Vol. B15 (1984) ACTA PHYSICA POLONICA No 3

HYDRODYNAMICAL SPACE-TIME EVOLUTION OF THE
CENTRAL REGION OF RAPIDITIES IN ULTRA-
-RELATIVISTIC HEAVY ION COLLISIONS*™*

By A. BIALAS**, *** W._ Czyz*** AND A. KOLAWA**
Institute of Physics, Jagellonian University, Cracow**
Institute of Nuclear Physics, Cracow***
(Received September 15, 1983)

The solutions of hydrodynamic equations describing a longitudinally expanding quark-
-gluon plasma produced in central collisions of two large nuclei are investigated. It is argued
that a fair description of the transverse flow of plasma is given — irrespective of the initial
conditions — by the relativistic simple wave of Riemann, modulated by a factor resulting
from cooling due to the plasma longitudinal expansion. The role of fluctuations in the flow
of plasma is also briefly discussed.
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1. Introduction

Recently there have been some new steps taken in applications of the Landau hydro-
dynamical model of particle production [1] in ultra-relativistic heavy ion collisions. Firstly,
it was proposed by Bjorken [2] that the existence of a plateau in the rapidity distributions
of produced particles is a consequence of the longitudinal expansion of this part of excited
badronic matter (presumably a quark-gluon plasma) which, after a phase transition,
populates the central region of rapidities: He gave in fact an explicit solution of the hydro-
dynamical equations which satisfies this requirement. Secondly, the one dimensional
description of Bjorken was generalized to a three dimensional expansion of cylindrically
symmetric systems [3]. That is to say a system of equations was constructed which couple
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the longitudinal expansion with a cylindrical transverse expansion and reduce to the
Bjorken equations when there is no transverse radial motion®.

Fig. 1 shows a schematic view of a central collision of two large Lorentz-contracted
nuclei in their c.m. system. The region of the transverse expansion coupled to — and driven
by the longitudinal Bjorken expansion is marked C.

Ref. [3] discusses the space-time evolution of hadronic fluid which does not undergo
a phase transition. In other words the hydrodynamic equation of motion with a given
equation of state are assumed to be valid in all space-time and for all temperatures, and

Fig. 1. Schematic view of a central nucleus-nucleus collision at ultra-relativistic energies; 4 — the region

of purely longitudinal expansion described by the scaling solution of Ref. [2]; B — Lorentz contracted

fragmentation regions of the two nuclei (not discussed in this paper); C — the region of both longitudinal

and transverse motions. The longitudinal motion is as in 4, the transverse one is a solution of Egs (2.3)
(see the text)

the dynamical role of a phase tramsition in which quark-gluon plasma is converted
into physical particles is neglected.

In the present paper we go a little further towards including a phase transition and
introduce a surface of the phase transition (critical surface) within which plasma stays
above the critical temperature and is governed by the relativistic hydrodynamics. Outside
of this surface we assume the matter to be just physical particles which are being created
as the quark-gluon plasma leaks through the critical surface where the temperature stays
critical at all times and where the phase transition takes place. As we have already stated
the relativistic hydrodynamics is valid only inside the critical surface. This condition influ-
ences the evolution of the region filled with plasma and defines the motion of the critical

! 1n Ref. [3] only the radial motion of the fluid is allowed. It is possible to generalize these equations
to include a vortex motion of the fluid (which preserves cylindrical symmetry) [4].
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surface. Since temperatures decrease with time the plasma bubble shrinks with time and
eventually disappears.

The model of the phase transition described above is very incomplete: it skips any
detailed discussion of the phase transition and its main physical content is the very exis-
tence of the critical surface. Yet it leads to an evolution of the plasma somewhat different
from the one discussed in [3], and enables one to introduce arbitrary initial conditions
without relating hydrodynamically the regions containing plasma with the regions with
temperatures below the critical temperature.

Understanding of plasma cooling is incomplete without description of emission of
electromagnetic radiation and, possibly, also of radiation of pions from a hot plasma
[5-7]. These processes might play an important role in the cooling of plasma. It is however
a separate complex problem and we shall not discuss it here.

