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Various properties (spectra, decays, mixings, etc.) of quarkonium states are studied sys-
tematically by using potential models, quark pair creation models, and unitarized quarko-
nium models.

PACS numbers: 14.80.Dq

1. Introduction

Since the discovery [1] of the J/y in November 1974, many authors [2-6] have studied
the potential between the quark and the antiquark. We have learned that the potential
is Coulombic near the origin, as can ecasily be understood from QCD, and that it has
a confining part for large distances. A similar (Coulombic part plus confining part) potential
for quarks in baryons (or potential between quark and diquark) had already been proposed
[7] in 1973 from the phenomenological analysis of clastic ep and electroproduction
processes.

Potential models turned out to be very successful for quarkonium states. From the
recent discovery [8] of the Y(IP) state by the CESR group, we learned that the potential
quarkonium model is still the only model which explains the heavy quarkonium up to now.

Although the motion of a quark inside light hadrons is relativistic, the Schrédinger
theory is surprisingly successful, even for them. Isgur and Karl [9] and others [10] have
shown that the baryon spectra can be nicely described by the Schrddinger theory with the
harmonic oscillator potential.

By using a single potential, meson and baryon spectra are studied simultancously
and systematically by Schéberl and myself [11]. Success of this model (cspecially for P states)
is impressive, and this model helps us to understand the nature of some controversial
mesons, e.g., 1(1440), 6(1640), g(2160) etc.
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The potential model is also powerful for predicting various decay rates of quarkonium
states. The quark pair creation model (QPC) [12-14] allows us to describe the OZI allowed
decay rates above threshold. The QPC has been first checked [14-16] by the study of
strong decays of light mesons. It is found [13, 16. 17] by using the QPC and other models
that the decay properties of @’ and radially excited cc are strongly influenced by the node
structure of wave functions.

Recent data [8] by the CESR groupon Y/ — BB are consistent with the QPC predic-
tions [18, 19]. Y is found [8] to be 32 MeV above BB threshold. This is already too high
(see Section 3.2 of this paper) to use the simple phase space formula I' oc k¥*1,

Below the threshold decay processes of quarkonium states are mainly classified
[20] into three types:

(/) annihilation; the decay rates are proportional to the wave function at the origin
(or the derivative);

(ii) transitions;

(iii) spontaneous decays of Q and Q inside QQ, leaving another particle as a spectator.

Since we have fairly good knowledge of quarkonium states, we can reliably predict
[20] spectra and decay rates of toponium states. Of course, we cannot exclude the possibility
that the decay properties of toponium states might be unexpectedly disturbed by the
production of particles predicted by certain theories such as SUSY.

Charmonium states, for example, strongly couple to the DD, DD*, etc., channels
which give large widths above threshold. Because of unitarity and analyticity, these channels
also contribute large mass shifts both below and above threshold. By combining the unitari-
zed quarkonium model (UQM) {21] and QPC, one finds [22] negative mass shifts of order
100 MeV for cc states and smaller mass shifts for bb states. Decay rates of S and D charmo-
nium states — e*+e- can only be understood by including such unitarity effects [22].

2. A potential model for quarkonium states [11]

2.1. A quarkonium potential

We start from a typical QCD-motivated quarkonium potential [11] which is of the
Coulomb type at short distance and linear for large R.

V(R) = Vy(R)—be™ "+,

h +d for R <R
—— or < Ry;
Vi(R) = 3R
aR for R >=R,. @.1n

We show that almost all well-established quarkonium mass levels (from uu+dd to bb,
from 1S to radially and orbitary excited states) can be reproduced by using this potential
(completely flavour-independent potential).
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2.2. Breit-Fermi Hamiltonian

The one-gluon exchange gives rise to a Breit-Fermi Hamiltonian:

Hys= AL-S+DL-S~, H;y=B(33, Rd, R—§,-&,), Hs=Cd,-&,

bl 1\ 4V _dv,
“*\m? m2) R\ 4R dR )’

1 & 1 d
B= - ——— g = ]V,
12m;m, \dR R dR
1 s o oo - - s
C= 4v, S=8+S,, S =8§,-5,, 2.2)
6mm,

where V, is the fourth component of the vector potential and V, is the scalar part of the
potential. This is the non-relativistic reduction of the Bethe-Salpeter equation. We assume

V, = aR,
V, = V(R)—aR. 2.3)
2.3. Spin-spin force with a finite range

A typical way of calculating the spin-dependent force is to compute Eq. (2.2) per-
turbatively. This method is problematic, since Hgg is too large to treat perturbatively. There
are three methods for avoiding this difficulty.

(i) Calculate the mass matrix of Hy by using unperturbed wave functions of
1S, 25, 1D, ... states and diagonalize it [see, for example, Ref. [23]].
(i)) Include the Hyin the potential. Smear Hgg by a suitable function if it is too singular.
(#iii) Choose the potential whose singularity is soft enough and include Hg in the po-
tential [see, for example, Ref. [24]].

We use the second method. Since Hgs contains a negative constant x 8(R) term, states
become unbounded if it is included in the potential. This § function comes from the
unnatural non-relativistic reduction and will become a smooth function with a finite range
if this is calculated correctly. The standard way to include Hggis to replace 5(§) by a smeared
function

S(R) = (1/4nrd) exp (—R/ro)/R, lim f(R) = é(ﬁ). 2.4)
At very short distance, various relativistic effects, such as quark pair creation, arise
and the original Coulomb-like behaviour will be distorted. The range of the smearing
ro decreases as the quark mass increases. We use the following phenomenological formula
for rq:
ro = 0.08m~%° fm (m in GeV),

m = 2mmg/(mq+my). 2.5)
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We have checked that results we show here do not sensitively depend on the precise
shape of the smearing function f{r). We use the following potential parameters:

Quark masses used here are

m, = myg = 336 MeV,
m, = 1845 MeV,

a, = 031, R, = (da,/3a)'?,
a=015GeV~2, b = 0.956 GeV,
= aR, +40,/3R,,

¢ =2.05GeV 1

Vo = —0.720 GeV.

m, = 575 MeV,

m, = 5235 MeV.

