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THE GENERATION PROBLEM*: **
By G. ECKER

Institut fir Theoretische Physik, Universitit Wien***
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Evidence for the generation structure of quarks and leptons is reviewed. The two
main aspects of the generation problem are emphasized. The concept and possible problems
of horizontal symmetries are discussed. Two different mechanisms for horizontal symmetries
are considered leading to a generalized permutation symmetry in SU(2), X U(1) in one case.
The second mechanism uses the discrete unbroken subgroup of an axial U(1) with hyper-
colour anomalies in composite models. A concrete realization in the rishon model is investi-
gated. The two different approaches produce almost identical quark mass matrices for three
generations. In addition to a correct prediction for the Cabibbo angle the models yield
a very small Kobayashi-Maskawa mixing angle 0, and thus provide for a natural explanation
of the smaliness of CP violation.

PACS numbers: 11.30.Iw, 11.30.Ly

1. Introduction

The fermions which are at present considered as fundamental seem to fall into certain
groups called families or generations. Let us recall the theoretical and experimental evidence
for such a generation structure.

A) The neutral current interactions conserve flavour to a very high degree (d & s
and u < ¢ transitions are strongly suppressed). The only natural way to understand this
phenomenon is to invoke a generalized GIM mechanism [1]. For the gauge group SU(2)
x U(1) this implies [2] that all fermions of the same charge and helicity have the same eigen-
values of Ty and T2 where T is the weak isospin.

B) For all popular gauge models including GUTs the necessary cancellation of gauge
anomalies holds for each generation separately (for SU(2) x U(l) the condition is
Tr QT% = 0 where Q is the fermion charge matrix).
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C) The fermion masses clearly distinguish between the generations. This is especially
evident for the charged leptons. Of course, the neutrinos play a special role in this respect.

D) In contrast with the neutral currents, the charged currents mediate between genera-
tions, but these generation changing transitions are comparatively weak. This is expressed
by the observed smallness of weak mixing angles which parametrize the charged current
interactions.

From the first two arguments it would seem that one generation is completely sufficient
as far as the vertical gauge structure is concerncd. The first part of the generation problem
can therefore be formulated in the following way: why does Nature choose such a repetition
of nearly identical structures and how many generations are there altogether? As with
most philosophical questions we should probably not expect to find a definite answer,
but we may hope to gain new insights while ponderifig over the question.

The last two arguments for a family structurc involve the second, more practical
aspect of the generation problem: can we understand the structure of fermion mass
matrices ? Both the masses and the weak mixing angles are derived from these mass matrices
which according to our present understanding emerge together with the spontaneous
breaking of the electroweak gauge symmetry. We may therefore conjecture that at high
energies the distinction between generations disappears and a so-called horizontal symmetry
is restored.

To investigate the horizontal structure, the most straightforward approach employs
the framework of low energy gauge theories based on [3] SU(2), x U(1) or its left-right
symmetric extension [4] SU(2). x SUR)g x U(1)g.L. Many proponents of GUTs have
suggested to postpone the issue to energies 2 10!° GeV. However, I find it difficult to imag-
ine that the pattern of fermion masses in the GeV range or less is determined by the structure
of the theory at such enormous energies. Of course, this prejudice is just another facet
of the well-known hierarchy problem.

In order to give a precise meaning to the concept of horizontal symmetry let us consider
the standard gauge group SU(2), x U(1). The interactions of only gauge fields and quarks?
are given by

. | A i
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where L, = (i“) , Par»> N,z are the left- and right-handed quark fields (weak eigenfields),
L

a

Wu, B, are the SU(2) x U(l) gauge fields and ng denotes the number of generations.
Although (1.1) cannot be the whole story most particle physicists will agree upon this
Lagrangian as the practically established part of electroweak interactions in the hadron

! Leptons will not be considered here.
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sector (for ng = 3). In addition to the gauge symmetry the Lagrangian (1.1) exhibits the
symmetry

Ho = U(ng)r X U(n6) e X U(N6) e (1.2)

which is the maximal horizontal (= flavour) symmetry of the model. The three factors
U(ng) refer to the possibility of independent unitary transformations on L, pg, g and the
colour anomaly has been neglected for the moment.