In Section 2 we construct solutions which have no causal relations (through hydro-
dynamical equations) with these parts of the system which are outside the critical surface.
In Section 3 we discuss an analytic approximation to the quasi-Riemann solutions in cylin-
drically symmetric plasma. In Section 4 we present the various computer generated numerical
solutions with smooth initial conditions and compare them with the analytic solution
of Section 3 and with each other. In Section 5 we discuss solutions determined by non-
-smooth initial conditions. Section 6 contains the summary and conclusions.

2. Space-time evolution of the quark-gluon plasma within boundaries of the critical
temperature isotherm

The starting point of our discussion is the equation [1,8]
or*
Ox, -

with the conventional energy-momentum tensor (without dissipation)

0, 2.1)

™ = (e+puu’—g"p, 2.2

where ¢ is the energy density, p — pressure, g*° — metric tensor (+ — — =), #"(= y(1, v),
y = (1—v?)""?) —fluid four velocity. Eq. (2.1) is then specialized for solutions which
are invariant under a boost along the longitudinal direction (z-axis) and have cylindrical
symmetry [3]. As in [3] we assume the longitudinal expansion to be given in the form of the
scaling solution [2] and construct from (2.1} a system of equations which have the boost
invariance built into them. Such equations couple the transverse motion to the longitu-
dinal one in an asymmetric manner: the transverse motion is to be found from the initial
conditions and the equations, the longitudinal motion however is completely specified.
We believe that the treatment of the longitudinal motion as a “driving mechanism” is
a realistic physical Ansatz. The quark-gluon plasma we are dealing with is assumed to have
the baryon chemical potential equal zero and is a one parameter thermodynamic system.
Hence e.g. the temperature 7' may be taken as the only independent thermodynamic variable.
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After employing a few thermcdynamic relations and some algebra, the problem is reduced
to solving the following characteristic equations for the temperature, T, and the transversal
rapidity, «, valid in the z = 0 plane, for the plasma of the central region of rapidities,
in the c.m. system of two identical nuclei colliding centrally [3]:

ct or
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v | — —_
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(2.4)

d
Here », = tanh a is the transverse radial velocity, v, — velocity of sound (v,2 = :15)
€
oft, r,0) and T(¢, r, 0) depend only on the time, ¢, and the transverse distance, r, from
the axis of cylindrical symmetry. In order to get the motion for an arbitrary z, one has to

boost v, along the z-axis to a system in which the longitudinal velocities become zero:
T
v{t,r,z) = v{t, r,0) 7

T(t,r, z) = T(z, 1, 0),

r=+P-2% 2.5)

Eqgs. (2.3) and (2.4) are supplemented by an equation of state whose role is reflected
in the presence of the velocity of sound, v,. which we approximate as a constant. This
system of equations was extensively discussed in Ref. {3] under the assumption that it is
valid for all space and time. In this paper we restrict its validity to these regions of space-
-time where the condition

T(z,r) > T, (2.6)

is satisfied. Here T, is the critical temperature above which we are dealing with the quark-
-gluon plasma and below — with hadrons.

In order to have a complete model of the role of a phase transition in the transverse
motion of the plasma, one should also introduce some boundary conditions for velocities
at the critical surface. This would force us to decide what happens outside of the plasma
bubble and therefore we shall refrain from doing it here.

The process of solving (2.3a, b) goes as follows. We start with the initial conditions
that in a certain volume a quark-gluon plasma is created with a given spatial distributions
of T and . The surface of this bubble of plasma stays all the time (until plasma disappears)
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at the critical temperature T,.. This is a supplementary boundary condition which our
hydrodynamical solutions governed by (2.3) are assumed to satisfy. Except for few
limiting cases Eqs. (2.3) have to be solved numerically. As the computer builds 7(¢, r)
along the characteristics step by step from the initial conditions T(z,, r) and a(t,, r) given
for t = t,, and reaches T, it faces three possibilities when it makes the next step: () T
stays equal 7, (i) T goes below T, (iii) T goes above T,. In (i) the critical surface stays
put, in (i) it is moved along r toward higher temperatures, in (iii) it is moved along r
toward lower temperafures. Some details of this procedure are given in the Appendix.

Thus we get a space-time evolution of the quark-gluon bubble. The simplest mechanism
of production of hadrons in this model is to assume that they leak through the aitical
surface with rapidities which are identified with rapidities of the quark-gluon plasma.
For the purpose of crude estimates we shall follow this prescription.