(2.6)

2.7

2.4, Experimental supports for the spin-spin force with a finite range

The energy levels predicted in this model (we call it model N} are shown in Table L.
The agreement with the data is excellent. We can test if the range r, of Hg is reasonable
in the following way. For a P state multiplet, the centre of gravity (COG) of 3P;, 3Py, 3P,

TABLE 1
Magnetic dipole (MI) transition 1-—0-+y or 0- - 1-+vy
Prediction
Decay Hpv 1) =1 Iy | Experiment
(keV) from model in
Sec. 2 (keV)

Uy + 1) sin gy sin gp
¢ — 7y +204, Cos by cos dp 78 62 63+10
o —ny (— pu+pg) sin gy 0 0 59+23
pTTY Ha+ Ha 123 78 68+ 10
p°—y (= pu+ pa) sin gp 72 50 50+ 13
K* — Kty Us+ 142 109 60+15
K*0 — KO fstpigp 182 140 76+37
w =7y (— ttu+pg) cOS By 1180 739 860+ 76

(u+ pa) singp cos gy +2.5
©=>nY —2ug cosPp sindy 9.4 6.5 3—1.8
7> o% (1tu— pg) cos dp 159 111 84134

, (uy + 1) cos Pp cos By

ey +2u, cos fp sindv 14 10 83

must coincide with P, if Hg is a pointlike interaction, since the difference between them
is proportional to |w(0)}> which is zero for the P state. From experimental values, one

finds:

1
COG of (3P2, 3P1, 3’Po) = ) [5(3P2)+3(3P1)+(3P0)]

_ {1251 Mev
11243 MeV

for
for

A2a ALa 6:
f, D, S*.

2.8)
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These COGs are higher than P, states.
COG of (A,, Af,8)—M(B) =21 MeV,
COG of (f,D,S*)—M(H) = 53 MeV. 2.9
These are consistent with the prediction in our model
COG of (3P, 3Py, 3Py)—M(*P,) = 31 MeV. (2.10)

This means the range of Hgg in our model is reasonable. It is very interesting to check our
prediction for charmonium:

COG Of (3P2, 3P1, 3P0)—‘M(1P1) = 10 MCV fOI' CE- (2.11)

In our model, the wave function of 3S, is substantially different from that of !S,. We
can test our model in the following way. Leptonic and hadronic decay rates of Jjyp and
1. are given by:

Iy —»e*e” +p*p7): I'Jfp - 3g): I'(n, > 2g)

= 2mg 2edolyss (0)% : 5% a2(n =N~ mg % |wss,(0)] : % 2mG 2 yis,(O)2.  (2.12)

From these relations and from the experimental data I'i,(J/w) = 6319 keV and
I'ee(J/p) = 4.61+0.39 keV, one gets o, = 0.19. Thus by using I'i(ne) = 12.4+4.1 MeV,
one finds the following ratio which agrees with our prediction:

2
|35, (0)/p1s,(O)* = 3 <—o;i) Iee(Jw)IT 24(Mc)

_J0.38+0.17 experiment;
10271 theory. (2.13)

It should be noted that this ratio is one if Hg is not included in the potential. If n,, is found,
we can test our prediction |wss,(0)/y:5,(0)] = 0.445 (for bb).

Other experimental evidence of the difference of the wave function between 3S; and
1S, states is given by the M1 transition rate [25]:

Ty = caplk®Kf] exp (ik - 7/2) |13, (2.14)

where ¢ = 4/3 for 38, — 1S,+7y and ¢ = 4 for 1S, — 38, +¥. u; is listed in Table I. Since
k is not large if wss,(r) = yis,(r), we find [<f]exp (ik - 7/2)|id| = I(k) ~ 1. However,
y; and y; are not equal in our model; they do not overlap completely, thus I(k) < 1.

As shown in Table I, predicted values of decay rates for I(k) = 1 are too large, but
those obtained in our model are smaller and much nearer to the data. This is the confirma-
tion of Isgur’s argument [26], although there might be other corrections to these decay
rates.
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TABLE 11
Quarkonium spectra predicted by a potential model (Sec. 2)
uu 1S 28 3s
38, 772 p(776) 1554 o’(1600) 2157
1S, 132 n(135) 1296 w'(1240) 1957
uu 1P 2P 3P 1D 2D
S==1 A(1318)
J=L+1 1266 {f(1273) 1913 £*(1799)? 2466 1541 2144
S = A(1230) 1880 5
J=1L 245 D(1285) 2422 1697 2253
S =1 3(983) * 0
J = L—-1 1034 S*(975) 1705 S*(1770)? 2257 1741 2272
S=0 B(1230)
J=1L 1221 H(1190) | 1864 2413 1651 2204
ss ' 1S 28 3S
38, i 1010 ¢(1020) 1713 (1)’(1680) 2233
1S, [ 696 1568 2120
ss 1P 2P 3P 1D
S=1
Je=L+1 1496 ' (1515) 2047 g1(2160)? 2512 1795
S=1 -
J=1 1428 E(1420) 1993 2460 1824
S =1
J=L—-1 1278 g4(1240)? 1877 2353 1807
S=0
J=1L 1436 1999 2470 1808
us i 1S 28 3S
3S, 900 K*(892) 1648 2212
1S, 501 K(495) 1464 2069
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TABLE II (continued)

s 1P 2P 1D
§= K*(1434 2
L1 1399 K*(1434) 002 1680
S=1
- 1383 Q,(1410) 1978 1780
J=L
s=1
L1 1196 1833 1801
S=0
= 1305 Q,(1270) 1914 1738
J=1
uc sc ub
1%, 2025 D*(2010) 1963 F(2018) 5359
1'S, 1891 D(1865) 2099 F*(2130)? 5310 B(5273)

o

bb

1381
1S,
238,
2'S,
338,
4351
1°P,
1P,
1°P,
1'P,

2.5. Fine structure of P state multiplets

3094 J/4(3097)
2979 1c(2984)
3686 (3685)

3627 1(3592)
4087 (4030)

