
neutrinos, we show that Bragg reflection would not increase the integrated coherent force,
but could have experimental advantages in modulating and identifying 1he neutrino signal..

PACS numbers: 14.60.Gh, 95.85.5z

1. Introduction

This paper relates to the coherent interaction of very low energy (cosmic or galactically-
-clustered) neutrinos with bulk matter, and to the possibility of future detection schemes
based on this interaction.

In a previous paper [1] we discussed the reflection of low energy neutrinos by a finite-
-thickness plane slab of constant density, arriving at (second order) recoil forces of order
10-22 dyn/g for a typical estimated galactic flux of finite rest mass neutrinos (m =~ 20 eV).
In the present paper we discuss the possible experimental advantages of reflection from
a target with spatially varying density, in particular an array of regularly spaced plates
forming a ‘Bragg mirror’ for the incoming fermion waves. Such a target would have an
enhanced reflection coefficient for a restricted band of neutrino wavelengths, and could
have applications either as a ‘tuned’ detector or as a neutrino mirror capable of modulating
or deflecting a significant fraction of the incident flux.

In Section 2 we examine the form of the backward scattering amplitude and reflection
coefficient for a laminated target, and show that the reflected intensity contains two domi-
nant terms corresponding to the mean and oscillating components of the target density.
In Section 3 we discuss the properties of the mean density term, including the effect of the
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characteristic ‘penetration depth’ and its dependence on neutrino rest mass. In Section 4, the
properties of the oscillating density term are discussed, in particular the Bragg enhancement
of the reflected wave for wavelengths corresponding to twice those of the Fourier compo-
nents of the target density.

Possible practical applications of this selective reflection are discussed in Section 5, for
both detection and modulation of the neutrino flux. In the case of extra-galactic neutrinos,
accelerated by the galactic gravitational potential to give a low-momentum-spread flux
through the solar system, large gains may be possible by the use of a tuned detector. For
clustered galactic neutrinos we show that, for the expected broad band momentum distribu-
tion, Bragg reflection would not increase the total force per unit mass; it could, nevertheless
provide an important degree of design flexibility, both in respect of identifying the signal
and in determining the neutrino momentum and mass.

2. Reflection from a target of varying density

Finite mass neutrinos may of course be relativistic or non-relativistic. There is a signifi-
cant difference in the form of the reflection amplitude for the two cases, which is discussed
in detail in a separate paper [2]. We consider here the most experimentally interesting case
of non-relativistic neutrinos, which includes both galactically-clustered neutrinos with
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Fig. 1. Coherent scattering of neutrino wave from plane slab with z-dependent atomic density

p =~ 2x10"%eV, m, > 10-' ¢V, and non-clustered cosmic background neutrinos with
p = 5%x10-%eV, m, > 103 eV.

Referring to Fig. 1, the first order (single scattering) reflected amplitude for a neutrino
wave incident on a plane block of z-dependent density g,(z) and/or atomic number A(z)
can be obtained by summation of spherical scattered wavelets for each elementary slab
dz, giving the result [2]

Ag = [2nf(m)[k,] ]'ZN,,(z)ez"‘”dz, (1)
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where
N,(z) = 6x10%%9,(2)/A(z) (atoms/cm®),
k, = p,/h = 2nfd, {cm™"),

f(@) = £(0) = (4/2 )Gm,N, (cm),

N,=Z—-4 for v, v, ...

or N,=3Z—-4 for v, } and opposite sign for v

and from (1) we can obtain the reflection coefficient
C= iAR|2- (2)

Eq. (1) shows that the reflected amplitude depends on the Fourier coefficients of the
atomic density fluctuation, giving a strong enhancement for incident momenta satisfying
the usual Bragg condition A, = 4,/2, where 1, is the wavelength of the density fluctuations
in the target. For a simple periodic system, such as a set of equally spaced plates, there
are two dominant terms in (1) and (2), arising from the mean density (dc term) and the
principal (usually the first) harmonic of the fluctuating density.

