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A VISCOUS HYDRODYNAMICAL MODEL FOR RELATIVISTIC
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The dynamics of heavy ion collisions is described in a one dimensional hydrodynamica]
model. Numerical calculations are performed at 100 MeV/nucleon and 1 GeV/nucleon
projectile energies. The density increase and the width of the shock front are evaluated for
the compression stage. The differential cross section and the rapidity spectrum of the emitted
nucleons are calculated.

PACS numbers: 25.70.Fg

1. Introduction

In high energy heavy ion reaction a very dense matter is produced with high energy
concentration, and it seems that this is the only possibility for experimental investigation of
such a state of the matter. Nevertheless, the observables of the final state do not yield
direct information about the hot dense stage, between the hot stage and the observables
there is the partially unknown dynamics of a very dense relativistic quantum system,
and obviously first this dynamics should be treated in some way.

In the literature various approximations can be found for this dynamics, the paper
of Amsden, Harlow and Nix (1977) gives a survey of them. One of these approximations
is the continuum description. Since at high beam energy any solidification effect can be
neglected, this description is the *“‘(Relativistic) Fluid Dynamics™ in Fig. 1 of the cited
paper, and the fluid approach possesses important advantages. Namely, the relativistic
fluid dynamics (within its own limitations) is a self-consistent description, it uses only
a few variables, and incorporates the irreversible processes in a simple way. From tech-
nical viewpoint, the fluid description is flexible, since there is a possibility for *““power
expansion” with respect to the deformation velocities.

Of course, there may be some doubts about the applicability of the fluid desciiption.
For example, it requires a (more or less complete) hydrodynamical and thermodynamical
local equilibrium. At the beginning of the collision such an equilibrium does not exist,
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and the apparent success of cascade (Cugnon, Mizutani and Vermeulen, 1981; Knoll,
1979; Yariv and Fraenkel, 1979) and kinetic (Danielewicz, 1980; Randrup, 1979) models
has risen doubts about this local equilibrium.

To achieve such an equilibrium large number of particles, sufficient time and strong
interactions are necessary. The most subtle condition is the last one. The nucleons should
be thermalized in a definitely shorter length than the nuclear radius. Nevertheless, it
seems that the situation is not hopeless. Recent experimental studies (Tanihata, Nagamiya,
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Fig. 1. Comoving density profiles of the compression shock fronts for two different projectile energies
in one dimensional hydrodynamical model. Different curves belong to the indicated times

Schnetzer and Steiner, 1981) yvield a value of 2.4 fm for the mean free path of a proton
shot into a nucleus with high energy. It follows that for nucleus collisions the mean free
path is in the order of 1fm. If a second order phase transition occurred, the critical
fluctuations might decrease the mean free path even more (Gyulassy and Greiner,1977).
The lower limit of the hydrodynamics is around 20-50 MeV/nucleon beam energy, below
which the quantum eflects are not negligible, and cannot be incorporated into the fluid
model.

In this paper we present a simple hydrodynamical calculation for heavy ion collisions.
The density and temperature increase and the width of the shock front are evaluated. We
determine the differential cross section and the rapidity spectrum of the nucleons emitted
at the end of the explosion.

2. The equations of the model

The relativistic treatment is advisable in the whole region between 50 and 1000 MeV/
nucleon beam enecrgy, although usually the relativistic corrections are proportional to
(v/c)? and so these could be expected to be definitely less than 109, below 100 MeV/nucleon.
However, as we shall see, the nuclear matter is a relativistic object even for low velocities.

