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TENSOR FORM OF THE BREIT EQUATION: PART TWO
By W. KROLIKOWSKI
Institute of Theoretical Physics, Warsaw University*
( Received July 26, 1983)

The Breit equation for a system of two Dirac particles, which was recently represented
in the tensor form, is reduced explicitly in the case of equal masses to a considerably simple
system of radial equations. The vector and scalar spin-dependent central potentials ate
considered. For the reduction the multipole technique is used.

PACS numbers: 11.10.Qr.

In this note we make use of the recently introduced tensor representation [1] of the
Breit equation for two Dirac particles [2] to reduce this equation to a considerably simple
system of radial equations which may be of a practical importance in the problem of
fermionium (and, in particular, of quarkonium). To this end we consider the Breit equation

forfoson o - [nlo e

(where 7 = 7, —7, and p = P, = —p,) with a vector potential ¥ and a scalar potential
S which beside the particle distance 1 may depend on the spin s = 0, 1 of the system of two
Dirac particles:

V= PoVo+P Vi, S = PoSo+P,Sy, (2)
P, denoting the projection operators on states with spin s:
Po=3(1-6,"G), P =%(3+6,°6)=%¥ 3

(where § = 1 (G, +0,) is the spin operator). We will assume that the potentials are static
and central, ¥V = V(r) and S, = S(r), the latter property being physically consistent
with the former. Note that non-static effects would introduce into the potentials the velo-
cities @, and &, which, if treated (on the level of Breit equation) more exactly than in the
first perturbation order, would cause considerable errors {2, 3] related to the fact that
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the hole theory is not consistent with the Breit equation. It is in contrast with, say, the
Salpeter equation [4, 5] which, however, is much more complicated in practical calcula-
tions.

In our tensor representation, the Breit equation (1) takes the form of the system of
equations (12a) and (12b) given in Ref. [1], where now m,; and m, should be replaced
properly by m, +1 5, and m,+1 S, and ¥/ and V¥ should be put ¥, and zero, respectively.
In the case of equal masses m; = m, = m (to which we will restrict ourselves for the sake
of simplicity) this system splits into two subsystems of equations describing in a relativistic
way the parafermionium (s = 0) and orthofermionium (s = 1). They are given respectively
in Egs. (13) and (14) in Ref. [1], where now the same insertions should be made as in Egs.
(12a) and (12b).

These two subsystems of equations can be conveniently reduced to first-order radial
equations by means of the multipole technique used already in Ref. [1] in order to derive
the second-order radial equations (23) and (25E), (26E), (27) from Eqs. (13) and (14),
respectively. These second-order radial cquations are valid in the case of Vy = V, = ¥V
and S, =S, =0.

In the multipole technique we make use of the expansion

N -, i _Xlon(;) _ _a_ 'Xinag(;)
() = Pra(n— = G+D) (f‘x a?>j(j +1)’ Q)

where
X =P 1P = 1D YjulF),

- i} -
Xlon(r) = (aﬁﬁ —2?) ' X(r) = XIon(r)ij(?)’

- o\ -~
Amag(r) = (? x 5) X)) = Amag(N) Y () ®)

(and analogical expansions for other s = 1 components: x°(r), (@ and #°(). Also
X°(F) = 7°(F)Y,;,(r) (and analogically for other s = 0 components: ¢(r) and ¢°(r)). Here,
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Note that | —] = — | — —2F)and {Frx —} = — [rx —=}. Of course, J = L+ S
or or or or
and j=0,1,2, .., while/=0,1,2,... and s = 0, 1. The wave-function components
with j >0 and s = 1 and with the determined orbital angular momentum /= j—1I,
+1, j are
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TEUN2+1T Nojyr1 ViG+))



133

j+1 J Ylon
Ai=j+1 = \/2—‘“. Xat J—— .l—“,

j+1 2i+1 ViG+1)
= Xmag

JiG+1)

Ki=; ©)
(and analogically for the other s = 1 components: %°, f;,’; and 430). If j = 0 then y,, =0

and y,, = 0sothat y;—j_; = 0, Y3=j+1 = Xe»» Xi=; = 0 (and similarly for %°, (}5 and <7>°).
Note that for norms we have

- 1on 12 + [XmagI*
12 = o= j= 1 P4 Dz e o P = 12 = lixal® + m—g—
and

92 = 12+ 112+ U2+ P02 + 1Z 2 + 110112+ 1112+ 1160112,

where y(r) is the whole many-component wave function for our system of two Dirac
particles. The extra s = 0 component x(r) vanishes in the case of equal masses
my =my, = m.

In this way we obtain in the case of equal masses m;, = m, = m two following sub-
systems of first-order radial equations including the “large-large” components with spin
s = 0 and s = 1, respectively: for s = 0 the system

E-V, d 2 1 S
= ¢+ =+ =) bati— o = (m+ 5 ) 4,
2 dr r r

2
E-V, S
. %% - <m+ 7") ¢°,

E—V

! ¢el+l_¢0 = 0,
E-V, ](J+1)

! d)lon (b = 0,

r

E-V

> P =0 (7

and for s = | two independent systems

E-V, d 2 1
x +i - xel+l —Xlon = 09
2 dr r r
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E—V, i+1 s
- Xion™ I](J )'X,O ={m+ = Xﬁms
2 r 2
E-V, S
) ! 'X,Sl+ - ¢mag =\ m+ '"2—1> Aets
E-V, , (d 1\, S,
— don— {5+ — 'ma = + = ons
5 X < ar r) Brmag (m 2 X
E—V iG+1) a1
S Pmag+ o xat — )Xo = 0 (82)
r dr
and
E - V1 Sl
5 Amag = (m+ 'E_ xgxaga
E-V jg+ 1) d S,
D) : ?nag — ¢e1 T ¢lon =\ m+ — 5 Amags
E-YV,
—1 ¢cl _Xmag = 0,
E-V, d 1
: d’lon (— + _) xzag = 0, (8b)
dr r

The sixteenth component is zero: y = 0.