We illustrate this with a specific example. Consider a slab, infinite in x and y directions,
with a sinusoidal atomic density variation, wavelength 4, = 2n/k,, in the z-direction:

Na = I\Jao[l-i'_SiIl km(z_ZO)] (3)

extending from z = zo—Nn/k,, = zo—aj2 to z = z4+ Nrjk,, = zo+af2, where N is the
number of complete periods and « is the total target thickness.
From (1) and (2) the reflection coefficient is

a* 1 [[sinka\* (sinka sinka\?
C=—2123 + ( - s )]
4a; k;a k.a 2k.a 2k,a

k, = k,+k,/2, ki=k,—k,2 and a?=h*2mU = [4aN,of (O], (5

where

where U is the interaction potential [1] corresponding to the mean density. Eq. (4) divides
naturally into two components: a *““dc” term,

c - a* 1 (sink,a\® ©
“ 7 4at K2a®\ ka )’
which is the reflection coefficient we would obtain from (1) and (2) with constant atomic
density N, = N,o; and an “ac” term,
a* 1 [sinka sin k)’
4a? kla? ’

C,e =

)

ka ksa

which would result from an alternating atomic density N, = N4 sin kpz.
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Fig. 2a illustrates the behaviour of (4) for N = 8. The peak at k,a — 0 arises from
C,., and the ‘Bragg’ peak at k,a = 8n arises from the (sin kya)/k,a term in C,, (the term
in k, does not contribute significantly for k, positive, but would give a similar peak at
k,a = —8n, corresponding to waves travelling in the negative z-direction). Fig. 2b shows
a similar curve computed for the more realistic situation of a set of equally spaced plates.
Here the square wave density variation gives rise to additional peaks corresponding to the
odd harmonics in the Fourier expansion.

The telative importance of the two terms (6) and (7) depends on the incident neutrino
momentum distribution and target geometry, and it is convenient first to consider the two
contributions separately.

3. Reflection due to mean density term

For a block of constant density and thickness a (cm) the reflection coefficient is given
exactly by [1]:

Cy = {1+ [2n.klaf/s(nk.a))*} 71, ®
where
n; = 1-1/kaz],
s(y) =sin(y) for 1/kZa? < 1(ie k?a®>1 or <0),
s(y) = sinh(y) for 1/kZa? > 1
and, for k,a.> 1 (giving C < 1), (8) reduces to
C, ~ [1/4k*a?] sin® (k,a) )

which is, as expected, identical to C,, (Eq. (6)).

Fig. 3 compares (8) and (9), showing C as a function of incident wavelength for various
values of the target thickness. In general, the single scattering approximation is valid for
C < 1, but is also still adequate up to C ~ 0.3 or higher, particularly if improved by the
obvious substitution

C,—»(1+C;HH (10)

to prevent C exceeding unity. This comparison is of interest principally in providing an
indication of the general accuracy of quantities derived with the single scattering approxi-
mation (1), such as C,, (Eq.(7), for which more exact expressions are not available.
The condition for (9) to be valid (|k,a.| > 1) is precisely the condition for n?-and
hence C, to be insensitive to the sign of aZ (and hence U and f(0) — see Eq. (5)): physically,
the reflection coefficient is the same for neutrinos and antineutrinos.
More specifically, if |k,a.| > 1, then s(») = sin (¥) in (8), and C, has maxima

¢, = [1+(@2nk2a®)]™* = (1-2k2ad)72, (11)
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Fig. 3. Reflection coefficient versus k, for block of constant density, and various constant values of thick-
ness aq. Full lines: exact formula (8); Dotted lines: single scattering approximation (9)

whenever sin (n,k,a) = 1. Hence the peak reflection coefficients for positive and negative
a? are in the ratio

Cia® <0 1-2(k2a2|\?
W )_( Ial>’ a2

Cy(a? > 0)  \1+2ik2a?|

which lies between 0.8 and 1 for [kZ2a?| > 10.