3. The quasi-Riemann solutions

The initial conditions at ¢ = 1, (at 1, is the beginning of the hydrodynamical expan-
sion) introduce considerable uncertainties. Before discussing the numerical solutions of
(2.3a, b) for arbitrary initial conditions we give the approximate analytic solutions which
are as close as possible to the Riemann one dimensional simple relativistic wave [9]. Let
us first recall the Riemann solution of (2.3a, b) with /. = f_ = 0 in one dimension and
the quasi-Riemann approximate solutions for the transverse expansion of cylindrically
symmetric matter (f, # 0). Following [3] we define

Cj;(t’ i') = fdttfi(ri(ll)a f}’ (3'1)

where the integration is taken along the characteristics (+) or (—), hence along r = r.(2).
Then Egs. (2.32, b) become

0 0 1 ,
(;— +v, —) (— In ’1’+ac+é+> =0, (3.2a)

ot arJ \ v,

0 5 1

—+v_o—j{—ImT—-a+{_}=0. (3.2b)

ot or) \ v

The quasi-Riemannian wave is defined by assuming the condition

1
—InT+oa+{, = const, (3.3)
VS

to be a universal relation for all ¢, r. Using (3.3) we get for the space-time evolution the
equation

° 0 2 .
(— +v_ T> <— In T+C-+g+) = 0. (3.4)
it or/\ v

s
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When {+ = {- = 0, Eqs (3.3) and (3.4) become the one dimensional equations of Riemann
and the well known rarefaction wave [9] is their solution. In this case v— = (v, — v )/(1 —v,v)
is constant along the characteristics (and so is v, and T). As it was pointed out in [3] one
gets an approximate solution of (2.3a, b) with the initial conditions of a Riemann rarefac-
tion wave when one builds it up around the one-dimensional relativistic Riemann solution.
Indeed, one may then approximate

- v pe—
()" t
ttr) = v, | ar = ~—2 1), (3.5)
1—-ve, 1—wvgv, to

to

where vg is taken from the Riemann ({+ = {~ = 0) solution of Eq (3.4) (a constant on
{—) characteristics), and

3.6)

( : 1)
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ra(t) “we t ~v ln(t)
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Fig. 2. (a) Two characteristics leading from f, to a given point. (b) A typical temperature and rapidity

A . 1
initial profiles leading to a quasi-Riemann solution: &+ —In T == const, for t = 1,
8
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The asymmetry in approximations (3.5) and (3.6) follows from the properties of the charac-
teristics of the quasi-Riemann solutions of (3.2a, b). First of all v, > v_. This implies
that (see Fig. 2a) from the initial moment ¢,, to a given point ¢, r, the (+) characteristic
passes through a long stretch of small r’s while the (—) one passes only through r’s neigh-
bouring the end point r. On the other hand the temperature and velocity profiles of the
quasi-Riemann solutions are such that small r’s are at high temperatures and small v,’s,
and large r’s are at low temperatures and large v,’s (Fig. 2b). Therefore, in the first approxi-
mation, v, can be neglected in (3.6) but should be kept in (3.5). This is done by approxi-
mating v, &~ vg in (3.5) and neglecting it in (3.6).
With the approximate expressions (3.5), (3.6) and
Up— Vs

R — 3.7
Y 1—ogv, (3.7)

we can solve (3.3) and (3.4), since (3.4) becomes then one dimensional Riemann equation:

1 t
a(t,r) = — —InT—v,In (7) +const, 3.8
s 0
2 Vg t t 2
—InT+ ——In{— | +v,In{— ] = —In T, 3.9
VS I—URVS to to Vs

where Tg(, r) is the well known relativistic Riemann solution [9] of the one dimensional
problem. Solving (3.8) and (3.9) for T and « with the proper initial conditions we get

z )* (1 =)

T(t, 1) = Tx(t, 1) (7" , (3.10)
a(t, r) = ag(t, 1) +1 v In{—], (3.11)
1_URVS to
where
1. Te(t,
ag(t, ) = — —lnl(—i). (3.12)
vs TO

Tx(z, r) one obtains (see e.g. [9]) from the trajectory of a point of the temperature profile,
r(Ty, t), at constant temperature Ty

1. T
tanh|{ — —In — | —v,
Vs TO

1 Ti
1—v,tanh| — —In-—
Vs TO

(T, 1) = (1=10) + (T, to), (3.13)

by solving it for Tg. Note that r(Ty, t,) specifies the initial conditions (the initial profile
of temperatures). The relations (3.10)-(3.13) give a complete approximate solution of our
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basic equations (2.3a, b) with the initial conditions at ¢ = ¢, identical to the ones of the

Riemann one dimensional simple relativistic wave. The physical significance of these solu-
tions is discussed in the following section.

