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BOOST-INVARIANT VORTEX IN RELATIVISTIC FLUID*
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Hydrodynamic equations describing the Lorentz-boost-invariant fluid with azimuthal
symmetry are generalized to include the rotational motion around the symmetry axis. The
solution with no radial motion does not exist for fluids whose entropy is proportional to an
arbitrary power of temperature.

PACS numbers: 47.75.+f

It was recently suggested by Bjorken [1] that the boost-invariant solutions of the
hydrodynamic equations may be useful in description of the time development of the
quark-gluon plasma, possibly formed in high-energy heavy ion collisions. In Ref. [1]
only the longitudinal motion of the plasma was discussed. It was shown in Ref. [2] how
to include the radial motion of the plasma for the system with full rotational symmetry
around the collision axis. The discussion of the solutions in this more realistic case was
given in Ref. [2] and [3]. The purpose of the present note is to show that the result of Ref.
[2] can be generalized to include also the rotational motion of the plasma around the
collision axis. As an illustration, we discuss the simplest solution of so obtained equations
of motion: a boost-invariant vortex rotating around the axis of the collision. We show
that such a solution does not exist for liquids whose equations of state, Eq. (21), belong
to a class which includes the one of the black body radiation as a special case.

The hydrodynamic equations are obtained from the conservation law

9,T" =0 (1)
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and the well-known formula for the energy-momentum tensor of the perfect fluid
= (¢+p)U"U" - pg", )

where ¢ and p are energy density and pressure of the fluid (in the local rest frame) and
U* is its 4-velocity. Assuming that the considered system is independent of an arbitrary
boost along the collision axis (z-axis) we conclude that ¢ and p can depend only on
t =12 — 22, rand ¢ where z, r and ¢ are cylindrical coordinates. Furthermore, we assume,
following Ref. [1] and [2]

U* = y(1, 7, z[t), 3

where y = (1 — v* — 22t)” Y2 and 7 is the component of the velocity of the fluid
orthogonal to the z-axis. v can, in general, depend ont,r and ¢.
In the following it shall be convenient to split v into radial and transverse parts

b = 0,40, @
where
- r
De = ¥ (5)
- . T
v, = pn X e (6)

Here 71 is a unit vector in the direction of the z axis,

Following Ref. [2] we shall assume that there is no ¢ dependence of the scalar
quantities considered, i.e. that the system exhibits full rotational symmetry around the z
axis.

Substituting Eq. (2) into (1) we obtain

U'[U"d (e+ p)+(e+ p)d, U"] +(e+p)U*3,U"~8"p = 0. D
Multiplication by U, gives
U*0,e+(e+p)o,U* = ®)
and thus Eq. (7) can be written as
U'U*0,p—0"p+(e+p)U*,U" = 0. Q)

Using Egs. (3)-(6) it is not difficult to show that for any function w(t, r) of 7 and
one has

T .
U'dp =y " p+yo.y, (10)

and that

. T 1 , U ,
a,U =it vty vt — +7'v,, 1)
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where dot denotes partial derivative with respect to time ¢ and prime that with respect
to r. These formulae, substituted into Eq. (8) give

yé+yve’ + G+ () +yv./r+7/0) (e+p) = 0. (12)

Following Ref. [1], this equation can be rewritten as an equation for the entropy of
the plasma. Using
e+p=Ts; deglds=T, (13)

we obtain at the plane z =0

(rsyt) +(rsytv,) = 0. (14)

This equation expresses conservation of entropy [4]. For any other plane z # 0 the corre-
sponding equation is obtained by Lorentz boost.

For v = v, (i.e. v, = 0), Eq. (14) is identical to that obtained in Ref. [2}.

Second equation can be obtained by multiplication of Eq. (9) by the 4-vector

(1,0,0, z/t). (15)
One obtains, after some algebiaic manipulations
v2yp+yvep +(€+p) G+vy) =0, (16)
which, using Eq. (13) gives
o(Tye) +vTy) = 0. an

For v = v, it is identical with the second equation of Ref. [2].
The last equation is obtained by multiplication of Eq. (9) by the 4-vector (0, Et, 0).
The result is
(rTyv) +o(rTyn) = 0. (18)

We thus obtained 3 equations (14) (17) and (18) for 4 unknowns: T, s, v,, v,. They
should be supplemented by equation of state and then the system is complete.

For illustration, we shall now discuss the solutions of Eqgs. (14), (17) and (18) in the
case when there is no radial motion, i.e. for the fluid which is simply rotating around the
collison axis. Using the condition », = 0 we obtain from Eq. (14)

syt = A(r), (19)
where A(r) is an arbitrary function of r. Similarly, it follows from Eqgs. (17) and (18)
Tyv = B(r), 20)
where B(r) is another arbitrary function of r. Assuming the equation of state in the form
s = QT", | 1)
we can easily obtain 7 and v in terms of A and B. First we notice that

Sy = A, (22)
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where A = QB*/A. Eq. (22) implies that v depends only on At and is not difficult to solve.
However, these observations contradict the original equations (17) and (18). To see this,
let us observe that in the limit v, - 0 but for oz, # 0, Eqs. (17) and (18) imply
a consistency condition

1 1 ,
—(Ty) = — (rTyv), (23)
v r

which, using Egs. (19)—(21) can be rewritten as
1 , 1 ,
— (B/v)’ = — (rB) 2)
v r

{we still work in the limit v, —» 0). Eq. (24) has far-reaching consequences if we remember
that v is the function of A¢ and that B is a function of r. To satisfy that we have to require

A'JA =ajr BB =bA'lA, (25)
where g and b are constants. Consequently, we obtain
A= (rr))" B =(rr)® (26)

with arbitrary constants rg, r;.
Eq. (24) can now be solved for v and we obtain

v = (AP [[A+ A4, X))

where A is another constant and ¢* = 1+ 1/ab.

It is easy to see that Eq. (27) is inconsistent with Eq. (22) and thus a boost invariant
vortex does not exist in ideal fluids with equations of state given by Eq. (21).
Consequently, an arbitrarily small fluctuation with v, # 0 changes discontinuously the
solution with v, = 0, which is therefore unstable under such fluctuations.
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