4412 {(4415)

3532 Y(3551)

3488 {/(3505)

3428 {(3414)

3496

9462 Y(9460)
9382
10031 Y(10021)
10000 -

10379 Y(10350)
10647 Y(10566)
9928 Y(9912)
9904 Y(9892)
9873 Y(9870)

9911

<C

1°D; 3772 $(3768)
2°D, 4141 $(4159)
bb

1°D, 10167

23D, 10468

2P, 10293 Y(10264)
23p, 10274 Y(10249)
2°p, 10249 Y(10231)
21p, 10279

Since potential parameters are adjusted to fit S wave cc and bb spectra and quark
masses to fit S state masses, no parameters are left to fit P states. Nobody would be surprised
if we had found completely wrong predictions for them. To our surprise, not only the COG
but also the fine structure of P wave multiplets are in agreement with the data as shown in
Table II. From this table, we notice a remarkable pattern of P wave multiplets of light
quarkonium states. Three levels, 3P,, 3P, and P, cluster and only 3P, becomes much
lower and isolates. This pattern does not depend sensitively on the form of the potential
[27]. Such clustering can be easily understood in the following way. By using Eq. (2.2)
and the relation S, - §, = —3/4 for 1S, 1/4for 3S;,L-S =1, —1, =2 for [L+§] = 2, 1,0,
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one gets
MQCP,) = My+A—%B+C,

MQCP,) = Mo—A+2B+C,
M(°Pg) = My—2A4—4B+C,
M('P,) = M,—3C. (2.15)

From numerical calculations, one finds the relation 2B 2 A = B> C > 0. C is small
since the range of Hy is small. We find this clustering for the following two extreme cases:

(i) A =2B, C=0; M(°P,) = M,+8B/5, M(°P,) = M(*P,) = My, M(°Py) = M,—8B;
(i) A=B, C=0; MCP,)= M,+B, M(P,) = M,+2B/3, M(P)) = M,, M(*P,)
= M,—6B.
According to Jaffe [28],  and S* are q2q? particles. One of the reasons for it is that they
are much lower than other 1P multiplets. However, in our model, such isolation can natu-
rally be understood by spin-dependent interactions. In the unitarized quarkonium model
by Tornqvist [21], 5(980) and S*(985) are strongly shifted downward. It is desirable to
include such effects in our model.

TABLE 1II
The ratio Rp in model N
Theory Experiment
ut-+-dd 0.06 0.14+0.1
uu—dd 0.06 -0.03+0.03
ss 0.45 0.537
cc 0.73 0.48 £0.02
bb 1P , 0.77 0.93+0.1
bb 2P | 0.76 0.85+0.1

From Table II we compute the ratio R, = (M(3P,)— M(CP,)/(M(3P,)— M(3P,))
= (24— 12B/5)/(4 +6B) and show the results in Table III. Scaling behaviours of the spin-
-dependent forces are

His, Hy ~ mg', Hs ~ mg>  for  mg < 10 GeV,
HLS9 HT ~ mQ, HSS ~ mas fOr mQ 2 100 GCV. (2.16)

Thus the fine structure gets narrower as the quark mass increases up to around mq ~ 50 GeV
and Rp approaches 0.8 [see Ref. [3]]. From Table II, we find such theoretical expectation
is correct.

2.6. Q,-Q, mixing

In Table II, us P states are also listed. If we neglect 3P, —!P, mixing [i.e., D=0
in Eq. (2)], we find (3P,, 3Py, 3Py, 'P,) = (1399, 1364, 1196, 1324 MeV). The term DL - S
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induces [29] the 3P, —!P, mixing, which can be calculated by:

M(Q1, Q;) = L [M(*P,)+ M(P,) £V {M(*P,)~ M(*P,)}> +8E?],

1 1 dv, dv,
E=i—S5-— R% > — —2 | RdR. 217
mi  ms dR dR
0

From numerical calculation, we find £ = 23.4 MeV and (3P,, Q,, 3Py, Q;) = (1399, 1384,
1196, 1305 MeV) and mixing angle = Tan™! \/’{M(Qz)—M(3P1)}/\/{M(3Pl)—M(Q1)}
= 30°. Thus we find rough agreement with the data for 3P,, Q;, Q, but the prediction
for 3P, is too low compared to x(1350), O+ meson.

We show similar calculations for the 2P state of us in Table II. If we set D = 0 we
obtain (3P;, 3P}, 3Pg, P}) = (2002, 1966, 1833, 1926 MeV) and after the mixing we find
E = 17.1 MeV, (P53, Q3, 3Py, Q}) = (2002, 1978, 1833, 1914 MeV).

2.7. Inverted multiplet

As shown in Table I, D states of uﬁida, us and ss are all inverted, i.e., the >D; state
is the lowest. The reason why D states are inverted (i.e., 4 < 0) while P states are not
(i.e., A > 0) comes from the fact that V, is of short range and ¥ is of long range. From
Eq. (2.2), one can see that for a wave function with small (large) rms radius, A4 is positive
(negative). Experimentally, there are three D state candidates: g(1690) = 3D;, vu—dd;
A;(1680) = 'D,, uu—dd; o(1670) = 3*D,, uu+dd. This means that the D state multiplet
is not yet inverted, thus it seems that our model does not work for D states any more.
Schnitzer [29] argued that the P wave multiplet of uc states will be inverted. However,
our model does not predict such an inverted multiplet for uc.