Of course, the huge flavour group H, must be broken somehow. The standard approach
is to break H, explicitly and completely by adding Yukawa interactions of fermions and
scalar fields to (1.1). This leads to the unsatisfactory situation of having as many independ-
ent parameters in %y .. as there are masses and mixing angles. Keeping in mind that
the scalar Higgs fields may well be only effective fields reflecting some unknown underlying
dynamics, we should not overlook the possibility that H, is initially broken to a subgroup
H only. At E ~ G7'/? the group SU(2), x U(1)x H is then broken in the usual way to
U(Dey and we may look for traces of H in the fermion mass matrices.

At this point, one faces the problem of possible Goldstone bosons associated with
the breaking of H. Three cases must be distinguished:

(?) H is gauged [5] and must therefore be free of anomalies. The horizontal gauge
bosons induce flavour changing neutral interactions {6]. Thus, H cannot persist down to
E ~ Gy '?. In my opinion, no convincing model exists.

(i) H is a global continuous symmetry [7]. In order to suppress the flavour changing
neutral interactions induced by the associated Goldstone bosons, H must be broken [7]
already at E 2 10'° GeV. Therefore, H can influence the generation of fermion masses
only rather indirectly and again no appealing model is known.

(iii) H is a discrete symmetry and, consequently, there are no Goldstone bosons at all.

Although we would like to stay in the framework of low energy gauge theories it is
obvious that an understanding of H requires a theory at a more fundamental level. Since
experiment has not given us any hint so far what this new theory should be we have to
introduce some speculations in order to proceed. This is especially the case for the scalar
Higgs sector which is probably not described by fundamental scalar ficlds. When talking
about Yukawa interactions the possibility of an effective interaction with composite scalar
ficlds should always be in the back of our minds. But in that case there is really no reliable
way of calculating scalar vacuum expectation values (VEVs). In particular, I do not consider
it meaningful to make predictions based on the special properties of a carefully designed
classical ¢* potential. Consequently, no assumptions about Higgs potentials will be made.

The most important aspect of H as far as mass matrices are concerned is related to
the calculability of any possible relation between fermion masses and mixing angles. In
other words, only if a relation obtained at the tree level is due to a symmetry of the Lagran-
gian can we be sure that the relation persists in higher orders of perturbation theory up to
finite, calculable radiative corrections. Moreover, for such natural relations to exist the
Lagrangian must contain all renormalizable interaction terms permitted by the symmetry.

Even if we restrict ourselves to discrete H infinitely many possibilities remain. Together
with Walter Konetschny and Walter Grimus we have therefore attempted to classify [8, 9]
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-quark mass matrices for all possible H. The unexpected and not generally appreciated
result was that for all the cases we investigated only surprisingly few inequivalent and
phenomenologically acceptable quark mass matrices exist.

Instead of reviewing the general classification of horizontal symmetries I intend to
motivate in two quite different ways two specific choices for H which yield interesting mass
matrices. In Sect. 2 I shall introduce a generalized permutation symmetry for H and show
that it leads to the unique modet [8] for SU(2), x U(1) and ng = 2 with a definite prediction
for the Cabibbo angle in agreement with experiment. For three generations, no general
analysis exists within SU(2), x U(1) but the generalization of the successful four-flavour
case is straightforward. In Sect. 3 two special examples will be discussed how horizontal
symmetries arise within composite models of quarks and leptons. The realization of one
of those mechanisms in the framework of the rishon model [10] will be considered in some
detail.

For lack of both time and competence, no general review of suggested solutions of the
generation problem will be attempted. Among the many topics omitted the generation
of fermion masses via radiative corrections [11] and the possible rdle of supersymmetry
{12] deserve special mentioning.

2. Generalized permutation symmetry in SU(2), x U(1)

Faced with the problem of choosing a particular H among infinitely many possibilities
-one may appeal to intuition for guidance. An especially suggestive choice [13, 14] is the
symmetric group S, (the group of permutations of n elements) where one would like to
equate n to the number ng of generations. The drawback is that S, does in general not
possess an ng-dimensional irreducible representation (irrep). In particular, for ng = 2 S,
is abelian and we know that the quark mass matrices are not restricted in this case [15].
A possible way out is to set [13] n = ng+ 1. However, it is considerably more difficult
to argue that the permutation group of ng+1 elements is a natural choice for ng genera-
tions. Moreover, S; gives definitely a wrong prediction [13] for 6 (ng = 2).

Another possibility would be to consider U(l) subgroups as horizontal symmetries
-or, in other words, phase transformations on the various fields. Again, the abelian nature
-of H precludes the existence of natural constraints [15] within SU(2), x U(1).