In order to get correct dynamical equations for a relativistic system with irreversible
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processes one should start from the balance equations and conservation laws. According to
the fundamental idea of the general relativity, the curvature of the space-time is locally
determined by the distribution of the matter. By using the principle of Occam’s razor
one may suppose the simplest possible equation for this relation, i.e. that the space-time
curvature is represented by a two-index tensor, which does not contain higher than second
derivatives, and is linear in the second order teims. Then the field equation has the form

Ry+Agu = xQy 2.1

where R;, is the Ricci tensor formed from the metric tensor g;, (Robeitson and Noonan,
1969), Q;. represents the distribution of the matter, while A and x are some constants.
By construction, both R, —% g, R’, and g, are divergence-free tensors, whence

(Qir_% girst);r = Tir;r = 0, (22)

where the semicolon denotes covariant derivative. Eq. (2.2) leads to four conservation
laws for volume integrals of some combinations of the elements of T*. Since for closed
systems the energy-momentum four-vector is conserved, one must identify 7% with the
energy-momentum tensor, when Eq. (2.1) becomes the Einstein equation of the general
relativity. Neglecting the gravitation the metric tensor becomes Minkowskian, but Eq.
(2.2) survives with flat metric.

The energy-momentum tensor can be decomposed according to any timelike unit
vector u; as

T* = oulu* +g'u* + g + p*,
uwu, = —1, qu,= pi'u, =0, 2.3)

where ¢ stands for the energy density, ¢* is the energy flux and p™ is the stress measured
by an observer moving with the four-velocity #* (Maugin, 1974a; Maugin, 1974b; Ellis,
1971). For a fluid there is a unique velocity field in the matter, which can be chosen as u.
Then the static part of the stress tensor has the hydrostatic form, and, stopping at the terms
linear in the deformation velocity one gets:

p* = (p—n'v",) (&% +u'v) —n(u, +u,) (87 +u'u’) (8 +u"u®) (2.4)
where p is the pressure, while # and #’ are the viscosity coefficients (Ellis, 1971; Ehlers,
1973).

According to Eq. (2.2) the divergence of T™ vanishes, and we assume particle con-
servation too, i.e.
(nu),, =0 (2.5)

(n stands for the particle number density). Egs. (2.2), (2.4-5) yield 5 equations for the
11 quantities ', ¢°, n, p, 0, n and #’. Nevertheless, an equation of state connects n, ¢
and p, and some material equations express the viscous coefficients #, n’, and the heat
flux ¢’ with the thermodynamical variables and with the velocity. These additional equations
determine the behaviour of the investigated type of the fluid.
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The four-velocity #* can be decomposed as

X 1
u' = (v, 1) 2.6)
Vi-o?
(here the units are so fixed that ¢ = 1). Neglecting first all the irreversible terms and taking
the limit v <€ ¢, one gets from Eqgs. (2.24):

(e+p) (0 +(@V)) = —Vp Q.7)

which is not the Euler equation; the relative correction in the density of the inertia is
ple, which is 1/3 for cold relativistic Fermi gas. Using a realistic equation of state (e.g.
Amsden, Harlow and Nix, 1977; Maruhn, 1977), this correction is about 10-20% for
low beam energies.

Obviously, Egs. (2.2-5) are not sufficient to calculate the dynamics of the collision;
we have 5 independent equations while T is composed of ¢, p, ¥’ and ¢, by means of the
two viscosity coefficients # and #’, and the fifth equation contains n too. Some thermody-
namical relations are necessary to establish connections among these quantities.

Since the velocity vector has three independent components, there remain only two
quantities to describe the local thermodynamical state of the matter. Such a number
is sufficient only in equilibrium. Nevertheless, if one assumes global equilibrium, then
there are no fluxes and no irreversible processes. One consequence is that then the specific
entropy remains constant along streamlines (Lukdcs, 1978). To demonstrate this, consider
the consequence of Eq. (2.2): Ti’;,u; = 0. Putting = ' = ¢' = 0, one gets

o+(e+pu, =0,
"=V, (2.8)

Then, using the independent variables n and ¢ = s/n, the equilibrium relation (Ehlers,
1973; Lukdcs, 1978)

p = ng,—e(n, o) (2.9
and Eq. (2.5), the result is (Landau and Lifshic, 1953)
¢.6 = 0. (2.10)

So the entropy of the fluid would remain 0 during the whole process, which is of course
unphysical, and the observations clearly show that the final state is not cold.

