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The standard step function approximation for the energy dependence of the continuum
contribution to the cross-section for heavy quark production in ete~ annjhilation is replaced
by an approximation with a much softer energy dependence. This change is found to have
little effect on the predictions from the SVZ sum rules.

PACS numbers: 14.60.Cd

When applying the SVZ sum rules [1] to heavy vector quarkonia, it is necessary to

estimate the ratios
a(e’e” — qq)

R(s) = —4—7—"=. 1

) = e ) M

Here q is a heavy quark (c or b) and the cross-section in the numerator is summed over

all the possible final state interactions of the quarks q and q. The vector gq resonances

certainly contribute to R.(s), the continuum contiibution has also to be included, however.

Following the pioneering work of Shifman, Vainshtein and Zakharov [1], most analyses

use the simple expression
as
RE(5) = 302 (1+ —) 05— ED), @
n

where Q is the electric charge of quark q and 6 the step function. The strong coupling
constant entering &, and the continuum threshold energy Ey are either estimated from the
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data, or chosen so as to optimize the agreement of the sum rules with experiment. For large
values of s, relation (2) agrees with QCD and seems reliable, therefore, only modifications
of the continuum threshold region deserve an analysis. The sharp rise of R{*™(s) from
zero to its asymptotic value is clearly a ciude approximation, but introducing one more
parameter to fix the width of the threshold region would greatly reduce the predictive
power of the sum rules.

Tn order to see how sensitive are the results to the Ansatz (2), we introduce an effective
quark mass m} and calculate R™(s) by substituting mg for the quark mass m, in the
theoretical expressions derived by SVZ for R{™™(s). In this approach the parameter Ep
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Fig. 1. Energy dependence of Rc(s) used in formulae (3a) and (3b). For comparison the theoretical curve
R;"(s) is also shown as a dashed line. The curves have been drawn for s = 0.2 and G =0

is replaced by the parameter my, so that the number of parameters does not change. The
new continuum contribution has a much softer thieshold factor than that given by formula
(2) (cf. Fig. 1). Thus, comparing results obtained with the new threshold factor, with those
obtained using formula (2), one can get an estimate of the changes due to modifications
of R{"™(s) in the sum rules.

The usual form of the SVZ sum rules is (cf. e.g. [2])

: : AN |
Mth(mq’ as: G) 4 o Q M2"+ 1 .—2 (1 + ) Ezn b (3a)

where I'y and My are the (modified) electronic width and mass of the V-th vector meson
from the qq family and

MP(my, o, G) = [1 + A0 + = G] . 4)

M,,
(mg)"

'-1
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In this formula M,,, 4, and B, are known functions of n, while m,, o, and the gluon con-
densate parameter G have to be estimated. M" is the theoretical estimate of the right hand

side of relation (3a), which is
(s)ds
M, = o f e ©®)

Our proposal is to use instead of (or besides) relation (3a) the relation

Mth(mq’ a, G) = Ao Q E M2n+1

2n 4
my th my
)M o, [ —2) G).
+(m:> (’" (m:;) > (30)

For practical calculations this formula is as convenient as formula (3a).
In order to compare the continua in formulae (3a) and (3b), it is necessary to find
a correspondence between E; and m. For simplicity, we put at first G = 0. Let us define

2m¥ A nM o, (1 + A,0) 1~
T = ey = 2 [T AT ©®
T ‘xs
1+ =
7

When 2m} = Epu,(«,), the continua for the n-th moment in formulae (3a) and (3b) coincide.
For n = 1, ..., 10 and typical values of o, the values of u,(«,) are given in Table I. As
seen from the table, for o, ~ 0.17 formulae (3a) and (3b) are almost equivalent. For
oy > 0.17 (o, < 0.17) the continuum contribution to formula (3b) decreases faster (more
slowly) with increasing » than the corresponding contribution in formula (3a) For the
family oy > 0.17. For the Y family, «, ~ 0.17, but the continuum contribution is much