4. Numerical solutions

In this and the following sections we present some of the numerical solutions of

the equations (2.3a, b) with particular emphasis on their dependence on initial conditions.
We have considered three kinds of initial conditions:

(@) The Riemann simple wave initial conditions, Fig. 2, given by (3.12) with ¢ = ¢, [8].
Thus by giving an initial profile of T(¢,, r) one determines the rapidities through (3.12).

These solutions are very much like the ones discussed in Ref. [3] and are well approximated
by (3.10)-(3.13).
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Fig. 3. Comparison of the approximation (3.10) with the exact solution of the equations (3.2) at ¢ >~ 2.6 fm

with the Riemann initial conditions at ¢ = #, = 1 fm. One sees that the curves are undistinguishable on

our plot even after the relatively long time after the beginning of hydrodynamical evolution (f, = 1 fm)
(compare also Fig. 4). We always stop the plots at the critical temperature T, = 200 MeV (In T, = 5.3)
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(b) The static initial conditions in which a{t,, r) = 0 for all r, i.e, there is no radial
flow of the quark-gluon plasma at the beginning. Here, introduction of a confinement
of plasma to within the critical surface does modify its evolution relative to a unrestricted
hydrodynamical expansion. Nevertheless, after a relative short time, the quasi-Riemann
relations are restored and further evolution goes as in (a).

(c) The perturbed static initial conditions in which perturbations are introduced
into the «(to, r) = 0 condition, i.e. rapidities locally different from zero. Again, the quasi-
-Riemann wave gives — in the arerage — a reasonably good description of the plasma
evolution. These results are discussed in the next section.

Now let us supplement () and (b) with some details. In the case (a) the space-time
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580+ 0554
t=1.2 fm
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Fig. 4. Time-evolution of the temperature profile of the plasma confined within the region T > T, and
of the corresponding profile of the transversal rapidity . One can observe a ring of the plasma separating
from the main body of matter and disappearing below T = T.. Note that the evolution of the ring is
determined by its internal hydrodynamics, hence it moves independently from the central part of plasma
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evolution of the system is such that the condition of restriction of hydrodynamic expansion
to within the region of space-time determined by the critical surface, T, = T(t, r), — we
call it confinement of plasma — is trivially satisfied. Indeed, the space-time evolution
given by (3.3) and (3.4) goes along the characteristic (—) whose slope increases with in-
creasing r and decreasing T. Thus the critical surface, which has lower T(= T,) than any
point inside, moves faster (with increasing r) or slower (with decreasing r) than any point
on a characteristic which starts inside. Therefore the characteristics can never catch up
with the critical surface and there is no ““‘communication” through the differential equation
(3.4) of the inside with the outside (or vice versa).

Fig. 3 shows a confined quasi-Riemann solution generated from the Riemann initial
condition compared with the approximate solution (3.10). They are undistinguishable
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Fig. 5. (a) Comparison of the temperature profiles of the confined (solid line) and unconfined (dotted
line) plasma at ¢ = 2 fm, with the static initial conditions. The quasi-Riemann solution (dashed line) is
also plotted to show that it describes well the main body of matter even at the time when the transient
(the ring of plasma) is still around. (b) Long time after the system gets rid of the ring (# = 3.8 fm) the con-

fined solution is yet still better represented by the quasi-Riemann solution (hence also by the approximation
(3.10))
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on the logarithmic plots. The computer generated solutions obtained with and without
confinement give identical results.

Let us turn now to the static initial conditions, (b), which are as follows: we take the
temperature profile as in Fig. 2(b) but set « = 0 everywhere at = ¢,. (Indeed, we are not
aware of any convincing arguments that the newly created quark-gluon plasma should
satisfy (3.12), hence the initial conditions depicted in Fig. 2(b).)