One more deficiency of the perfect fluid models is that the flow of a perfect fluid is
unstable against turbulencies. In the classical regime the laminar flow is stable only if
the Reynolds number R = Luvg/n is less than 1160. There does not exist such an overall
condition in the whole relativistic regime, nevertheless one may assume that the critical
number remains in the same range. Putting some characteristic data of a relativistic nuc-
leus-nucleus collision into the expression of the Reynolds number, it can be seen that the
critical value for 4 is 1-10 MeV/fmZc.
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Of course, it may be quite possible that the flow is turbulent in a collision, however,
generally the calculations assume laminarity, and the numerical methods have to produce
an effective “numerical viscosity” (Amsden, Harlow and Nix, 1977; Amsden, Goldhaber,
Harlow and Nix, 1978). It would be more reassuring to see the effect of the true physical
viscosity in the evolution of the system. Since there are some data in the literature that for
normal nuclear density n ~ 6 MeV/fm?c (Wieczorek, Hasse and Siissmann, 1974; Nix
and Sierk, 1979), we can hope that the true process is laminar, and that there is more
to gain by using viscosity than to lose in simplicity.

Of course, if there are transport fluxes in the fluid, the local equilibrium breaks down.
However, there is one convenient limiting situation: if the fluxes are small in first order,
then the deviations from the local equilibrium are of second order (Ehlers, 1973). So an
equilibrium treatment with fluxes can have some physical meaning, there exist situations
when the fluxes are too weak to destroy the local equilibrium. Of course, it is not too easy
to check the validity of this approximation, since the momentum distributions afe not
explicitly used in this description. One may guess that the local states evolve through
more or less equilibrium states if ¢ < 1/t where 7 is some characteristic time of the inter-
actions, i.e. when the changes in the momentum distributions can in fact be produced by
the actual interactions (because the change rate of the specific entropy is characteristic
for the velocity of the evolution of the momentum distribution). The unequality seems
to be valid for the present case.

For local equilibrium the local data are determined by the particle density n and by
one thermal data, i.e. by 6. The form of the energy density function ¢ = ¢(n, o) has to
be fixed, and then the other local data can be calculated, for example p is expressed through
Eq. (2.9).

The laws of the fluxes have to be fixed too. In Eq. (2.4) we accepted a linear form
for the momentum transport; there exists a linear approximation for the heat transport
too (Ehlers, 1973; Maugin, 1974a). Then there remain three transport coefficients to deter-
mine; they depend on » and o.

Since we want to keep the viscosity in the calculation, the computation would become
technically too complicated. Thus here we restrict ourselves to a one dimensional hydro-
dynamics. Then there is no difference between the shear and bulk viscosities. For the only
viscosity coefficient one can expect at least temperature dependence, which occurs even
in the simplest models (Kennard, 1938). Here we accept the function yielded by the first
approximation for Fermi gases (Huang, 1963; Galitskii, Ivanov and Khangulyan, 1979):

121 0Avg) = (80i)  Vm(To+T),

To

= 5 (3n%/2)**n?13(he)?. Q.11
16mc
Since the heat conductivity is not so crucial for the stability and the final state as the
viscosity, we neglect it from technical reasons. Finally, we choose the same function for the
energy density as Amsden, Harlow and Nix (1977). This equation of state has the same
heat term as the nonrelativistic Fermi gas in the 72 approximation.
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Egs. (2.2-5) lead to the following balances:
N = =N div v,

M = —M divv—grad I,

E = —E div v—div (ITv), (2.12)
where
° = 3,+v grad, (2.13)
and
n

\/1—-v2’

M® = T% = (g +1T) ——,
1—v

N =

E— 700 _ o+I1v*
1—v* "’
, n
M= p . @.14)
-

The balance equations (2.12) completely determine the evolutions of the independent
variables v, # and o (of course, in our case v, = v, = 0). Nevertheless it is convenient to
get an equation directly to o. Starting again from T ,u; = 0, the result is as follows:

o
nrn2

Oo' == oo,
n3T V1-v?