Instead, I propose to combine S, and discrete U(1) subgroups in a specific way.
Rather than postulating a certain group, I shall try to motivate in an admittedly speculative
way the possible appearance of such a horizontal symmetry. l

How could the maximal flavour group H, in (1.2) be broken without explicit scalar
fields which is, of course, always a trivial possibility ? Imagine this breaking occurs through
the appearance of an operator in terms of only quark fields where the breaking can be
-either explicit (in an effective Lagrangian) or dynamical (through a non-vanishing VEV).
Since we want a Lorentz scalar which conserves SU(2), x U(1) and baryon number B we
need at least four quark fields. Among several possibilities consider the operator

A=Y e;LupgL.ng+hec, .1

a=1
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where 7, j are SU(2) indices. Assuming

<01410> # 0 .2)
the maximal flavour symmetry Hy = SU(ng)® x U(1)® gets broken. The abelian part
U(1)* = U(1)p x U(1)y x U(1)pq, (2.3)

where Y is the weak hypercharge, ‘contains a so-called Peccei-Quinn symmetry [16]
U(Dpg: L = e ™/°L, pg — €®pg, ng — €*nyg (2.4

which has a colour anomaly and may serve to resolve the strong CP problem. By construc-
tion, (2.2) conserves B and Y, but it breaks U(l)pq implying the existence of an axion
[17]. This axion can be made invisible [18] if the breaking scale associated with (2.2) is large
enough (astrophysical arguments suggest [19] 2 10®% GeV).

The non-abelian part SU(n)? is broken by (2.2) to a subgroup which can be character-
ized as follows: the unitary matrices Vi, V., V,. € SU(ng) acting on the quarks must
all be monomial matrices with exactly the same structure, i.e.

IVL,aﬂI = |Vpg,aﬂl = anR,aﬂl = 5?(1),5: (2.5)
where P(x) denotes a permutation of the generation labels o = 1, ..., ng; furthermore,

VPR,aBV;m,aﬂ = (VL,aﬁ)2~ (26)

Thus, SU(ng)? is broken to a subgroup of permutations and phase transformations, but
this subgroup is still a continuous group. In order to avoid possible problems with Goldstone
bosons (see Introduction) I assume that some further mechanism breaks this group to the
discrete group

H = (ZNX cer XZN) ® S”G’ (2.7)

where ® denotes a semi-direct product and there are ng— 1 factors of cyclic groups Zy
in (2.7). This group which I call generalized permutation group Py, with ng!N"® ™! elements
is defined to be the group of SU(ng) matrices

Vi(pla AR ] pllo"‘l) = : (28)

R R TR texp 2ni(—py— ... —Pug-1)/N]
i=1,..,n5, p;=01.. ,N=-1, j=1, .. ,ng6-1,

where N is an arbitrary even number.
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We now construct a P} invariant Yukawa interaction
"'gY = Ear;,aﬂpﬂR¢;+Eazr'{,aﬂnﬂkgbz{-}rh'c' (29)

with (possibly effective) Higgs fields ¢;,, &3 P,I,VG invariance restricts the Yukawa coupling
matrices I',, I'; and, consequently, the quark mass matrices

M, =T, M, = I'v]
i . ; 2.10
(&) = <otatio> (1) = <owio> &1

For ng = 2, PY is the dihedral double point group “”DN,Z with 2N elements [20].
This group has N/2—1 inequivalent 2-dimensional irreps and is therefore much better
suited as a horizontal symmetry than S,. Without going into details {21] of irreps and
Clebsch-Gordan coefficients we can assign all quark fields and two Higgs fields to doublets?
of P} such that

2 2
—QY = &n Z Eunak¢a+gp Z Eapakéa'i'h-c'a (211)
a=1 a=1

with coupling constants g,, g, and q~5 = io,¢* is the most general P} invariant Yukawa
interaction involving these fields. Upon spontaneous symmetry breaking (2.11) yields the

mass matrices
_ of 0 _ v, 0
MP - gp (0 U;) 2 Mn = &x <0 vz) (212)

and therefore
myfm, = mgfm,, GOc=10 (2.13)

in striking disagreement with experiment. The minimal and only successful remedy is to
introduce one additional Higgs field ¢5 which is a P} singlet and which for group theoret-
ical reasons [21] can only couple to one quark charge sector, e.g. to the n-quarks. %y
now contains an additional piece

h(Linyg+elyng)ds+he. (e = +1). (2.14)

Altogether, we obtain the mass matrices

_ vf 0 __ [ &1 hv,
M”_g”(O v’;)’ M"_(shv3 20,)" (2.15)