However, for |kZa?| < 3, significant differences between neutrinos and antineutrinos
appear. This is illustrated in Fig. 4, where (8) is plotted as a function of target thickness
for fixed incident wavelength and both signs of aZ.

The region where particle and antiparticle coefficients are clearly distinguishable —
i.e., very roughly, C > 0.01 - is also of interest in providing, in principle, an elegant method
of estimating a? and hence the neutrino mass (or masses) through (5), by measuring the
reflection force per unit volume as a function of target thickness. In practice, however,
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Fig. 4. Reflection coefficient versus target thickness for block of constant density and various constant
values of incident wavelength. Full lines: positive az(ve, ¥, s ..). Dotted lines: negative a>(Ve, vy, Ve ---)

both of these subtle effects, predicted on the basis of a transversely infinite target, are likely
to be masked by the influence of finite target end effects at low incident momenta. These
and other ways of estimating the cosmic neutrino masses will be considered in a separate
paper.

Note that, in both Fig. 3 and Fig,. 4, the oscillatory behaviour for 1/k2a? < 1 depends
on the coherence between front and back surfaces, and would be smoothed out if the
surfaces were irregular or ‘rough’ on the scale of a wavelength (e.g. of order 60 microns for
the expected mean momentum of galactically clustered neutrinos). In practice, also, C must
be integrated over the momentum spectrum of the incident flux, which (unless itself selected
by a ‘Bragg mirror’ as discussed below) would invariably have sufficient bandwidth to
render the oscillatory behaviour unobservable.
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4. Reflection due to harmonic term

<

We now consider the ‘“ac” contribution to C, given by (7). Since
g y

ka = k,a+Nn
and
ks = k,a—Nm,

only the term in kya is important if N > 1. (If k,a <€ Nm, so that the two terms are compa-
rable, C,. < C,.) We write this term:

C(k) = C sin® k,a 13

z) — k kgaz k4 ( )
where

= & L _(_a )2 14

7 16a* k2a®  \4ka? )’ (14)

The peak value of (13), Co, occurs when k; = 0, i.e. when k, has the Bragg value

k, = Nnja (= k,/2), (15)

and is given by

Nﬂ' 2 a2 2
CO = Ck(kz = kb) = (4](:(12) = (4N7ra2) > (16)

where we have chosen to show explicitly the N dependence of C, according to whether
one fixes wavelength (i.e. k;) or target thickness. ;
For N> 1 it is convenient to define a width Ak for the reflection peak by:

ke +qr/a
1
ak = — J C(k,)dk,, 17

kp—qn/a
where 1 <€ g < N (so that the integration takes in the peak at k) giving
Ak ~ nja = k,/N (18)

(since C, ~ constant ~ C, for 4k < Nnfa, i.e. for N> 1).
For practical purposes we are interested in the force on the slab, given by the product
of momentum transfer (i.e. the momentum reversal), incident flux, and reflection coefficient:

FjA (dynjem®) = }D 2hk..(k,)C(k,)dk,, (19)
0

where ¢,(k,) is the spectrum of incident flux perpendicular to the slab.
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For an incident flux of low momentum spread, (19) will be maximized by choosing
a and N to match C(k,) to the incident momentum and bandwidth. A possible example
of this will be discussed in Section 5. For a broad band flux, such as that due to motion
through a clustered galactic distribution, the behaviour of (19) requires more detailed
eXamination.

For a hypothetical distribution of galactic neuirinos with number density:

do,(k) = on™ kg exp (—k*[kg)d*k 20

the total perpendicular flux (from one hemisphere) is given by
¢z(kz)dkz = (hkz/’nv) (Qvn_ 1/Z/kO) cXp [_(ksz_' kz)z/k(z)]dkz’ (21)

where k, = m,v,, v, = galactic orbital velocity, and k,, is the component of k; perpendicular
to the surface.