2.8. Variational method and baryon spectrum [11]

We now try to compute the baryon spectrum by using the potential model shown above.
We assume that the potential is described by the superposition of the two body forces.
We use the standard variational method [30] to compute energy level. All the results shown
below are computed by two Gaussian trial functions. If the number of trial functions is
increased, we can get results with arbitral accuracy. If we increase the number of the
Gaussian trial functions from two to three or four, the energy levels drop down at most
one or two MeV. By using the Martin potential [4] we have numerically reproduced the
result of the hyperspherical method by Richard [31].

We first try to compute the baryon spectrum by assuming V (R) = V i(R)/2
= (V(vector) + V(scalar))/2, where ¥(vector) and V(scalar) are taken from Egs. (2.1) and
(2.3). We find strong disagreement with the data, e.g., (P, A, Q) = (1.157, 1.320, 1.672 GeV)
by using the quark masses given in Eq. (2.7). Next, we increase the vector part of the
potential by 50 %, although there is no theoretical justification, i.e., ¥ 4(R) = (3 V(vector)/2
+ V(scalar))/2. We now find an agreement with the data for non-strange baryons, i.e.,
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TABLE 1V
Baryon resonance in model N
Resonance Experiment (MeV) Theory (MeV)
P 938 937
A 1232 ! 1227
(28,1°) uuu ; { 152010 { 1517
1540 £20
1650+ 30
(48,17 uuu 1675+ 15 1638
1680+ 10
(310, 1) uuu { 1625425 1614
1685+ 55
A 1115.6 1102
z 1192 1207
Q- 1672 1663
2 1320 1297
= 1530 1539
T 1385 1389
A 2282 2262
T, , 2457 2468
=2 ucc 3594
e uce 3738
Q css 2758

A, P, (310, 17), (38, 17), (*8, 17) by again assuming m, = 336 MeV, where our notation
is (35*1SU(3), LF). For all strange baryons, we find too small masses if we take the non-
-strange quark mass m, = 575 MeV determined to fit meson spectra.

We assume that the masses which we are using here are effective ones. Thus, it is not
necessary that the quark mass in 2 meson must be the same as that in a baryon. In the
following, we choose a larger quark mass, m, = 660 MeV and m, = 1970 MeV, than
those for mesons. The results are shown in Table IV. The agreement with the data is
excellent. As for L = 1 qqq state (q = u or d), we include only Hgs. H;s and Hy are neglect-
ed. The mixing between two octet states is also neglected. The rough agreement of our
results with the data shows that H,s and Ty and the mixing effect are not very important.
If Hgg is a pointlike interaction, the (*8, 1-) state and the (?10, 1-) state are degenerate,
but if not, (48, 1-) is higher than (*10, 1-) {see Ref. [32]]. In our model, (*8, 1-) is higher
than (210, 17} by 24 MeV, but the experimental situation is not clear.
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3. OZI allowed decays of quarkonium states

3.1. The quark pair creation model (QPC)

A. Le Yaouanc et al. [l4] have proposed the quark pair creation model
in order to describe the OZI allowed decay (Fig. 1). If a low energy light quark pair is
created, many gluons will be exchanged in this process, and the single gluon exchange
diagram is unlikely to dominate since o, is large. In such a case, initial qq’s will stay as

Q B
ks .~ .
N g
a ka
A
a =
2 N g
k3 _
a ¢

Fig. 1. Schematical representation of a decay A — B+ C according to QPC

spectators. This means the created quark pair must have the same quantum number as
the vacuum, i.e., 0™+, thus the created pair must be a 3P, state. The spatial dependence
of the overlap integral is given by the following matrix element:

155 .0 = Vorc § d3VTR(24 + hok)yard — % h v @vE@),

b = 2mgq h 2my

q

Q

(3.1)

) 3
mgy+mg my+mq

where k is the absolute value of B and C’s momenta in A’s centre of mass system, yqpc
is a coupling constant describing the strength of the pair creation and other notation is clear
from Fig. 1. The reduced matrix elements are defined for the two allowed angular mo-
menta between final mesons; L = L,+1.

4z
PL(F) = 5 w(Las ma, L, mpl L, F1,0) [ 32
La(F) E A mn(Las Mo plLa ) AL FD+1 (3.2
The amplitude for a given partial wave is given by:
io iy Is|[Se Sy Ss|[La Sa Ja
M = Z iQ iq IC SQ Sq SC 1 1 0 EgLA(i)‘ (3.3)
St,L=Lat1
I, 0 I,1i1S, 1 Stli{L Sy J,
The decay width is given by:
E
r = 2nmp 2oy, 3.4
M v 3.4)

A
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By using the harmonic oscillator model, Ader et al. [15] calculated decay widths of various
mesons (light quarkonium as well as charmonium), and found that ygec ~ 3.4 for all
mesons.

In order to compute the overlap integral, we must use a special potential model.
We use the following potential model [model II in Ref. [33]], which is obtained from Eq.
(2.1) by replacing V,(R) by the following function:

VI(R) = VAF + aR,

. %(R) 12 1

Vie(R) = — £ 222 a(R) = — - ,
Ar(R) SR %(R) 35 i (a/R)

(3.5)

p=(e)", A=05GevV, y=05772,

where V,p(R) = —8/25 exp (1)/u for R > u exp (—1). Results which we are going to show
do not depend on the precise shape of the potential. As a typical example, we show the
reduced matrix & s)-pp(k) defined by Eq. (3.2) as a function of the decay momentum
in Fig. 2. For small k, one can assume I' oc k*'*?, which corresponds to £ (k) o k. This
approximation is good for & < 100 MeV in this case. Decay momenta for ¢(3S) — DD,

T 1 T T
!
i Ls(k) rak2|01 : T
i
arC |
L , ]
i I
|
| |
A . i
} [
| ! 0D /
0 i i i ? 1 i
0*o* p0*D*0\y
i QPC ]
05 KGev) 10 15

Fig. 2. Reduced matrix for §(3S) - DD, DD*+D*D, D*D* predicted by the QPC is compared to the
assumption &£ « k, i.e., I' oc k2 1?