The main point of considering ng = 2 in such detail is that the mass matrices (2.15)
define the unmique four-flavour model [8] based on SU(2), x U(1) and any horizontal

2 All Higgs fields are, of course, doublets under SU(2);.
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symmetry with a natural prediction for Oc in agreement with experiment. As a matter
of fact, from (2.15) one obtains

ln‘ld/rns—'rnu/rncll/2 S 0C s (md/ms+mu/mc)1/2 (216)

to first order in quark mass ratios. Using only the mean values of these ratios [22] one
finds 0.217 S 6 < 0.234 in excellent agreement with [23] 6&° = 0.230+0.011.

The quark mass hierarchy in this model is not due to the coupling constants g,, g,, 4,
but rather to a hierarchy of VEVs |v,| < |v,|. Furthermore, although the mass matrices
(2.15) are unique up to basis transformations they can be implemented with any PY for
N > 8. This is a specific example for the more general result [8, 9] that, given the gauge
group, ng and the maximal number of scalar ficlds, there are only a few inequivalent,
phenomenologically acceptable cases in spite of infinitely many possible choices
for H.

For ng = 3, the generalized permutation group P} is sometimes called the ‘‘dihedral-
-like” subgroup [24] 4(6N?) of SU(3). It has irreps of dimensions 1, 2, 3 and 6 of which
the 2(N—1) inequivalent 3-dimensional irreps are of special interest for us. Extending
the ng = 2 case in a straightforward way [21], we put all quarks and altogether six
scalar fields into P} triplets to obtain the invariant Yukawa Lagrangian

3 3
_gY = gp Zl Lapakqga'*'gn Zlianak(ba

+h{(Lyn,r+€Long)x1 +(Lansg +eL3np)xs
+(Lsn g +eLlingp)xs}+he. (e = 1). 2.17)

With an obvious notation for the scalar VEVs, the quark mass matrices are

vT 0 0 g0, hw, ehw,
M,=gpl0 o3 O |, M,=|chw, gu, hw, |. (2.18)
0 0 o hw;y  ehw, g,

Note that for w, = w; = 0 the third generation decouples and we get the ng = 2
model (2.15) with the additional approximate mass relation m, ~ mym./m. 1 shall not
discuss (2.18) in full generality here because the mass matrices contain 7 independent
parameters and thus the mixing angles can not all be expressed in terms of only mass
ratios. From M, in (2.18) we conclude that up to permutations |vy] < |v,] < |v;]. It is
therefore rather plausible that either {w;| < |w,| or vice versa. Moreover,

my,
m, > —m, < my (2.19)
m

t

&

'gnvll =

p

and so I shall set wy = g,v; = O for the following discussion.
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In this case, the diagonalization of A, is easily performed and one finds approxi-
mately

S, ~ \/md/ms 5; \/171_1—

) myim, Imn
Sy = s,mg/my sind &~ ——— ——r (2.20)

mtms Irll

for the Kobayashi-Maskawa mixing angles [25], where
immy—mfm| < 1| S mfmy+mfm, n = (hw,/my)>. (2.21)
From (2.20) and (2.21) one gets
. mgm, mym, -3
$,53/sin 6] £ 1+ ) <3-10 (2.22)
mym, mam,

and thus the smallness of CP violation is naturally explained in the model by the small
value for s;. In addition to reproducing the successful prediction for 0, = 0. one finds
with the standard quark masses [22]

0 <s, £0.18f(m,)
0 <53 < 0.006f(m), f(m)=(1+43GeV/m)"2. (2.23)

These predictions agree with the results of the most recent analysis [23] which gives
s, = 0.12, 5, = 0 as best fit values and 0.05 < 5, < 0.3, 0 <53 < 0.15 as approximate
I st. dev. error domains.

As for ng = 2, the quark mass hierarchy reflects a hierarchy of scalar VEVs and there
are infinitely many groups P} consistent with (2.18). In addition, the model for ng =
contains the attractive feature that all fields are grouped in 3-dimensional irreps of the
horizontal group.

3. Composite quarks and leptons

The multitude of quarks and leptons and the associated generation problem were
among the main motivations for speculating about the possible existence of more fun-
damental constituents. It is therefore an appropriate question what the recent investiga-
tions of composite models have taught us with respect to the generation problem. Only
two of the proposed solutions will be discussed here which are in certain sense two extreme
approaches to the problem.