TABLE I
Parameters p,(os)
N
" \\ 0.10 0.13 0.16 0.19 0.22 0.25 0.28
i

1 [ 0.9122 0.9173 0.9223 0.9271 0.9319 0.9365 0.9410
2 0.9184 0.9208 0.9231 0.9254 0.9276 0.9297 0.9318
3 0.9236 0.9244 0.9252 0.9259 0.9267 0.9274 0.9281
4 0.9277 0.9274 0.9270 0.9267 0.9264 0.9260 0.9258
5 0.9309 0.9297 0.9284 0.9272 0.9259 0.9247 0.9235
6 0.9334 0.9313 0.9293 0.9272 0.9251 0.9230 0.9208
7 0.9354 0.9326 0.9297 0.9268 0.9237 0.9206 0.9174
8 0.9370 0.9333 0.9296 0.9257 0.9217 0.9173 0.9128
9 0.9381 0.9337 0.9291 0.9240 0.9187 0.9128 0.9063
10 0.9390 0.9337 0.9280 0.9216 0.9144 0.9061 0.8963
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TABLE 11

Parameters G, obtained by comparison of the experimental and theoretical values of r,

100 G, [GeV*] 100 Gy [GeV*]
Formula Ja 3b 3a 3b 3a 3b
Er or my [GeV] | 4.205+0.098 | 1.957+0.045 | 3.881+0.086 | 1.854+0.038 {10.578+0.087 | 4.877+0.040
g [GeV]  1.284+0.016 | 1.286+0.016 | 1.289+0.013 | 1.296+0.015 | 4.157+0.024 | 4.154+0.024
,,\\“s 0.2 0.3 0.165
2 | 0 0 0 0 0 0
3 1.194+0.28 | 1.04+030 | 0.88+0.16 = 0.25+0.04 100+2 88+3
4 | 1354031 | 1.26+0.33 | 0.76+022 | 0.28+0.30 10343 97+4
5 C 1274027 1.22+4029 0634022 . 0.31+0.29 92+4 91+4
6 | 1.1340.22 | 1.1140.23 i 0544020 = 0.32+0.25 78+4 8044
7 | 1.00+0.17 | 0.98-+0.18 | 047+0.17 | 0.33+0.20 65+4 68+4
8 0.8740.14 | 0.86+0.14 | 0.42+0.14 | 0.32+0.17 5544 58+4
9 0.77+0.11 | 0.76+0.11 | 0.38+0.12 | 0.30+0.14 47+ 4 5043
10 | 0.674+0.09 | 0.67+0.09 | 0.344+0.10 | 0.28+0.11 40+3 4343

larger than for the 1 family and therefore smaller relative changes may give larger absolute
changes than in the vy case.
In Table II we compare for n = 2, ..., 10 the values of G, obtained from

M, Mon_ 1+(4,— A, o+ — (B,—B,_,)G 7
rn = = - —A,- '13 b *
M,., Mo, " ! mi " e 7

when either (3a) or (3b) is subsituted for the experimental moments M,. The parameters
m, and Er or mj are calculated assuming that relation (7) for r, and a similar relation for
M,/M? hold exactly, when G = 0. For details of the analysis of errors cf. [3]. The results
for the continua obtained using the two approximations are similar. In particular, the
result G, » G, [3] is reproduced, also when formula (3b) is used. The variation of G,
with »n is slightly reduced, when formula (3b) is used. This could be interpreted as evidence
that the parametrization for the continuum discussed in the present paper is a little better
than the simple formula (2). We think, however, that the differences are so small that the
main merit of the new parametrization is that it provides a check on parametrization (2).
The analysis presented here for vector currents (resonances) can be easily extended to
other currents.

REFERENCES

{11 M. A, Shifman, A. 1. Vainshtein, V. 1. Zakharov, Nucl. Phys. B147, 385, 448 (1979).
[2] B. Guberina, R. Meckbach, R. D. Peccei, R. Rickl, Nucl. Phys. B184, 476 (1981).
131 A. Zalewska, K. Zalewski, Phys. Lert. 1258, 89 (1983).



