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models. In these solutions appears a particular form of the Painlevé transcendent of type ITI.
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1. Introduction

Spatially homogeneous space-times with electromagnetic fields obeying the source-free
Maxwell equations and (or) perfect fluid matter are widely used to study different proper-
ties of solutions of Einstein’s field equations in the general theory of relativity. These
space-times belong either to the Bianchi types I-IX or to the Kantowski-Sachs class and
have been investigated by many authors over the last three decades since the basic work
of Taub (1951). (An almost complete list of exact solutions of Einstein’s field equations
is given by Kramer et al. (1980).)

It is well known that the field equations of general relativity form in general a system
of ten second-order quasilinear partial differential equations. However, for the spatially
homogeneous space-times these equations reduce to a system of ordinary differential
equations with the independent variable being temporal. Even in this case they have not
been completely discussed because of their remaining high analytic complexity. In papers
previously published we presented new exact solutions of the Einstein-Maxwell equations
for various Bianchi types and the Kantowski-Sachs models which are not included in
Ref. Kramer et al. (1980). (See Lorenz (1983a) for complete references.) Among the highly
intractable Bianchi types are the type-VI, (n*; # 0), as has been pointed out by Collins
(1971), and type-VII, models, where n® s denotes the anti-symmetric part in the Ellis-
MacCallum (1969) decomposition of the structure constants which characterize the Bianchi
types I-IX. It is the purpose of this paper to discuss the corresponding field equations
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and to obtain exact solutions in the vacuum and the stiff matter case for non-LRS models.

In what follows we obtain exact solutions in terms of Painlevé transcendental functions
of type III (Painlevé 1902; Ince 1956). We note that the appearance of Painlevé transcen-
dents as solutions of the Einstein-Maxwell equations is well known (Marek 1968; Chitre
et al. 1975; Maartens and Nel 1978; Marcilhacy 1979; Léauté and Marcilhacy 1979a, b;
Lorenz 1981). One knows that there are in general six nonlinear second-order differential
equations which define the corresponding Painlevé transcendents. They were discovered
towards the end of the 19th century, exploited for about forty years and then (apparently)
forgotten; quite recently they have re-emerged in a somewhat different form. It has been
shown that they are related to evolution equations such as the sin (sinh)-Gordon or the
Korteweg-de Vries equations solvable by inverse scattering transforms (Ablowitz 1978;
Segur 1980). More recently it has been shown by Ablowitz et al. (1980), Ablowitz and
Segur (1981) and Flaschka and Newell (1980) that certain nonlinear differential equations
can be solved via linear integral equations or arise as integrability conditions for certain
kinds of deformations of linear equations. In particular their works are closely connected
with the solutions of the sinh (sin)-Gordon equations of the special kind of Painlevé trans-
cendents of type 1II which occur precisely in our present work (see also McCoy et al.
1977; Ablowitz and Segur 1977; Airault 1979, 1981; Kaliappan and Lakshmanan 1979;
Osborne and Stuart 1980; Morris and Dodd 1980; Léauté et al. 1981).

2. Field equations and solutions

In choosing a local orthonormal basis ¢*, we can put the metric of ‘“‘diagonal” space-
-times in the form

ds? = N,0"0", (1)

where 1, is the Minkowski metric tensor. For a spatially homogeneous model, we take
6°=w’=dt, o =Ro (10 sum), )
where o' are time-independent differential one-forms (Kramer et al. 1980) and where,
because of homogeneity, the cosmic scale-functions R; are functions of ¢ only. (Here and
henceforth Latin indices assume the values 1, 2,3 whereas Greek indices assume the
values 0, 1, 2, 3).
The one-forms ¢', w' obey the relations

do' = —3 Cjo* A &, do’ = —Ly,0" A of, 3

where the C,,' are the structure constants, yaﬁi are the commutation coefficients and A
denotes the exterior product. The nonzero structure constants are given by

C231 = 15 Cl,32 =n, (4)

where one has a Bianchi type-VI; or type-VIi, model in case of n = 1 or n = —1. By
using Cartan’s calculus of differential forms one easily obtains the components of the
Ricci tensor R,, (see Lorenz 1980a for further details).
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The Einstein equations considered here are
R, = K(Tuv ""% ’7;4va)9 (5)
where
T,. = (¢+pu,u,+n,.p (6

is the energy-momentum tensor, u,, is the velocity four-vector, and ¢ and p are, respectively
the density and pressure of the perfect fluid. The units are chosen that x = 8zG/c* = 1.
The perfect fluid matter is characterized by the equation of state

p=G=Dn 1-y<2 g

In the local inertial frame determined by (2), an observer comoving with the fluid is assumed
to have four-velocity u”* = 83, i.e. we are considering only non-tilted models. The field
equations reduce to the following equations

(InR})" = an;'*’ R —nRE+2n8,(R R,)*+6(2—7) (R;R,R3)%, (8a)
(In (R, R, R;3)*]" = 4[(In Ry) (In R, R,) +(In R,) (In R;)]—&(3y—2) (R R,R5)*, (8b)

where n, = n, = 1,n; = 0, (i, j, k) are in cyclic order, J; denotes the Kronecker symbol,
( ), = d/dr’ and dt = R1>R2R3dﬂ.
The conservation law for the energy-momentum tensor (6)

