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Within the framework of the gauge approach to gravitation, including terms in the
lagrangian quadratic in the curvature and torsion tensors, restrictions on the indefinite
parameters of the lagrangians are obtained. It is shown, that the simultaneous consideration
of the cosmological problem, quantisation of gravity and Birkhoff’s theorem reduces to
the two S5-parametric gravitational lagrangians.
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At present various gauge theories of gravity are known, which differ one from another
by choice of the gauge group of transformations. In this paper we consider the gauge
theory of gravity, for which the group of the gauge transformations is the direct product
of the group of general coordinate transformations and the group of tetrad Lorentz transfor-
mations (see, for example, [1-4]). Then the gravity is described by the field of tetrads
hi,, and the rotating Ricci coefficients A“‘MI. Due to the dynamical independence of the
fields 4, and A™, the space-time have both the curvature and the torsion. Usually one
connects the torsion with the spin angular momentum of the matter, because in the simplest
gauge theory of gravity — the Einstein-Cartan theory — there exists an algebraical de-
pendence between the spin angular momentum and the torsion, and the vanishing of the
spin leads to the vanishing of the torsion too. However, as it was shown in [5], the torsion
of the space-time can play an important role in the case of the spinless matter with the
extremal high mass densities by including terms in the gravitational lagrangian quadratic
in the curvature and torsion tensors. By some restrictions on the parameters of the gravita-
tional lagrangian this theory leads to the conclusion about the existence of the limiting
mass density in the nature and this allows one to solve the problem of the gravitational
singularity [5, 6].

In the gauge theory of gravity the choice of the gravitational lagrangian is important.
The principle of the local gauge invariance itself gives only the form of the gauge fields

! i, k, ... are anholonomic Lorentz indices, g, », ... are holonomic coordinate indices, the signature
is equal to —2, the light velocity ¢ = 1.
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and their strengths from the gauge group. However this principle does not allow to deter-
minc the explicit form of lagrangian for the gauge field.

In the present paper the restrictions on ilic parameters of the gravitational lagrangian
in the gauge theory of gravity are considered. We use the most general expression for the
gravitational lagrangian

Lg = h[f0F+Faﬂuv(f1FaBuv +f2Fauﬁv +f3Fuvaﬂ)

+ Fﬂv(f4F“v +f5Fvu) +f6F2 + Sa”v(alsauv + aZSvuz) + a3sauasﬂ“5]’

(F*' = Fapav, F =F", h=det (hi,u))’ (1)
where

Fi* = zé[pAikv]+2Ail

k
" Ay

fu

i A g ik
Swv = ot =A™

and fo, f; (i = 1,2, ..,6), a, (k = 1, 2, 3) are indefinite constants. One of the constants
fi, fs and fg can be excluded according to Gauss-Bonnet theorem [3, 7], therefore we
assume further that fg = 0. One can obtain the restrictions for the parameters of the
lagrangian (1), requiring that the corresponding gravitational equations should lead to the
most satisfactory physical consequences. At first we note that in the case of the material
systems with the rather small mass densities, the principle of the correspondence with

1
General Relativity (GR) leads to f, = 162G where G is the Newton’s gravitational con-
T .

stant [5, 6]. The presence of the term linear in the curvature in L, is essential from the
point of view of the quantum theory of gravity [8, 3] and it is also necessary to avoid the
unphysical spherically symmetric solutions, analogous to the unphysical solutions in the
Yang theory of gravity (see, for example, [9]).

The investigation of homogeneous isotropic cosmological models with torsion [5]
leads to some restiictions for the gravitational lagrangian. The generalised cosmological
Friedmann equations obtained in [5] by the assumption of the invariance with respect
to spacial inversions depend on the following two parameters: a = 2a, +a,+3a; and

f=r+ 1;24 +f3+fa+Sfs+3fe. If f£— 0, these equations transform into the ordinary

cosmological equations of GR. Therefore it is necessary to require f # 0 and to keep
in the gravitational lagrangian terms, quadratic in the curvature tensor. When a = 0
(f # 0) the generalised cosmological Friedmann equations lead to the conclusion about
the existence of the limiting mass density and allow one to solve the problem of cosmological
gravitational singularity. Nonsingular in the metric solutions exist also when a # 0,
and they were investigated in [6]. However, it should be noted, that when a # 0 singular
solutions exist in general together with nonsingular solutions [13]. The sign of the param-

eter f depends of the state equation and in the case p < —g— (¢ — mass density, p —



109

pressure) f must be negative®. Thus, we have
a=90, [f<0 3]

The requirement a = 0 agrees with the Birkhoff’s theorem. As was shown in [11, 12],
by fulfilment of the restrictions

2a1+az=03 =0 (3)

and, moreover, of one of the following two conditions
o +fo+2fs =0, 4
fatdfs—fatfs =0 )

the Birkhoff’s theorem with spatial reflection invariance takes place, i.e. in the vacuum
sphetical-symmetrical case the metric of the space-time coincides with the Schwarzschild
metric and the torsion equals to zero. The fulfilment of the Birkhoff’s theorem is essential
due to the fact that any vacuum solution of the Einstein’s equations with zero torsion
satisfies also the gravitational field equations corresponding to the lagrangian (1) 3, 5].
In this connection the theorem given provides for the absence of the unphysical spherically
symmetric vacuum solutions in the theory of gravity which is being considered.