DD#*, D*D* are plotted by arrows in Fig. 2. One can see from this figure that the QPC
predicts [13, 19] a much smaller decay width for y(3S) —» DD than the assumption
I oc k¥, due to the ncde structure (by a factor ~100). Such suppression is indeed
observed and the QPC is supported. The QPC also explains the small branching ratio
for I'(o' — nn) which is due to a similar reason.
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3.2. OZI allowed decay of Y(4S) and the QPC

T(4S) is the first resonance above threshold. From the invariant mass of the decay
product of B*'°, the mass of the B meson (average of B* and B°) is determined experi-
mentally. Thus, we now know [8]

A= M(Y")~2M(B) = 32.44+3.0+4.0 MeV. (3.6)

In Fig. 3 we plot the decay rate predicted by the QPC, where ygpc is fixed [19] by the decay
rate of c¢ above threshold. The model which we are using now is identical to the Bigi and
Ono model [34]. In Fig. 3 we also plot decay width obtained by simple phase space
I oc k*'*1, Other decay modes Y(4S) - BB*, B*B, B*B* will be forbidden since we
expect B¥—B ~ 45 MeV [33].

250 F FIY™) 4
2001 r(XkZl'1
150+ ‘ i
>
[
=
100+ 1 B*B- «
gogB®
5ot 1
' aPC

0 10 20 30 40 50 60
MeV A

Fig. 3. Decay width of Y as a function of 4 = M(Y""")—2M(B) predicted by the QPC is compared to the
assumption I' «c k*+1

From this graph we find that we are around the top of the peak of the QPC curve
and the approximation I' oc k*'*! breaks down completely in this region. The approxima-
tion I oc k*'*1 is good only for k < 5MeV. By assuming B°+B* = 4.4 MeV and
I oc k*'*1, the CESR group has found B(Y(4S) - B*B-) = 0.6010.02, B(Y(4S) — B°B?)
= 0.40-+0.02. However, if we use the curve predicted by the QPC we find B(Y'(4S) -» B+B-)
= B(Y(4S) — B°B°) = 0.5. Thus we must say that I' oc k**! cannot be used in this region.

One might think that the QPC predicts too large a decay width for Y(4S) compared
to the data I',,.,; ~ 14 MeV. However, since the decay rate changes very rapidly as a func-
tion of A, the shape of the resonance is very distorted from the simple Breit-Wigner shape.
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Actual resonance shape is expressed by [34]

Ir(w)
(wo—w)*+I'(w)*/4~

AR(w) o 3.7
If w increases starting from wy, the I'(w)?/4 term in the denominator increases very rapidly
due to I'(Y'(4S) —» B*B+ BB*), thus the upper tail of the resonance is cut off. For the lower
tail of the resonance, the (w,— w)? term dominates and the actual resonance width becomes
smaller than I'(w) at the peak.

By using recent CESR data on the resonance shape of Y'”, we have computed the
%2 value for various 4. We find that %2 does not change very much between 4 = 10 and
40 MeV. Thus, we conclude that if the resonance width is determined by a Gaussian fit,
the obtained width does not necessarily correspond to I'(w) at the peak in the QPC.

4. Quarkonium states and glueball states
4.1. Is g;(2160) a glueball state? {35]
Recently a peak was found [36] in n~P — Xn — één by the BNL/CCNY group:
g1(2160), mass = 2160437 MeV, I = 315+62MeV, JF€=2**, 4.1

According to Lindenbaum [37], this is a glueball candidate because this process is doubly
OZI forbidden and must be strongly suppressed if g;(2160) is a quarkonium state. However,
we can show that this process is not suppressed if g(2160) is a 23P,, 2+, ss state.

We first study the decay rate of g, by using the QPC. Results [35] are

I'(pd) = 97 MeV, TI'(K*K*) = 387 MeV, TI'(KK) = 35 MeV,
rmm) = 1.6 MeV, TI'(KK*+K*K) = 1.7 MeV. @4.2)

As seen from this, g couples very strongly to K*K* and ¢¢. This is understandable
since these two are only S wave decays while others are D wave decays. Thus, the following
production scheme must be enhanced strongly:

- *K * >
T p b d K K n (S-waver) ng (S«wave’) ¢¢n. (A)

According to Lindenbaum, the process (4) should be suppressed by the OZI rule (he called
it the “quark line rule”). He refers to the following process

©p - K*Kn - ¢n, ;)

where the suppression factor is ~100. However, there are the following reasons why the
process (4) is much more enhanced than the process (B):

(/) The process (B) needs three-gluon exchange [37] due to the spin of ¢. On the other

hand, only two-gluon exchange is sufficient for g; production, since gy has J*¢ = 2++,

(i) The S wave transition K*K* - g is much easier than the P wave transition KK — ¢.
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Since these transitions are near the threshold, the centrifugal barrier greatly suppresses

the latter transition.

(iii) o(np —» K*K*n) is much larger than o(np — KKn) due to spin factor.

The mass of gr(= 2160+ 37 MeV) is slightly larger than the potential model expecta-
tion (~2050 MeV, see Table I) if g7 is ss. However, the mass of this resonance is determined
from the ¢ peak, which is only 120 MeV above the ¢¢ threshold while the width
is 315 MeV. If the mass of this resonance is determined by the K*K* peak, the value
might be different. Related work on g;(2160) was also done by Minami [38].