Fig. 4 shows the space-time cvolution of the plasma confined to the region with
T > T.. One can observe a ring of plasma separating from the shrinking main body of
matter and disappearing below T = T..

In Fig. 5 (a) the temperature profile of the confined plasma at r = 2 fm is compared
with (i) the solution for unconfined plasma (also with the static initial conditions) and
(ii) the solution with the Riemann initial conditions. One sees that the quasi-Riemann wave
is quite close to the confined solution for the main body of matter even though the system
has just barely got through the process of expelling the ring of plasma. From Fig. 5(b),
at a later time ¢ = 3.8 fm when the transicent ring has long since disappeared, one sces that
these two solutions are even closer to each other. So, although it does make a difference
whether the plasma is or is not confined, the main difference is just a transient effect.

Fig. 6 shows some isotherms and characteristics for the non confined and confined
plasma. We see that lack of confinement does lead to communications between regions
separated by the critical isotherm. Introduction of confinement removes this effect.

Before closing this section let us sumumarize: From Figs. 4 and 5 one can infer that
the system —— in spite of the fact that its initial conditions are not the ones depicted in
Fig. 2(b) — becomes quickly a quasi-Riemann wave. In fact the transient effect which
takes shape of a ring of plasma separating from the main body of the plasma and then
disappearing, lasts only ~ 109 of the lifetime of the plasma. The remaining process
looks just like the one started with the initial conditions of Fig. 2(b). The approximate
solution (3.10) stays close to the machine generated one with the static (non Riemann)
initial conditions.

5. Non-smooth initial conditions

One may also wonder what are the consequences of possible local disturbances in-
troduced into the initial conditions at ¢ = t,. In Figs. 7 and 8 we show some examples
of evolutions of plasma with disturbed (relative to the smooth initial conditions we have
considered so far) initial conditions. We can see that, although disturbances last as long
as plasma lives, they do not grow with time but *“ride on the back™ of a quasi-Riemann
wave (Fig. 7). This lack of damping presumably results from the lack of dissipative effects
in our equations: the energy, which is conserved, gets transferred from the temperature
to the flow of plasma and back. A disturbance introduced into ¢.g. temperature profiles is
promptly reflected in the velocity distributions and vice versa.

The parameter which is important in determining the amplitudes of these oscillations
is the sound velocity v,. This follows from the relation (3.8) which is an approximate
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integral of motion. Thus

1
do =~ 4 (—— In T) —A(vgIn 1)
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v T (.1

AT
and, for a given A«, small v, implies small - Fig. 8 confirms this observation.

The possibility of a prompt transfer of energy between « and T degrees of freedom
might drastically change the picture of plasma evolution. For instance, a fluctuation of
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Fig. 7. An example of the non-smooth initial conditions with a small disturbance of v, % 0 introduced

at ¢ = 1 fm in the middle of the plasma at rest (a). We can see a prompt response of the temperature distri-

bution (b). The amplitudes of the disturbances remain small for as long as the plasma exists. The bulk

of high velocities at the edge of the plasma is the re-adjustment of the flow to comply with the quasi-Rie-
mann propagation
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velocity of the order of Av ~ 0.6 leads to a local cooling close to T, ~ 200 MeV within
At ~ 0.5 fm, when the initial temperature T, ~ 330 MeV. This is illustrated also in Fig. 8.

Clearly, our model without any dissipative effects built in is too crude to be very
realistic. Nevertheless, the proximity of T, and T, may lead to a comparatively easy break-
-ups of the plasma into a few tubes separated by a matter below the critical temperature.
Whatever that matter might be, it would probably interact with the plasma leading the
two phases back to the plasma phase, provided the average temperature were high enough
and lasted long enough.