For k, < ko and k, ~ k,, the exponential factor lies between 1 and e~! and for simpli-
city can be ignored in illustrative calculations. Integrating (19) with (lf”) and (20) then
gives, denoting the neutrino Compton wavelength h/m.c by [,:

F /A (dynjem®) = (n'%g,[8koa,) (i,/a.)’ (myc’[1,)a (222)

and hence
F,[V (dynfem®) = (z'/%0,[8kqa.) (I,/a.)* (m,c*/l,) (22b)

from which it is seen that the force per unit volume is constant, i.e. dependent on the target
material and incident particle properties (via m,, a,, and k) but independent of the choice
of N and a. From (16), (18) and (22b), we see that increasing N (at fixed 4,) makes the
reflection peak stronger and narrower, the resulting value of F/V remaining constant.
Similarly C, may be increased by decreasing k,, but the compensating reductions in mo-
mentum transfer and flux (via the reduced velocity) result in a constant value for (22b).
Note that, for galactic neutrinos with m, = 20 eV, typical values for the quantities in (22)
would be I, ~ 10%cm, a, ~ 6cm, 1k, ~ 103 cm, g, ~ 2 - 107 cm™3,

The preceding discussion for the sinusoidal atomic density variation (3) can be
generalized to more realistic practical configurations by writing the target density as
a Fourier series:

N, = Ny[1+ Y b, cos nk,z] (23)
for which (13) is replaced by

b? sin’*ky,a
Ck,) =C E el 24
( z) k < 4k3"a2 ) ( )

n

(where k,, = k,—nk,) and the total force arising from all of the harmonic terms is, in
place of (22), given by

Fy=F Y b2 (25)
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For the example of a set of solid plates, with separation equal to thickness, the harmonic
coefficients of the square wave give simply

Fy = 2F,. (26)

The overall force on the target is (25) plus the force F, arising from the mean density term,
This is obtained by evaluating (19) with C(k,) = C, from (9), giving the result:

F, = 2F, 27
and the total force per unit volume:
Fp|V = (Fo+Fy)|V = 4F V. (28)

This is a particular case of the more general possibility of an array of equally spaced
plates occupying a fraction f of the target volume, i.e. with a thickness/separation ratio
fI1—=f). This is represented by the Fourier series:

2 sin fon
N, = Ng|l+ ———cos nk,z (29)
Wi
with
NnO = fNa (peak)a (30)

Defining a quantity D, involving the incident flux parameters, by
D = nl/zavh2/4mvk0 (31)

we see from (22) and (25) that the total force is given by

FylV = (Dja3) (1+3 3 by) (32)

which, with (29), becomes
F[V = (Djay) (1 + 1—?) (33)
= D/fa} (34)

which increases with decreasing f. However, the mechanical response of the target is
governed by the force per unit mass:

FIM = F|V x1[¢mo = D(falomo) ™" (35)

(where g, is the mean value of the material density g, and since, from (5), a2 oc U, *
oc (U, 0.0)~", Where U is the potential for unit density, it can be seen that the value of (35)
is in fact independent of fand proportional simply to the peak density of the structure gpo/f.
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5. Applications

As an illustration of the use of the preceding theory, we consider two possible applica-
tions to coherent neutrino detectors, one relating to a narrow band flux and the other
to a broad band flux. It might at first appear that there would be no examples of a narrow
band cosmic neutrino flux, since whether the relic neutrino background is (a) uniformly
distributed, or (b) clustered in the galaxy, one expects an approximately uniform popula-
tion in momentum space up to some characteristic value p, (of order 5 x 10~* ¢V for (a) and
2x 102 eV for (b)). However, for neutrinos of finite mass, the galaxy represents a gravita-
tional potential well, and, as the galaxy moves through the type (a) background, the neutri-
nos are accelerated into and through the galaxy by the potential, producing a flux of higher
average momentum but with its original momentum spread essentially unchanged.