4.2. Is 9(1640) a glueball state? [35]
The Crystal Ball group found [39] a resonance in the process J/y — y0(1640)
r - all) = 200+100 MeV, M(8) = 1640+50 MeV,
BR(J/y — 6Y)BR(® —» nn) = (0.38+£0.16) x 103,
BR(JJy - 6Y)BR(® —» KK) = (1.24+0.1840.5) x 10-3,
BR(J)p = 6Y)BR(® - @) = (3.75+1.05+1.2) x 10-3,
BR(J)y — 0y)BR(6 — ) < 2.4x 104909, C.L.). 4.3)

In the following, we consider [35] the various assignments for 6 and check if such assign-
ments are reasonable. ’

() 0 = 2P, (uu+dd)//2.

In this assumption we find M(8) = 1913 MeV (see Table I), which is much higher
than the experimental value 1640 MeV. There is experimental evidence [40, 41] for the
2++ meson f*(1799) which is much nearer to our expectation, thus a better candidate for
2P, (uu+dd)/,/2. However, this resonance needs further experimental confirmation [42].
The branching ratio can be computed by using the QPC if 8 = 2P, (uﬁ+da)/\/§:

BR(® - g0) : BR(® - KK) : BR(® —nn) : BR(® > nn)

B {1 : 0.0019 : 0.0009 : 0.23 theory;

R : 0.33 : 0.1 1 <0.06 experiment.  (4.4)
Thus, this is an unlikely possibility.

(ii) 0 = glueball
Assuming SU(3) invariant decay and the phase space I' oc k**!, one obtains [35]

1:57: 123 theory;

T® —mm) : 1O~ KK): [0 > nm) = {1 : 3.3 : <0.63 experiment.  (4.5)

Instead of looking for other models which predict SU(3) breaking or more complicated
phase space, we consider the following possibility.
(iif) © = mixture of 1P, (wu+dd)/\/2 and a glueball

We again use the QPC for the qq part. If f one assumes a pointlike glueball, i.e., I' oc k5
for glueball decay, one finds [35] I'(6 —» KK) = 4.35 MeV and I'(6 - nn) = 0.76 MeV,
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which are too small. On the other hand, if one assumes a glueball state with finite size,
one gets a reasonable branching ratio [35] for 8 —» nn, KK, nn, go. In this case, 10%
of 0 is 1P, (uu+dd)//2 and 90 of 6 is the glueball.
(i) O = mixture of 2P, (wu+dd)/\/2 and a glueball

In this case, the QPC predicts too small a total decay width for 6 (I' < 77 MeV)
compared to the experimental value.

Thus our conclusion from the decay properties of 0 is that the 1P, (uu+ da)/\/f
+ glueball interpretation is the most promising one. It might be necessary to consider

mixing together 1P, 2P and a glueball and, if necessary, ss states. However, we do not
have enough data to fix so many mixing parameters.

5. Toponium states
5.1. Above threshold [43]

The number of S states below threshold increases as the quark mass increases. A typical
potential model predicts [43] seven S states below threshold for mq = 20 GeV. According
to the QPC, the decay width of the resonance above threshold becomes large as my, increases.
Several charmonium states above threshold have been observed and their decay widths
range from 20 to 50 MeV. Only one bottomium state Y(4S) which is very near to the thresh-
old has been observed, and other states above threshold are probably too broad to see.
Toponium states above threshold will be even broader and probably impossible to find
experimentally unless they are very near the threshold or node of an important channel [43].

5.2. Below threshold

Branching ratios of toponium states (1S, 25, 38, 1P, 2P, 1D) are calculated in Ref. [20].
Since the ground state energy level falls deep into the potential for heavy toponium states,
the behaviour of the potential near origin (R < 0.1 fm) becomes important for low-lying
states. For example, we can use potentials which, for short distances, approach the asympto-
tic behaviour predicted by a perturbative two-loop calculation [44]. Several attempts have
been made to connect this potential to the large distance region [5, 20, 44]. We show one
of them [20]

167 1

VR =~ S RInf(AR)

2yp+23 462 In In f (AR _
1 YETTs n In f(AysR) +a\/R+c, (5.1)
In f(AsER) 625 In f(A3sR)

f(4%sR) = 1/(AsR)* +b,
Ass = 140MeV, a =063GeV*?, b =20, c=—139GeV

m, = 1.9GeV, m, = 5.255GeV.
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As a less singular (at the origin) choice, this potential is used and as a singular choice,
the Richardson potential [45) is used to study the branching ratio of toponium states.
The conclusions which we found are the following. For all quarkonium states the branching
ratio of weak decays increases rapidly and becomes important (or dominant) for
m, = 35 GeV. Unlike charmonium and bottomium cases, toponium P states will be quite
narrow and their radiative decays will dominate for m, < 35 GeV. The branching ratio
nS — n’S+y is reasonably large in this region. Detection of P states in radiative cascade
decays will be extremely difficult for m, 2 35 GeV, since weak decays become important
and they deplete production of P states and radiative P — Sy decays at the same time.

6. Unitarized quarkonium model (UQM) for cc and bb states [22]
6.1. UQM

Because of unitarity, the paive potential model such as models shown until now is
only an approximation, even within a non-relativistic framework. The DD, etc., channels
couple strongly to charmonium, giving large widths above threshold. Because of analyticity
they contribute mass shifts to charmonium states. The full mass matrix is a sum of a bare
term M2, and a hadronic mass renormalization term II(s):

M2,(5) = Misenm+ 1, u(s), n,m =18,28,1D, ... (6.1)

Im II(s) is given by a sum over the threshold:

ImI}(s)= Y  ImIns), (6.2)
BC =DD,FF,...
Im J1236(s) = — VES(s)Vau(s)KP2rEPEO(s — (mg + mc)?), (6.3)

where V35,(s) is the vertex function which is calculated by Eq. (3.3) (V¥ = M). Since our
vertex functions make Im IT vanish exponentially for large s, one has automatically a cut-off
in our model; Re IT(s) can be computed from an unsubtracted dispersion relation