(2.15)
Of course, this equation is not independent of the system (2.12). The details of the integra-

tion of the balance equations can be found in the Appendix. (See also: Csernai, Lukdcs
and Zimdnyi, 1980).

3. The hydrodynamical stage

In the one dimensional model two slabs of nuclear matter are stopped and compressed.
In the beam (z) direction the initial lengths of the slabs are chosen the same as the diame-
ters of the colliding nuclei; here we restrict ourselves to U+ U and Ca+Ca reactions.

Fig. 1 shows density profiles at different stages of the compression for two characteristic
beam energies. The profiles are similar to shock fronts, however, they are not sharp;
their widths are around | fm. (If the temperature and density dependence of the viscosity
coefficient were neglected, the width would be 0.2-0.5 fm.) Such a width seems quite
reasonable.

After the maximal compression there is a hydrodynamical expansion. Although
the initial and final geometries are similar, the whole process is not symmetric in time,
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Fig. 2. Distribution of comoving density in space and time for a U+ U collision at 1 GeV/nucleon projectile
energy. The arrows represent the motion of the fluid elements

because of the entropy production. Fig. 2 shows the distribution of the density in space
and time. It can be seen that the location of the density increase practically does not accele-
rate during the compression stage, as in stationary shock approximations.

4. Calculations of the cross section

The hydrodynamical description of the expansion breaks down at some density.
E.g. reaching a p < 0 state, the matter becomes unstable against microscopic collapse
(Harrison, Thorne, Wakano and Wheeler, 1965), leading to a cluster of droplets. The
result is similar if the mean distance of the particles becomes too great, and thus the interac-
tions become negligible. In our model the continuous decay of the collective state is substi-
tuted by a sudden break-up. The nuclear matter is assumed to flow in a “tube”, but when
the fluid cells at the two edges of the matter reach n = 0.75n, or p = 0, the constraint
caused by the tube vanishes and the cells explode into all directions due to the thermal
velocities of the nucleons. Thus this final part of the calculation is three-dimensional.

The thermal distribution of the nucleons inside a fluid cell i is described by the relativ-
istic Fermi distribution:

4

Gy (e [ 4 =)/ T+ 1} dp CRY

f(pd’p =
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where p; is the chemical potential taken from the normalization condition

M= Gy jf (Pd’p. 4.2)

To obtain the momentum distribution of all nucleons in one definite reference frame
the distributions (4.1) are to be Lorentz-transformed to this frame (denoted by Lab) by
the relative boost velocity g; of the cell i:

[ P)dP = L—)f (p(P))d’P 4.3)

where (w, p) and (W, P) are the four-momenta in the cell and Lab systems, respectively.
They are connected by Lorentz-transformations:

w = yW—yBP
P—p w+W 1 @.4)
p= (e ptl Y \/1—-———_~ﬁ2- .

In the present one-dimensional hydrodynamics the scalar product P = §; VW2 —m? cos 6
due to the fact that all cells move along the z axis. Thus from Egs. (4.3-4) we obtain the
following double differential distribution of the nucleons:

W mdwda—}:w 4 AW - dRdg “5)
g(W, ‘(2nh)° “exp [(Ai—p)/T]+1 '

where Vol; is the volume of the i*® cell, and
A; = y(W =B,V W*—m? cos 0). (4.6)

In the general case when the flow is three-dimensional, the distribution (4.5) remains
valid, but 4; = y(W—(B,P)).

5. Caleulation of rapidity spectra

The rapidity spectrum is convenient to describe the cross section both in Lab and in
CM systems in the same time. It can be expicssed from the distributions (4.1) and (4.5).
Let us start by the definition of the rapidity:

w+ 1+
p“ é In 'L—'B” = arth ﬁ",
w=py =By

yp=7in—

1
yo=,¢)= ;! p. = 7B, (5.1)
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The inverse transformation is:
p,=my,,

py=m Vi +y?sinh y)s
w = m/1+y2 cosh (y}). (5.2)
Using these definitions, the rapidity distribution