T%,=0 ®)
gives

e = m"(R{R,R;)™", m = const. (10)

In considering first the LRS-case R, = R,, the Bianchi type-VII, model reduces to
a special Bianchi type-I model. The corresponding field equations can be easily integrated
for all values of y by one of the methods described by Stewart and Ellis (1969), Jacobs
(1969a, b), Vajk and Eltgroth (1970), Lorenz (1980b) and Lorenz and Zimmermann (1981).
Very recently we have also discussed the incorporation of an electromagnetic field with
non-vanishing cosmological constant A into the LRS-Bianchi type-I space-time (Lorenz
1982c). The field equations for the LRS Bianchi type-VI, (n* s # 0) model reduce to those
of the type-VI, (n* s = 0) by a simple change of the variables R;. We thus obtain the Ellis-
MacCallum (1969) stiff matter (y = 2) solution and also the special solutions for 1 <y < 2
given by Collins (1971), Dunn and Tupper (1976) and Evans (1978). Some electromagnetic
generalizations have been discussed by Lorenz (1982a, b) for both orthogonal and tilted
Bianchi type-VI, (n’ s = 0) models. The vacuum solution with A # 0 has been reduced
by us (Lorenz 1983b) recently to an Abel first-order differential equation and a transcen-
dental solution (not of the Painlevé types) was given.

The non-LRS case has been first considered by Lukash (1973). However, only a study
of the asymptotic behaviour of the model for various equations of state was given. By
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taking m = 0 (vacuum) or y = 2 (stiff matter) it follows that the terms depending on ¢
in (8a) vanishes. We are looking in this paper for exact solutions of {8a, b) in these cases.
Introducing the new variables r; = ri{y) by

Ry=-exp(r), r=2ri—ry) (i1

and assuming (r, +r,)" # 0 the field equations (8a, b) can be decoupled and partial integrat-
ed to give

rytry = a(n—mno), (12a)
r'' +4 exp [2a(n—no)] sinh (r) = 0, (12b)
ary = —riry+1 [exp (2r)) +nexp (2ry)]* + m?, (12c)

where a, i, are constants of integration. The field equations for i = 3 will not be written
out for in the case considered here it is a consequence of the system (12a—c). The case
(r,+r,) = 0is only possible for the Bianchi type-VII; model and gives the trivial solutions
ry = r, = const., ry = b(—n,), b,n, = const. and m = 0.

After solving Eq. (12b) to give r = r() the most general vacuum or stiff matter solution
for Bianchi type-VI, and type-VII, would arise, since the expressions for r; could be easily
obtained from the remaining field equations. We will now show how the solutions can be
expressed in terms of a particular form of the third Painlevé transcendents. Introducing
the time variable ¢ by

2
¢ = —exp [a(n—no)], (13)

we can transform the system (12) to obtain

ry+r, = In (aé/2), (14a)
F+F/E+sinh (r) = 0, (14b)
3 = [(mja)* —1/4]/& + E[F* +2(cosh (r) +n)]/16, (14c)

where ( )" = d/d¢. Eq. (14b) is a particular case of a sinh-Gordon type ¢quation (Ablowitz
1978; Segur 1980; Ablowitz et al. 1980; Flaschka and Newell 1980; Ablowitz and Segur
1977). We notice that a purely imaginary solution of the sinh-Gordon equation gives
a purely real solution of the sin-Gordon equation and vice versa. Both equations arise
in many areas of theoretical physics and applied mathematics.

If we put

w=exp(r), z=28/4, w=wz), () =dd, (15)
Eq. (14b) becomes
w’ = wiw—[w+W2—-1)2]z. (16)
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This equation is a particular form of the non-linear equation of second-order which defines
the third Painlevé transcendent (Ince 1956; Painlevé 1902). Inspection of the above men-
tioned works of Ablowitz et al. (1980) and Flaschka and Newell (1980) shows that we can
apply (up to a simple change of the considered sinh-Gordon equations) their methods
to obtain solutions of Eq. (16). The solutions would be completed by

r. = In(a’zw)'’*,  r, = In(a’zw™ )14, 17)
ry = [(mja)?>—1/4]12z+ [zw'[w+ 2(cosh (In w)+ n)]/8. (18)

It therefore follows that the most general vacuum and stiff matter solutions (in terms
of Painlevé transcendents) have been found. In this connection we mention also the works
of Belinskii et al. (1969, 1970) and Lifshitz and Khalatnikov (1970) on the diagonal Bianchi
type-VIII and type-I1X models. It was shown that near the initial singularity the function
r; may be neglected compared with the two others (r;, r,). Thus their approximative
field equations for types-VIII and IX are the same as our exact field equations for types-VI,
and VII,. (Note that there are some minor errors in the above mentioned papers). The
asymptotic behaviour of the solutions of Eq. (14) in the regions £ > 1 and & < 1 is discussed
in the vaccum (m = 0) case. The incorporation of an electromagnetic field into the Bianchi
type-VI, (VII,) space-times has been given by Ruban (1978) and some asymptotic consid-
erations was made. We finally mention the work of Barnes (1978) on electromagnetic
Bianchi type-VI, and type-VII, models using the Newman-Penrose spin-coefficient formal-
ism. It would be interesting to discuss the relation to our solutions.
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