Re I,,(s) = — % f Im I1,,(s")/(s ~s)ds . (6.4)

The diagonal elements of Re I1(s) are in general negative and contribute a negative
mass shift to the resonance. Equations (6.1)-(6.3) define the mass matrix in the reference
frame of the bare states. The physical states are obtained after diagonalization;

A/lgiag(s)

where the mixing matrix « satisfies a'« = 1, i.e., « is an orthogonal matrix since M? is
symmetric. Neglecting the contribution, our normalization (s = mg) is:

I

a” {(s)M3(s)a(s), (6.5)

Y oan(s = mR)|* = 1. (6.6)
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To estimate the OZI allowed coupling we use the QPC which is already described
in Section 3 in detail. If one were to neglect the mixing induced by a in Eq. (6.5), the total
width would simply be given by Eq. (3.4) (M in Section 3 is V here). In the unitarized
model, the widths are obtained after diagonalization of M? in Eq. (6.1). Then

I = —1Im Miiug($)//S ls=ma (6.7)
and the physical resonance mass
"WA = Mgiag(s)/\/g ls=mA2' (6'8)

The pair creation parameter yqpc in Eq. (3.1) is the only free parameter which is essentially
determined by the best-known experimental width. It is known that ygpc is fairly flavour-
-independent [15], thus we use the same yqpc = 3.029 for cc and bb states.

We show in Fig. 4 the mass shifts for cc and bb states which are all negative. First
of all, we notice relatively large mass shifts of the states just above threshold, i.e., w(1D)
and Y(4S). It is known [46] that the experimental mass values of such states are higher
than the prediction by typical potential models. Therefore, we nicely confirm that y(1D)
and Y(4S) are affected by the threshold effects.

For cc the higher radial excitations have relatively small shifts because of the node
structure of the wave functions. On the other hand, thresholds for bb are much higher

cC bB
vy
~3
H LIS L3S, AM=-24MeV , BB
e 4'Se -23MeV _ BsBs ===
(L1;9) 2D 1 S SB%SB%S’"
7 1 -103MeV e X__(,_‘O_S_)TA___@;-?SMeV BE* ——
3 _ S meleST -s5Mev BB
Y(4030) 3°S; -98MeV &, ~ [Y(2D) —-54MeV
= = Ve
4N L3S, -84MeV DO Y3S] __ -62MeV
; —pb*  _ [n,035)  -52MeV
= $(3770) *0, -162MeV . = Y10
> [[3686] 25, —151MeV —00 S —— -S4Mev
% i_ Yi(25) -50Mev
T [N3599) 2's.  —134MeV = n(2S) ~S0MeV
i
$(3097) 1S, -190MaV 24 Vis) -30Mev
1 _ T = “2vne
| nl2981) 1S, 187MeV n(1S)  —30MeV
700 MeV) =200 0 T 100MeV

Fig. 4. Mass shifts due to unitarity effects. Positions of thresholds are shown
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than for cc (see Fig. 4), thus lower bb states have small mass shifts; i.e., thresholds are too
far from lower bb states. In addition to this, the thresholds for bb, i.e., BB, BB*, B.B,, etc.,
are more densely located than those for cc, i.e., DD, DD*, FF, etc. Thus higher excited
T states, such as Y(3S) and Y(4S) have relatively large shifts due to this group of thresholds
and overcome the reduction due to node structure.

6.2. Mass shifts for J/yp and 5,

The mass shift for n*S, is not much different from that for n'S,. Experimentally known
hyperfine splittings are

AM = M(J/w)—M(n,) = 116+4 MeV  [47],
AM* = M(p)—M(n) = 93+5MeV [47, 48],
Le.,, AM*/AM = 0.38. 6.9
Unfolding unitarity effects, we get hyperfine splittings for the bare mass
AM(bare) = AM+3 MeV = 119 MeV,
AM*(bare) = AM*+17 MeV = 110 MeV. (6.10)

Thus we find 4 M*(bare)/AM(bare) = 0.92, which is difficult to accommodate by a potential
model whose typical prediction is AM*/AM ~ 0.5. Similar results were found by Martin
and Richard [49] by using a different model.

6.3. Mass shifts for P state multiplets [50]

In Section 2.5, we have shown that the fine structure of the P state multiplet can be
roughly reproduced only by the Breit-Fermi Hamiltonian. Unitarity effects do not badly
destroy already successful predictions of the potential model. For example, all four P
states 3P, ; o, 'P, will be shifted with the same amount if D* has the same mass as D and
all four P states degenerate. Mass shifts for (3P,, 3Py, 3P,, 'P,) states are [50]

(—186, —180, —170, —182 MeV) for 1P, cc;
( —45, —44, —43, —44MeV) for IP,bb;
( —58, —56, —55 —57MeV) for 2P,bb, (6.11)

where 3P,—3F, mixing is taken into account.
This means the mass shifts have almost no effect on the fine structure for bb states
while for cc, if we unfold the unitarity effects, the splitting 3P, —3P, becomes smaller.