The potential ¥, at the position of the solar system is approximately?:

—VeV) = 2.4%x 10" °m,(eV) (36)

We consider a neutrino of initial momentum p relative to the cosmic microwave back-
ground, and thus with a momentum p, relative to the galaxy given by

pr = p+ mvvgs (37)

where v, is the velocity of the galaxy relative to the microwave background, ~ 1.7x 102 c.
The increased momentum p; at the solar system is given by

pe = [(7 +m)"* +V,]* —ms. (38)

The initial momentum p is expected to have a red-shifted Fermi distribution of average
momentum p, ~ 5x10-% €V, and the above equations then show that for m, < 0.1 eV
@i.e. p > my, in (37)), p, ~ p, ~ p and the galactic potential has little effect on the mo-
mentum distribution, but for m, > 0.3 eV (i.e. m,p, > p in (37)) the momentum is increased
by the gravitational potential to p, ~ 3x 10~ m,(eV) while the momentum spread
remains approximately independent of m, at Ap, ~ 0.6 Ap, ~ 1.2p, ~ 6 - 10 eV.

Thus, for the non-clustered cosmic neutrino flux passing through the solar system,
we have the following estimates for the fractional momentum spread:

fi= (ﬂ‘> = (@> ~1 (m, <0.1eV) (39)
klo \P/

or

0.2
~ —=(m, > 0.3eV) (40)
m

! Estimated from the three-component model of Caldwell and Ostriker [3], which gives approximate
contributions 0.6 X106 m, from the visible matter (‘disc’-+‘spheroid’) and 1.8 x10-°m, from the dark
matter (‘halo’). The total corresponds to a galactic escape velocity of about 6 * 107 cm s,
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TABLE 1

Tilustrative figures for a detector of thickness a = 30 cm (bandwitdh in eV = 2 - 10~ 7/q), tuned to various

‘slices’ of the incident momentum distribution by varying the lamination wavelength 4,,. The incident flux

figures correspond to typical ‘clustered galactic’ values {1] with m, = 20 eV, p < 2102 eV, ¢ calculated

for a dark matter density ~ 10-2* g cm2 (number density oy ~ 2 - 107 cm~3). The reflection coefficient
C is that for the 1st harmonic periodic .density term only

Incident neutrino flux Detector, a = 30cm
Pz k, Az v/c dé.[dp, Am l N dpg C
eV cm™! cm ' cm~2 eV-! cm l eV
| !

2-10-2 10 6-10-° | 10- || 10t¢ 3-10° 10* 2:10-5 | 4-10-8
2-10°3 10? 6-10°2 104 ] 1013 3-10°2 10°% 2:10% | 4-10°°
2-10~* 10 0.6 1075 | 10'* 0.3 10? 2-107° | 4-10*
2:10°% 1 6 10-¢ 103 3 10 2107 04
1-10-% 0.5 12 5:1077 5-10t2 6 5 2-10- .16
4-10-¢ 0.2 30 2107 2 - 1012 15 2 2-10-¢ ~1

From (15), a periodic detector has f; = (4k/k), ~ 1/N and, provided that N > f;”!, the
force per unit area resulting from Bragg reflection is proportional to aff;, We conclude
that, in principle, the force per unit volume can be increased by the use of a ‘tuned’ target
by a factor f;” !, which, from (40), may be one or two orders of magnitude if2 < m, < 20eV.

A further gain in sensitivity may be possible as a result of the fact that this gravitatio-
nally-accelerated flux would be peaked in the direction of the galactic centre, and a non-
-isotropic flux of this type could in principle be partially focused or concentrated by, for
example tuned cylindrical ‘neutrino guides’ (somewhat analogous to those used in neutron
optics [4]). High density material lenses, with or without Bragg wavelength selection, are
a further possibility, remembering that the length of optical systems scales as (n—1)-* ~ 10%
for 10-2 eV neutrinos, and the construction of kilometer length focusing systems should
be perfectly feasible.