Almost all composite models postulate a new strong (hypercolour) gauge interaction
which confines the fundamental constituents (preons) into quarks and leptons below a con-
finement scale Agyc. In complete analogy to (1.1), the original Lagrangian of only preons
and hypercolour gauge bosons possesses a large chiral (= flavour) symmetry if the preons
are assumed to be massless, This chiral symmetry is called upon to solve two problems
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at the same time: it should explain why quarks and leptons are so much lighter than the
natural scale Ayc (2 500 GeV) and, secondly, it should provide the key to the gener-
ation problem.

As for the maximal flavour symmetry H, of the standard model, the crucial question
is not the existence of a chiral symmetry, but rather how much of this symmetry survives
down to the level of the observed fermions. The general situation is as follows [26]: part
of the chiral symmetry will be broken for E < Ay implying a number of (possibly pseudo-)
Goldstone bosons which either turn into the longitudinal components of massive gauge
bosons or, if they remain massless, must be made invisible [18, 27] by choosing Ay large
enough. For the remaining chiral symmetry that survives confinement the ’t Hooft consis-
tency condition [26] requires that the anomalies for the unbroken chiral generators match
at the constituent and the composite level. Note that this condition only applies to con-
tinuous, but not to discrete chiral symmetries.

How do composite models account for generations? At least three possibilities may
be envisaged.

A) The higher generations are radial andfor orbital excitations

This scenario is generally considered unacceptable because one expects that an in-
teraction confined to a volume of radius R ~ Ap¢ will lead to excitation energies of the
order Ayc. Such states may exist but they have nothing to do with the observed fermions.

B) Generations are distinguished at the preon level

The most systematic study of solutions of the 't Hooft consistency conditions has
been performed by Bars [28]. His approach is extreme in the following sense: in addition
to many other requirements such as the persistent mass condition [29}, the full chiral sym-
metry is assumed to survive preon confinement. Among the models satisfying all require-
ments consider the following typical example {28] which is based on the hypercolour
gauge group Gyc = SU(4) x SU(4) with right-handed preons

1~ R, = (4,9,
4~ R, = (@41,
10 ~ Ry = (1,4),
6 ~ Ry = (1,4), (3.1)

where the multiplicities of the representations R; of Gy are indicated by the first number
in each row. The set (3.1) is free of Gy anomalies and implies the chiral flavour symmetry

Gy = SU(4) x SU(10) x SU(6) x U(1)* x Z?, (3.2)

where the two cyclic groups are the remains of two axial U(1) groups with hypercolour
anomalies (see below under C). The anomaly conditions for (3.1) and (3.2) enforce the
existence of exactly four generations of quarks and leptons. The number four is due to
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the multiplicity of preons of type R,. In other words, the four generations differ by the kind
of R, preon they contain.

The model of Bars provides a possible answer to the first part of the generation prob-
lem: there are exactly four generations because otherwise some basic requirements of
quantum field theory [26] would have to be violated. On the other hand, it is probably
premature to worry about the structure of quark mass matrices in the model. After all,
counting the number of fermionic degrees of freedom (Weyl fields) one finds 96 funda-
mental constituents, but only 64 composite quarks and leptons. Without any hint from
experiment, it is a matter of taste whether to consider models of this kind as serious can-
didates for a fundamental theory of matter.

C) Generations differ by preon pair excitation

The original chiral symmetry of a composite model always contains at least one
axial U(1) with a hypercolour anomaly (there are even two in (3.2)). If one accepts the
common belief that the physically relevant instanton solutions have integer topological
charge, the anomalous U(1) is not broken completely but a certain cyclic subgroup Z,x
remains unbroken where K is related to the number of fundamental constituents. This
discrete axial group was suggested by Harari and Seiberg [30] to distinguish between the
generations. At the same time, such discrete groups may be the only chiral symmetries
[31] left after preon confinement. Contrary to scenario B) there are no anomaly conditions
to be fulfilled in this case.

At the level of composite fermions we thus have an axial horizontal symmetry Z,¢.
Experience with horizontal symmetries suggests that with an abelian H we need a left-
-right symmetric gauge theory at the composite level to obtain any natural constraints
for fermion mass matrices. As a prominent example consider the rishon model [10] with
gauge group SU3)ycx SUB)cx U(l)gy and with preons (= rishons) Tpx(3,3)g = 1/3
Vg, §)Q - o transforming as indicated under the gauge group. The naive chiral sym-
metry of the model is U(1)* but the symmetry U(1)x associated to the current

Xﬂ = T'}’"'}’ST'{‘ V?#YSV (3.3)
is anomalous. Due to instantons, the chiral charge X changes by [32]
AX = 12(VHC+ VC) (3.4)

with integer topological charges vyc, ve. The number 12 is due to the existence of two
colour triplets of both helicities for the hypercolour anomaly and vice versa for the colour
anomaly. Therefore, U(1)x is broken to the discrete subgroup Z,, or, in other words,
X is only conserved mod 12.