6.4. Mass shifts for radially excited states and the potentials for bare
spectra

As seen in Fig. 4, mass shifts for bb systems are completely different from those for
cc systems. Since mass shifts for bb states are not very large, any potential which reasonably
fits the physical bb spectrum can also fit bare mass spectra, if the constant term in the
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potential is modified. As for cc systems, mass shifts are larger and we have to change
potential shape. We have found that the potential which fits the bare mass spectra (we call
it the bare potential) has a lower slope for r > 1 fm than the potential which fits the physical
spectra. This means that the bare potential rises slower than the linear one, since the
change of potential for large r does not affect the bb spectra appreciably because the rms
radius of wave functions for bb states is small.
We now show three examples of bare potentials.
(a) Martin potential [4]:

V(R) = —7.873+6.8698 R™!, R in GeV, m, = 1.8GeV, m, =51GeV; (6.12)
(6) R** + Coulomb potential:

o

V(R) = _§? +BR** -4,

A=098GeV, B=035 o =035 m =19GeV, m,=5215GeV; (6.13)

cc bb

LSt 4439 4438 LhL6L 4461 1051 LA
L=l Pt e — 3$1M§ 10391 —2:70369
1

4262 4283

2262 1,242 5i5m b242
S N 107227 10108 10176
3S 4128 - S—_ e e e

—_—

! 3979 2
10393239381 3916 10

—_————TlT

-~

3861
253837 3820 -~ 3803

(A39)
(A39)

9513 9510
s g5 12080 5. guse 350

3287 3283 I Y T
15 ==---2=2 3258 3245 Martin 1

bare g3/2
mass Lichtenberg

bare R2/3 Lichtenber .
3| mass +Coulombl s &rg +Coulomb  ills

Martin

Fig. 5. The bare mass spectrum which is obtained by unfolding unitarity effects is compared with the ones
computed by three potentials
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(¢) Lichtenberg-Wills potential [6]:

T Y
V(R) = _8_7_1_ . (1-4R) .

25 RIniR A (6.19)

A=Ae’, y=05772, A =350MeV,
A= —850MeV, m, =19GeV, m,=>521GeV.

We have changed the potential parameters and quark masses from original papers
for (a) and (c). Lichtenberg and Wills used A = 676 MeV, but after unfolding unitarity
effects, we find A = 350 MeV. Experimentally, Ays = 50—400 MeV. The above three
potentials are almost numerically identical between 0.1 fm and 1.5fm, although their
short-distance behaviour (r < 0.1 fm) is quite different. In Fig. 5, we compare the bare
mass spectrum with predictions by these three potentials. Agreement with the data is
quite satisfactory.

6.5. S-D mixing and ete~ decay rates

By using the mixing matrix a(s) obtained in Eq. (6.5), one can calculate the ete~
decay rate of quarkonia, which is given by

r[(QQ —»e'e’) = A;(g%i Z %y )(0)
k=S-~states
+ 2727 Z a?;wi‘”"m)z (6.15)
Q
k = D-states

with obvious notation. The wave functions ¢’ must be determined by using a bare poten-
tial. Results are compared with the data in Table V. We also list results obtained by neglect-
ing unitarity effects. (We choose as typical potentials (i) Coulomb + linear [51]; (ii) Buch-
miiller-Tye potential [5].) As seen from this Table, if the unitarity effect is unfolded, we
find remarkable improvements for I',, decay rates, especially for cc. I'..(38)/T.(1S) and
I'.(48)/T' .(18S) decrease and I'. (1D)/I'",.(1S) increases.

The increase of I' . (1D) and I'..(2D) is due to the S-D mixing, and the decrease of
I'.(3S) and I'.(4S) is due partly to the S-D mixing and partly to the potential behaviour
for large R (since these potentials increase slower than the linear rising one, the wave
functions for higher excited states spread out). We do not find any way to accommodate
the extraordinarily large branching ratio:

I'..(2D) = 770+230 eV (6.16)

although our prediction is much nearer to the experimental value than that of potential
models. A similar conclusion is drawn by the Cornell model [51].
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TABLE V

Theoretical predictions of decay rates I'ee = I'(QQ —> ee) for cases when (i) unitarity effects are unfolded,
(i) unitary effects are neglected, are compared with the data

Unitarity effects unfolded Not unfolded
- Data . iller—
& ®ef. [52]) R34 Marti Lichtenberg Cou'lomb + | Buchmiiller
: Coulomb | Martin wills linear Tye
(Ref. [51]D (Ref. [5]
T'ee(2S)/Tee(1S) 0.45+0.08 0.351 0.348 0.373 0.44 0.46
T'ee(3S){Tee(18) 0.16+0.04 0.247 0.227 0.269 0.31 0.32
I'ee(4S)/Tee(18) 0.11+0.04 0.154 0.133 0.171 0.23 0.25
I o(1D)/I.(1S) 0.056+0.011 0.031 0.039 0.036 ~0 ~0
Tec(2D)/T.(1S) 0.17+0.06 0.011 0.013 0.013 ~0 ~0
bb
i i ‘
Tee(2S)/Iee(18) I 0.46+0.03 . 0378 z 0.534 0.464 0.36 ‘ 0.44
I'eo(3S)/ e (18) i 0.33+0.03 ! 0.293 0.429 0.379 0.25 ! 0.32
I o(4S)/Ie(1S) i 0.231+0.02 i 0.240 0.355 0.325 0.20 ] 0.26
Tee(1D)/Te(18) ! — 0.00027 | 0.00014 0.00025 ~0 ~0
Iee2D)/Tee(1S) <0.04 0.0010 | 0.00081 } 0.0011 ~0 ~0
Tee(3D)/Tee(1S) [ 00127 | 0.0210 0.0183 ~0 I ~0

There exist related works, e.g., the Cornell model [51], the Nijmegen model [53] and
some others [54, 55]. We believe that our model has various advantages:

() We use the QPC which is already confirmed to be able to explain various decay
processes.

(i) We are consistently using a QCD motivated potential. The Cornell group used a Cou-
lomb plus linear potential for the cc part and a harmonic oscillator potential for D
and D* mesons.

(iif) Cornell’s model calculation breaks down completely for higher excited cc states
(e.g., 4S states), as was admitted by themselves. They found M(43S,) = 4625 MeV,
which is as much as 210 MeV higher than the experimental value 4415 MeV. Another
problem is that they found 23D, -—33S, = 5 MeV, while the experimental value
is 129+25 MeV. We have found much better agreement with the data including
4S and 2D -3S.
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