f'ys v, $)dyydy. d = f(p)d°p = f(p)p.dp;dp,dd (5.3)
of the i™ cell is, according to Eq. (4.1):

f’( ) 4 Insyl \/i”—'*‘—)/?_ cosh (yu) (5 4)
ily) = —x . .
(2nh)® exp [(m /1 + 2 cosh (y)—u)/T]+1
Due to the additivity of y;;, the total Lab distribution is:
gy, Y)dYdY d$ = 2;‘ Vol,f{ (Y — ”, Y, )Y dY,d¢, (5.5)

where Y| is the rapidity of the i cell in the Lab frame, ¥}; = arth ;. (Note that this
result is valid only for one dimensional flow, since otherwise the rapidity is not additives.)
In the general case the rapidity spectrum can be expressed as

m>Y, BdY,dY,d¢
g (Y T)ATaY.dg = Z <2nh) exp [(Bi— )/ T] +1
B, = my, [V1+Y] (cosh (¥;)— By sinh (¥;)) = (B:. ¥)] (5.6)

which reduces to (5.5) in the above special case.

6. The effect of dynamics on the measurable quantities

One expects that in the compression stage the viscosity does not affect much the
resulting values of the density and temperature, because as long as the flow remains statio-
nary, the shock front formalism yields the same increase (Fliigge, 1959), and n affects only
the width of the front. Of course, for finite nuclei the flow cannot be exactly stationary,
nevertheless, the lower part of Fig. 2 shows the approximate stationarity of the motion
of the front during the compression.

This is not true in the expansion stage, so this phase is already more sensitive to the
viscosity, and a shock front approximation is not sufficient.

The equation of state used in the present calculation has been taken from the paper
of Amsden, Harlow and Nix (1977). Of course, the final cross section depends on
the equation of state (and specially, this dependence can be strong when phase transitions
are taken into account).

In this paper, from technical reasons, we restricted ourselves to collinear flow. This
model has the advantage that the time evolution of the system is simple, it can be clearly
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divided into two essentially different phases, as it is seen on Fig. 2. Nevertheless, it causes
the unphysical result that only the forward angles are affected by the flow. This obviously
leads to an essential difference from the results of Amsden, Harlow and Nix (1977) or of
Danielewicz (1979).

When the full compression is reached, the incident energy of the projectile has been
transformed into the thermal and compression energy of the dense nuclear matter which
is approximately at rest in the CM frame. Both the thermal and the compression energy
provide pressure that starts to push out the nuclear matter from the center. Thus the energy
is transformed into the kinetic energy of the hydrodynamic energy of the flow and the
temperature decreases almost adiabatically in the expansion (Stocker, Maruhn and Greiner,
1979). The slightly lower density of the center (see Fig. 2) is inherited from the compression
phase: Fig. 1 shows that there is a slight density decrease in the center, and in the same
time the temperature is higher to produce sufficient pressure there. Since the heat transfer
is neglected in our calculation, the central temperature excess cannot diminish during
the collision process and then the pressure balance conserves the central density decrease.
On the other hand, the central density depression of the compression phase can be traced
back until the initial condition at the edges of the slabs to avoid infinite gradients (see the .
Appendix). Thus this depression is an artifact of the model. Nevertheless, the depression
is relatively slight, and it affects only a small portion of the total volume, so the problem
does not seem to be serious.

Obviously our breakup model is an approximation only. Although the addition of
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Fig. 3. Double differential cross sections do/dEd£2 for the inclusive primary charged spectrum (Gyulassy,
1979) of a *°Ca + “°Ca collision at 100 MeV/nucleon projectile energy. The full curves represent the results
of the one dimensional model; the dashed ones belong to the “fireball” model
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Fig. 5. Contour plots of rapidity distribution g/Y for the inclusive primary charged spectrum of a U 4 U
collision at 1 GeV/nucleon projectile energy (arbitrary units)

the hydrodynamical and thermal momenta is correct, one might choose different breakup
conditions too, and the breakup condition can seriously affect the final spectra.