In the rishon model one quark generation is given by

=TTV pr = ToTaVs

n, = ViViTy ny = ViViTx (3.5)
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with X = F3 for the left (right)-handed fields. According to Harari and Seiberg [10, 30],
further generations may be obtained from (3.5) by appending composite rishon operators
which have vacuum quantum numbers except for Z,;,. The simplest such operators are
T TCLVLVEL and TRTVaVS with X = F4.

The structure of the theory at low energies (E < Ayc) is assumed to be that of a left-
-right symmetric SU(2), x SU(2)g x U(1)5_. gauge theory. In particular, there will be
composite scalar fields ¢ (and their charge conjugates ¢ = 6,¢4%0,) transforming as quark
bilinears grqy, which give rise to an effective Yukawa interaction

- %y = gl i$ar+qr4:9:gr +hec. (3.6)

with ng-dimensional coupling matrices I';, 4; (hermitian because of left-right symmetry).
Upon spontaneous symmetry breaking the quark mass matrices

Mp = U"Fi‘*‘w‘-*A" . v; 0
M. = wl4ord, {0]¢;l0> = (O Wf) 3.7

will be constrained if we impose the residual chiral symmetry Z,, on (3.6).
With the composite rishon operators mentioned above there are different ways to
assign the discrete quantum number X to the different generations. For ng = 3 there

are only three non-trivial, inequivalent possibilities [33] for X (X, = —X,):

) X, = -3,51

(i) X, =-3-35 (mod 12) (3.8)
(iii) X, = —3,5,5.

Since the effective scalar fields transform as ggg; we conclude from (3.8) that there
are only thiee different types of fields ¢,, ¢,, P with X = —2, 2, 6 (mod 12), respectively.
Thus, all scalars have X # 0 (mod 12) and, consequently, Z,, keeps all quarks massless
as long as it is a good symmetry.

The various cases in (3.8) can now be investigated along standard lines. The only
interesting model appears [33] in case iii) with two fields ¢, ¢; together with their charge
conjugates. In a convenient choice of basis, Z,, restricts the Yukawa coupling matrices
to be of the form '

g8 0 g3 0 hmn O
ry=10 00 ), A, =1rt 0 b (3.9)
gfs 0 g (0 h3 0
0 00
IFy~4;~10 k£ 0}).
0 00

A similar model was found earlier in the context of a general analysis of quark mass matri-
ces [9].
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In the limit of very large m, we obtain from (3.9) the quark mass matrices

gw; 0 O 0 hiot O
M,~|0 k, O . M, ~ | hio? &k, hyot |, (3.10)
0 0 g 0 h;”f 83w,

Surprisingly, these mass matrices have the same structure as those of (2.18) (for g,v; = w;
== (). There are two differences, however: the mass hierarchy is due to a hierarchy of
Yukawa couplings rather than of scalar VEVs and k,, &, are arbitrary so that s, cannot be
predicted in the present case. However, the main features

s; > Nmgim,, 55 =~ s;mymy (3.11)

and, consequently, naturally small CP violation hold for the mass matrices (3.10) as well.

For finite m,, the mass matrices of this model [33] differ from those in (2.18). The
corrections to (3.11) are inversely proportional to m, and amount to at most 9% for s,.
Although the corrections for ss3/s, can be as large as 909 the crucial prediction of a very
small s; (s3 < 0.06s,) is preserved.

4. Conclusion

With two completely different approaches we have obtained almost the same quark
mass matrices for three generations. In addition to a successful relation for the Cabibbo
angle the models predict a very small Kobayashi-Maskawa mixing angle §; and therefore
provide for a natural explanation of the size of CP violation.

In a more general spirit, the main conclusion can be formulated as a recommenda-
tion: do not neglect discrete symmetries.

I wish to thank A. Bialas and K. Zalewski for the cordial invitation to Zakopane.
I am also grateful to many participants of the School for very enlightening discussions
concerning not only physics but also matters of a more general nature.
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