The (non-zero) wave-function components involved in the systems (7), (8a) and (8b)
have the total parity P = y(—1)’, P = n(—1)’*" and P = y(—1)’, respectively, where
n?* = 1. For a fermion + fermion or fermion + antifermion system we get = +1 or —1,
respectively, at least if the considered Dirac particles are of the same kind. The “large-
-large” components with s = 0 are contained in ¢ and ¢° and those with s =1 — in 7
and x° (i.e., in Xe1» Xions Xmag 30 Xs Xions Xorag)- Thus the “large-large” components involved
in the systems (7), (8a) and (8b) correspond to / = j with s = 0, / = jF1 with s = 1 and
I = j with s = 1, respectively, so that (in the usual spectroscopic notation >**'/)) these
systems of first-order radial equations describe in a relativistic way the states j;, 3(/F1);
and 3j; with the corresponding total parity P = n(— 1), P =n(—1)** and P = p(—1y
(the states 3(jF1); being superposed in the way determined dynamically by Eq. (8a) and
kinematically by Eq. (6)). If j = 0 there are only the states 'S, and *P,.

The system (7) for parafermionium reduces in the practically important case of
Vo =V, and S, # 0 to the second-order radial equation

v,

E-Vo\* 1 d*  j(+1D) So\>  dr d| .,
——e S S + =]+ — = 0. 9
( 2 >+rdr2r 2 " 2) v, ar]® ©)
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The system (8b) for orthofermionium with P = n(—1)’ can be reduced in the general
case to the second-order equation

E-V,\* 1 d* j(j+1 S\ dar 1 d 0
S A S — ] + —— ag = 0. 10
< 2 >+ rdrt r’ "t 2) E—V, r ar J*m== ()

The system (8a) for orthofermionium with P = 5(—1)’*" is more complicated, leading
in the general case to a rather involved system of two second-order radial equations for,
say, xo and b, (although in the case of ¥, = ¥, and S, = 0 the latter is considerably
simple, consisting of Egs. (25E) and (26E) in Ref. [1]). So, in the general case, the system
of first-order radial equations (8a) seems to be more adequate to practical calculations.
In the practically important case of V, = ¥, and S; # 0, when eliminating from Eq. (8a)
the components yg and y,, by the algebraic equations contained in Eq. (8a), we get for
orthofermionium with P = n(—1)'*! the following system of four first-order radial
equations which is considerably simple for numerical calculations:

(E-V,\*> j(+1)]., E-Vifd 2 S\1 ,
— iy® — —_F = - =) =0
-( 2 ) I’2 ‘?( 2 d?‘ + r Xel m+ 2 r XIon ]
(E-V\* +sll +E—V1d,0+ +s1 1¢o 0
—{m+ — —_— m+ — | — =4,
[\ ™2 2 ) [*T T 2 ) Pmee
(E-V,\? S5V o E-Vifd 1\ S\iG+D
— =2 — — 4 — — LA ir® = 0,
_( 2 ) <m+ 2) Xion 5 dr+ . Prmag m- 2 . iy,
((E-V,\* jG+1)7] ,,  E-Vifd 1\, SN\iG+1)
_ —— =+ =)yl et = =0. (11
_( 2 ) 7‘2 ¢mag+ 2 d7'+ r Ao +|m+ 2 r Xel ( )

We hope that Egs. (9), (10) and (11) will turn out to be useful in relativistic calculations
for quarkonia.

Finally, we would like to remark that the tensor representation of the Bieit equation
(1) and the multipole technique of reducing it to radial equations (described in Ref. [1]
and in the present note) must be, of course, equivalent to its usual spinor ® spinor represen-
tation and the unitary-transformation method of reducing it to the radial form [6]. In
fact, it can be seen that Egs. (7), (8a) and (8b) form a system of radial equations which
in the case of ¥, = V, = Vand S, = S, = 0 is identical with that given in Table I in the
last Ref. [6] when m; = m, = m there. The resulting relation between the wave-function
components used in that Table and the components considered in the present paper is quite
instructive for the interpretation of both:

= —ig, = i¢0: =2 S = Xgls
i =-ix=0, f; = iXO, J3s =0 Jfo = ¢21 (12a)
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and
+ iXmag + iX;ag + ix;‘:m + inon
& = 5= gl:“r—“’ 3 F T 4=:/_.‘."-—’
ViG+1) iG+1) iG+1) iG+1)
- i¢ma - i¢1(!)la - i¢(:)n - id) on
1 = ‘_B = 0, g2=—%>’ g3=+= g4=_"l—’ (12b)
iG+1) ViG+1) ViG+1) ViG+1)

Here, the upper + signs denote the intrinsic parity +# defined by the operator ng,8,
with n? = 1 (the “large-large” components superposed with the “small-small”” components
are obviously contained in the “+” components, in contrast with the ‘“‘small-large” and
“large-small” components which are superposed within the “-" components). The
components f; and f, have spin s = 0, while the rest of /’s and all g’s — spin s = 1. The
total parity of “+” components is P = +y(—1)' which is equal to P = £n(—1) for
“1” and “2” components, all having / = j, and to P = +x(—1)’*! for the “3” and “4”
components, all being superpositions of / = j—1 and / = j+1 determined kinematically
by Eq. (6). Thus the components “1+” and “2+” as well as “3F” and “4T” have equal
total parity P = +n(—1)' = Fn(-1)""%.
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