The conditions (2) lead to the lagrangians with the 8 independent parameters. Some
additional restrictions on the parameters of the gravitational lagrangian can be obtained
from the quantisation of the gravitational ficld [8, 3]. The requirement of the absence of
ghosts and tachyons leads to 12 types of six-parameter gravitational lagrangians [8].
Only one of them agrees with the conditions (2). The parameters of a given gravitational
lagrangian must satisfy the following conditions

2a,+a, =0, a3;=0, 4+, =0, f,>0, [f<0O, (6
a, >0, fi <0, 4fi—-f)+fi—fs>0. D

The condition f, > 0 determines the presence of the massless graviton by quantisation
and inequalities (7) are connected with the presence of the massive tordions with spin
and parity J¥ = 1+, 0-. Taking into account the equalities (6) the conditions of the presence
of these particles have the following form:

(07):fi <0, 3a,—f, >0, ®
7y 4fi=F)+fafs > 0, a(3a;+f5) > 0. ®

The additional restrictions (4) and (5) connected with the Birkhoff’s theorem, lead to
two five-parameter gravitational lagrangians. One of them is defined by the conditions

2 Note, that in the framework of quantum chromodynamics for superhigh mass densities

14
< — [10}.
p 3[3
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(6), (7) and £, = 0 and it describes the massive tordions with J* = 1+, 0-. Another lagran-
gian is defined by the conditions (6), (8) and f,+4f5—f,+f5 = 0 and it describes one
massive tordion with J* = 0-. By excluding the massive tordions from a given five-param-
eter lagrangian by replacing the inequalities in (8) and (9) by the corresponding equalities,
a four- and three-parameter lagrangian can be obtained. The four-parameter lagrangians
are determined by means of (6) and one of the following set conditions:

fi=rf=0, 4f3+f5 <0, a(Ba,+fy) >0, (10)
fo=0, a;, =0, f; <0, (11)
Ja=0, 3a;+f, =0, 12)
L+afs—fatfs =0, 3a;+f, =0, 13)
fi=0, 4fi—fa+fs=0. 14
The corresponding three-parameter lagrangian satisfies the conditions (6) and
fi=fi=0, a =0. (15)

In the theory with the four-parameter lagrangians, determined by means of the (6) and
(10), the massive tordion with J¥ = 1+ are present, and in the theory with the lagrangian,
satisfying the conditions (6) and (11) the massive tordion with J® = 0~ are present. The
remaining four- and three-parameter lagrangians connected with (6) and one of the set
conditions (12)-(15) do not contain the massive tordions. All other lagrangians, which
satisfy the restrictions following from the simultaneous consideration of the cosmological
problem, the quantisation and the Birkhoff’s theorem are particular cases of the above
obtained five-, four- and three-parameter lagrangians have additional conditions imposed
on the parameter in the form of an equality.

Note that the conditions (2) were found from the generalised cosmological Friedmann
equations, which were obtained by assumption of the invariance under spatial reflections.
This led to exclusion of some components of the torsion tensor in the homogeneous isotropic
space. It is interesting to obtain the gravitational equations for a homogeneous isotropic
cosmology with torsion without the assumption of the spatial reflection invariance and
to consider, by what restrictions for parameters of gravitational lagrangian this equations
reduce to the generalised cosmological Friedmann equations [5].

In the homogeneous isotropic space the tetrad is chosen in the form:

. R
b, = diag <1, ——ﬁ)»; , R(Hr, R(t)r sin 9) (k =0, +1).

\/1 —KFr

In this case the following components of the torsion tensor cannot be equal to zero

3.2
S'o =80 = 8%0 = 5(1),  Si23 = S231 = Saiz = Sa(1) —===== sin §.

\/1—-xr
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Then the gravitational equations corresponding to the lagrangian (1) for the homogeneous
isotropic cosmological models have the following form [6]:

R
a (R —S1> S1—2bS3—2fo A, +4f (A1 - AD)+2q(A3— A7) = — %, (16)
S R 2 2 2 2 2 2
a\Si+2 2 1751 ) =2b8; 224, + A (A~ A2) = 2q,(A3~4) = p,  (17)

f[(A1 +1‘i2)+451(1‘11 +A) ]+ 9245 +2f—q)A4]S,+ <f0+ %) S =0, (18)
Q2[(As+ A +48,(As + A)]~[4fA, +2(q, + 42) A1 +(fo—b)]S, =0,  (19)
where

2
2

_ (R—2RS,) 4 k+(R—2RS;)"

! R 7 R?

R—2RS, (RS,)
Ay =2 — S,, =
3 R 2 4 R

s

b=a,—ay, q=5L"2L++s+6/ 4;=2fi—f

and a dot denotes the differentiation with respect to time. It is easy to show that, by the
fulfilment of the correspondence principle with GR for gravitating systems with rather
small mass densities (functions 4, and 4, must approximate their values in GR), in the
case

21—f2=10 20

the function S, vanishes due to equation (19), and equations (16)-(18) reduce to the
generalised cosmological Friedmann equations. The condition (20) together with (6) and
(9) leads to the four-parameter lagrangian.

Thus, as the above analysis shows, the consideration of the cosmological problem
reduces to a restriction on the parameters of the gravitational lagrangian in the gauge
theory of gravity.
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