6. Summary and conclusions

We have investigated solutions of the hydrodynamical equations describing space-
-time evolution of the quark-gluon plasma with cylindrical symmetry along the collision
axis. In our analysis we have tried to take into account (although in a rather limited sense)
the effects of a phase transition from plasma to hadronic matter. Since the relevant equations
are non-linear, the character of the solutions depends, in general, in a non-trivial way on
the assumed initial conditions. We have investigated three types of initial conditions: (a)
the simple wave (Riemann) initial conditions, (4) the static initial conditions, and (¢) some
locally perturbed static initial conditions. Our main conclusion is that in all these three
cases the behaviour of plasma can be — on the average — described very well by the
approximate quasi-Riemann solutions (Egs (3.10) and (3.11)). First, it turns out that
after relatively short time (compared to a total life-time of the plasma) the Riemann rare-
faction wave provides a good description of the quark-gluon plasma. Second, the local
disturbances do not increase with time but fluctuate around the Riemann wave.

This situation indicates that by smoothing out the oscillations and transients — a pro-
cedure which, hopefully, does away with the non-essential but does not disturb the essential
features of the plasma evolution — we can determine quite reliably the lifetime of the
plasma and its transverse cross section when it reaches the critical temperature.

It turns out (see Figs. 4 and 5) that, for large nuclei of radius ~ 7 fm, the transverse
rarefaction wave is some distance from the center of the cylinder when the critical tempera-
ture is reached. This means that some sizable fraction of plasma whose transverse flow
is still zero goes through the phase transition. Thus the transverse rapidities of hadrons
emerging from this part of plasma are approximately determined by 7, since the trans-
verse flow is nil. We can also see that, due to the Bjorken cooling, the transverse rapidities
in the region of the rarefaction wave are also small. So, the transverse motion of our model
results altogether in small transverse momenta.

Finally, we would like to comment on the significance of the fluctuations inside the
plasma. According to our calculations the fluctuations in velocity can induce some fluc-
tuations in temperature which are so large that they can bring the plasma close to the critical
point T = T,. Were this the case, the fluctuations could play an important role in deter-
mining the lifetime and the evolution of the plasma. However, one should bear in mind
that our discussion does not include any dissipative effects which might smooth and damp
out these fluctuations. In fact also the fast re-adjustment of the solutions with the static
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initial conditions to the quasi-Riemann evolution (Figs. 4 and 5) is possible because of the
prompt response of the velocity distribution to the initial temperature distribution. This,
again, may look different when a dissipation is important. Thus an analysis of such effects
for the quark-gluon plasma is of importance to give credibility to the hydrodynamic equa-
tions (2.1) and (2.2).

APPENDIX

We construct the confined solutions using the following procedure. First, we replace
the original profile of temperatures ACB by ACB’ (Fig. 9): the section of the original
profile which is below T, is replaced by a constant T' = T,. Then, we solve the hydrody-
namic equations with these new initial conditions in the whole space. Two processes regulate

s ma s - —— m—

Te

t=1fm

t=3 fm

Fig. 10. Schematic view of a transverse cross section through a confined quark-gluon plasma whose
temperature and transverse rapidity profiles are given in Fig. 4
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the motion of C (critical surface): (a) a decay of the high temperature region due to the
transverse flow of matter, (b) the overall Bjorken cooling due to the longitudinal expansion.
In the neighbourhood of C the temperature may either go up (process (a) dominates) or
down (process (b) dominates). When T goes up (above T.), C shifts to larger r’s up to the
point at which 7 falls below T, (because of (b)). When T goes down (below T.), C shifts to
smaller r’s until 7 becomes larger than T,. After each iteration, in all regions where T < T,
the computer sets it equal to T..

One should stress that the above described procedure is equivalent to introducing
in the neighbourhood of C just a skin of 2 lattice steps deep kept at all times at T = T,.
What happens beyond this skin is irrelevant. This means that in effect the hydrodynamical
equations are being solved inside the space-time region with temperatures 7 > T.,. It also
means that when the original region occupied by plasma splits into e.g. two (see Fig. 10)
regions with T > T, they evolve independently from each other.

To summarize: The computer program works as follows. After each iteration the
newly obtained temperatures are checked at each point of the space lattice starting from
the center. Where T > T, — the temperature is accepted, where T < T, — the tempera-
ture is set equal 7,. The boundaries of the critical surfaces are determined by the coordi-
nates of the first points at which T goes through 7, (either going up or down). That is to
say: the coordinate r of the first point at which T falls below T, determines the internal
boundary (see Fig. 10). The coordinate of the next (going towards larger r) boundary
determines the point at which 7" goes above T, (Fig. 10).
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