To demonstrate the effect of various breakup conditions, in some calculations we set
the breakup at the end of the compressicn phase (although this is an unphysical condition,
because the nucleon-nucleon interactions cannot become negligible at the maximal density).
Then the model becomes similar to fireball ones, because there is no flow at the final stage.
The results of this modified model are referred as “Fireball” later.

In Fig. 3 the primary charged inclusive spectra (Gyulassy, 1979) are plotted for a one
dimensional 4°Ca+4°Ca collision in the hydrodynamical and fireball model. There are
essential differences in the differential cross sections. In forward (10°) and backward (130°)
directions the linear hydrodynamical model gives higher cross sections, while in transverse
directions the ‘““fireball” model produces greater yield apart from very low (10-20 MeV)
energies. The inclusive charged primary rapidity spectrum (Fig. 4) furnishes a better means
to show the reason for the differences. The “fireball” model shows an isotropic momentum
distribution in the CM frame due to the fact that the fluid cells are not moving at the
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breakup. The spectrum of the “hydrodynamic™ model is also symmetric in CM, but it is
elongated in the beam direction, because the compression energy has been transformed
into the kinetic energy of the one dimensional flow. In real, three-dimensional collisions
there might be various possibilities:

a) The hydrodynamical flow may be isotropic. Then the distinction between “fireball”
and “hydrodynamical” models can be seen only by comparing the energy dependences
(Siemens and Rasmussen, 1979).

b) At high energies (several GeV/nucleon) and for relatively soft equation of state
the one dimensional nature of the flow should dominate, i.e. the major part of the compres-
sion energy should appear in the beam direction. At higher energies the rapidity spectrum
might show more elongated shape as the compression energy plays a more essential role
(Fig. 5).

¢) At beam energies below 1 GeV/nucleon and for hard equations of state the major
part of the compression energy is transformed into transversal directions (let us remind
the flow of incompressible water). In this case the rapidity spectrum of central symmetric
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Fig. 6. Double differential cross section do/dEd(2 for the inclusive primary charged spectrum of a U + U
reaction at 1 GeV/nucleon projectile energy. The full curves represent the one dimensional hydrodynamical
model, the dashed ones belong to the “‘fireball” version
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collisions should show a deviation from the isotropic “fireball” spectrum, and the transver-
sal directions should bear higher yield (Amsden, Harlow and Nix, 1977; Stécker et al.,
1982). Our one dimensional model cannot reproduce this behaviour.

In Fig. 5 the rapidity spectrum of a 1 GeV/nucleon U+ U collision is plotted, which
is more elongated than at 100 MeV/nucleon (Fig. 4). The difference between the hydro-
dynamical and “fireball”” models is striking on the double differential cross section (Fig. 6)
specially when it is plotted versus the angles and parametrized by the energy (Fig. 7).
In this figure one can see that the difference appears in the backward angles strikingly.
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7. Conclusions

This paper furnishes barely a model study of possibilities. Direct comparison to
experimental results would not be too reasonable, because in more extended three-dimen-
sional calculations such comparisons were already made (Amsden, Harlow and Nix, 1977;
Amsden, Goldhaber, Harlow and Nix, 1978; Stocker et al., 1981; Stocker et al., 1982),

However, such simpler studies provide a deeper insight into details and might contribute
to the recognition of some elementary basic collective processes. As an example we mention
only the elongated rapidity distribution (Fig. 5), which is qualitatively observed in experi-
ments too. Although this effect is caused mainly by the spectator evaporation in noncentral
collisions and/or possibly by some transparency of the nuclei, our results show that hydro-
dynamical models can reproduce such an effect for soft equations of state without assuming
the previous two processes. It is also very enlighting that by the variation of the breakup
condition the resulting spectra vary considerably, thus showing us that this final breakup
process is of great importance in determining the observables.

The central nonsymmetric collisions, which can also be described approximately
by one dimensional hydrodynamical models, are discussed elsewhere (Csernai and Fdi,
1983).