For the broad band case 4p/p ~ 1, as is expected for the clustered galactic flux, we
have seen that a laminated target gives, for fixed k;, a reflection coefficient proportional to
N2 for 1/N of the incident flux and N times the target volume. Thus the force per unit
volume is independent of N and no gain in sensitivity results. This constancy of F/}V also
results at fixed target thickness, and we illustrate this by means of the typical values in
Table I, which shows the effect of varying N in a stack of detector plates of total thickness
30 cm, to produce Bragg reflection for various values of incident momentum. It is seen that
C varies as 1/p? while the product C(d¢/dp)pdp, which is proportional to F/V, remains
constant.

The figures in Table I suggest that, although there is no absolute gain in sensitivity,
the use of Bragg reflection could provide an important degree of freedom in the design of
the detector. In particular one might tune the detector to a low value of the incident mo-
mentum in order to obtain a higher value for the reflection coefficient, allowing the experi-
mental option of screening the apparatus with a system of similarly tuned Bragg reflectors,
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Fig. 5. Schematic illustration of possible scheme using Bragg mirrors to modulate the flux of low energy
neutrinos on a tuned target (note that diagram is not to scale — ratio of transverse to longitudinal dimen-
sions may be several orders of magnitude)

some of which could be periodically opened or de-tuned (for example like a venetian
blind) to produce a significant modulation of the neutrino flux (Fig. 5). This could be of
crucial importance firstly in identifying the signal and secondly in converting the essentially
dc force to the more measurable form of a periodic force of precisely known frequency.
Note however, from (21), that the difference in flux (within a momentum range dk,) in-
cident from the left and right hand hemispheres is proportional to exp(2kk./ko)
—exp (—2kk,/ko), i.e. to sinh (2kk,[k,), which shows that the flux of low-k, neutrinos
seen by the target becomes effectively isotropic, despite the asymmetry produced by the
galactic velocity component kg, /m,. In turn this.means that a single reflecting screen will
not produce any modulation, since in the closed position it will reflect an equivalent flux
originating from the right hand hemisphere in Fig. 5. In this situation it would be necessary
to devise a set of screens which will create an anisotropic flux at the target, for example
by isolating the two hemispheres with high reflectivity barriers. In principle, reflection
coefficients and modulation levels approaching 1009 could be achieved with multiple
screens. Unfortunately, a simple increase in thickness a, (giving C oc a?) is not appropriate,
since the screened bandwidth will decrease as 1/a,. Instead, a number n, of screens of the
desired bandwidth can be placed in series, with small separations (e.g. of order A/n,) chosen
to destroy the phase coherence. This will achieve a constant bandwidth, but with C now
increasing only linearly with n,.
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A similar principle applies to the design of concave Bragg mirrors, which might also
be considered as possible concentration or modulation elements. A basic mirror thickness
must first be chosen to give the required bandwidth, and the reflectivity then increased by
combining additional elements incoherently.

The feasibility of ideas of this type clearly depends on the extent to which the one-
-dimensional approximation (effectively infinite width slabs) can be realized in practice,
since the constancy of F/¥ with decreasing p,, and the corresponding flux modulation ideas,
depend on the utilization of flux incident at very small angles a to the plate surface
(¢ ~ p,/po), and this in turn would appear to require the use of detecting plates and/or
modulating mirrors of correspondingly large width/thickness ratio (e.g. 103-10%). It is also
evident from this that the dependence of the coherent force on the acceptance angle of the
system would provide, in principle, a method of measuring p_/p,, hence giving p, and,
by inference, m, (since py/m, for clustered neutrinos must be of the same order as the velocity
dispersion of the galaxy). Some computational studies of the properties of finite detector
configurations with smaller aspect ratios (1-10%) are in progress.

The problems associated with the measurement of the forces on the slab will be
discussed separately; but in general terms it is envisaged that the tuned detector slab would
be levitated in a low temperature, ultra-high vacuum enclosure, with the small displacements
(relative to a neighbouring untuned target) measured by optical or electromagnetic tech-
niques analogous to those under development for gravitational wave detection [5]. Many
aspects of the system, including the very large transverse/longitudinal dimension ratio,
would suggest that a zero-g (orbital) enviromnent may be the most appropriate for future
experiments of this type.
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