APPENDIX

The method of the numerical integration

Let us collect the system of equations to be solved:

N = —nNo,, (A.1a)

M= —Mvo,—1I, (A.1b)

o = n'n (T 1-v%), (A.1c)

° = §,+10,, (A2)

N = n(1—-0%)"12 (A.32)

M = (o+Mo(1-vH)71, (A.3b)

IT = p+y'njfinJ1-0%), (A.3¢)

0 = ¢(o, n) is a given function, (A.4a)
p = p(o, n) is a given function, (A.4b)
T = T(o, n) is a given function, (A.4c)
%' = #'(o, n) is a given function. (A.44d)

From t = 0 the equation
E= —Ev,—(Ilv), (A.5)
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was solved simultaneously and the value of E(z, t) obtained in this way was compared to
E = (o+MmM*) (1—-vH)~ L. (A.6)

A Lagrangian method was used for solving the system of equations. The fluid was
divided into N, (one dimensional) cells. The length of each cell was 4z = 0.2r; at ¢ = 0.
For the initial moment the fluid was described as two slabs moving toward each other
and just touching each other at z = 0. The process is described in the CM system, thus
the position of the fluid element at z = 0 is fixed during the whole process. All the fluid
elements i = 1, ..., N, are characterized by their positions z, i, t and by the parameters:
N,M,0,nv,0,p,n', 1, T, E, E and by the derivatives I, v, and n. The system of
equations is of implicitly second order, because in Eq. (A.1b) IT contains n. However,
we took the term containing n in T as perturbation and solved the system of equations
in the following way:

At t = O the parameters z, N, M, o, n, v, 0, p, 1, T, v, E, E were given for each cell
together with I1 ,, v , n (according to the initial conditions that there were two just touching
homogeneous nuclei moving rigidly). The parameters obeyed the equations (A.3-4) and
E = E was fulfilled.

At the time ¢ the evolution of the parameters was calculated by

z(i, t+At) = z(i, t)+v(i, 1)4dt, (A.7T)

N(i, t+41) = N(i, t)— NG, v (i, DAt (A8)

M(i, t+48) = M(i, £) = M, t)v,,Gi, At~ I1 (i, D) At, (A9)

o(i, t+4t) = a(i, )+1'(G, ORG, DG, TG, ) V1=, 7). (A.10)

The time step was chosen to be 47 = 0.01-0.08 fm/c depending on the projectile energy.
From Egs. (A.3) the following relation can be derived:

M = (g+p+n'Nn/n®)N*(1L —n* [N} |n?. (A.11)

This equation was solved to get n(i, t+A4t) using M, N and o in t+41, together with g, p

and n’ (functions of the unknown » and the known o) and taking n from the previous time
step.

Having obtained n and using the equation of state p and T can be calculated, Eq. (A.4d)
yields ', while the velocity can be obtained from Eq. (A.3a) as

n(i, 1+ A1)*
(G t4+ 41 :\/1- 212D S ien (M), A.12)

v ) NG i1 d0? et (M) (
Now we can correct n as

n(i, t+ At) = 0.5[n(i, t+ At)—n(i, t— A1)}/ At. (A.13)
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Then using Eq. (A.3c) II(i, t+4¢) is determined. The derivatives IT (i, t+4¢t) and v (i, ¢
+At) were determined from first order formulae and then averaged over a range of 3-5 cells.
The first and last values of IT, were calculated as

1L, = n(n-00
* 2(2)—z(1)
0.0—II(N,)

(N, t) = (A.14)

2(N,)—z(N,— 1)

Having obtained z, N, M, 0, n,v, ¢, p,n’, Tand IT at t+ A¢, E(i, t+A4t)is given through
Eq. (A.6). Using the differential equation (A.5) the quantity E can be obtained as

E(i, t+41) = E@i, ) (1 —v (i, )A8)—I1(i, Do (i, DAt—o(i, DI (G, DAt (A.15)

Then the relative difference of E and E can be evaluated, which would be 0 if we had the
correct solution. Thus E—EJE is a quantity measuring the quality of the integration.
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