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THE CORRESPONDENCE CONSIDERATIONS IN RELATIVISTIC
QUANTUM MECHANICS
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The correspondence of the previously given relativistic quantum mechanics of spinless
or spin 1/2 particle with the quantum nonrelativistic and the classical relativistic mechanics
is proved. In the Galilean quantum case the appearance of the familiar transformation
phase factor is explained and the origin of the mass superselection rule indicated. In the
relativistic classical case the equation for trajectories and the covariant equation of motion
for spin are obtained. The conditions are found under which the usual theory of relativistic
wave equations is of relevance (in some particular reference frame).

PACS numbers: 11.10.Qr, 03.65.-w

1. Introduction

The present article is a direct continuation of two papers [1, 2] devoted to the study
of relativistic quantum mechanics. We refer to [1] for general idea and ail denotations.
Here (in Section 2) we show how the proper time relativistic quantum mechanics of {1]
reproduces the theory of the Dirac or the Klein-Gordon wave equations when the mass
spread of the particle can be regarded as small and the physical time can be regarded as
a parameter. This approximation is essentially the case of small /c2. Moreover, this deriva-
tion sheds some light on the non-covariancy of the usual single body quantum mechanics
of these wave equations. In Section 3 and 4 we show that by accepting the additional
assumptions about smallness of 1/c or h one is led to the non-relativistic quantum mechanics
or the relativistic classical mechanics respectively. All three limits will constitute the lowest
orders in some asymptotic expansions in powers of small parameters. We shall not investi-
gate rigorously the conditions for correctness of these expansions. Nevertheless our pro-
cedure will be justified heuristically’ (as is the case in most correspondence considera-
tions).
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2. Expansion around definite mass and space-like hypersurface

Two fundamental parts of quantum theory are: the evolution equation of states and
the formula for computing physical quantities, and these two elements will now be consider-
ed successively.

Let S(x) be some real function of space-time variables x*, and let @(z, x) € H (the
Hilbert space of the model) for all 7. We introduce the following transformation ¢ — ¥:

P(7, x) = ¥(1—S(x), x). @.n
If & is a physical state as defined in [1] then ¢ satisfies the evolution equation
Mo(t, x) = HP(7, X), 22)
ih 0 . . .
where' we have denoted M = — — e When expressed in terms of ¥(1, x) this equation
¢ ot
becomes
[A(r,+c%0,S - M)—M]¥(z,x) = 0 2.3)
and when further Fourier-transformed according to
R\ V2 e,
¥(t,x) = (Zn -7) J' ef W(m, x)dm 2.4
c
it yields
[#(r,+mc?3,S)— m]¥(m, x) = 0. @.5)

The existence of the Fourier transform ¥ follows from the definition of the physical state
(see postulate IV in [1], Section 4).

Let us now assume that the extent of @(z, x) in the time-like direction is small for some
large interval of 7 values, i.e. for every such t ®(z, x) is concentrated around some space-
-like hypersurface. We choose S(x) so that with flowing t these hypersurfaces are described
by the equation

S(x) = 1. 2.6)

¥(z, x) is then peaked around zero of the first argument, with some spread, say 47. We
assume also that the state @ is concentrated in mass around some value 7, ; hence f’(m, x)
is also peaked in the first argument, around m = my,, with spread 4m. The product 47 - dm
is of order of the factor h/c? in the exponent in the Fourier transformation rule (2.4).
This factor we assume to be small and we shall expand equations and formulae in increasing
order of smallness. It will be convenient to replace #/c? by £2h/c?, investigate the asymptotic
expansion for ¢ —» 0 and at the end set ¢ = 1. We assume the state torbe minimal in the
sense that At ~ € and Am ~ &. To this end let us set

P(m, x) = f(m—me)p(m, x) Q.7

a
! We recall that c.# = c.#(m,) = — 12+ ocal in the spin 0 case and e/ = c.H(my) = y*n, for
(4

spin 1/2.
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where fe & (the Schwartz class of functions); f, f are concentrated around zero and
w(m, x) is slowly changing in m, compared to F. fis assumed to have the following prop-
erties:

[ if@)de = [ |f(m))2dm = 1,

§ Lf@iPtde = [ | f(m)iPmdm = 0, (2.8)
and the “moments” defined as
ih k+l o~
Kign = (_ 1)! (__2_> Jf(k)/‘(l)(T)Tn‘IT (2'9)
c

are rapidly decreasing with the growing order of k+/+n. For the sake of expansion we
replace ¥ by

'n—mo

P (m, x) = f( ) w(m, x) (2.10)

€
and @ by?

d)‘(z x) = 2 5 h —1/2 %(t—&'{x))ma
(1, x) = { 2ne =3 e ¥ (m, x)dm. (2.11)

Obviously ¥,., = ¥, &,_, = ®. ¥, satisfies the same equation (2.5) as ¥. With the

s m—mg |
substitution m’ = ———— it can be stated as
£

Fom") [#(r,+(mo +em')c?0,S) —(mg+em’)p(mg +em’, x) = 0. (2.12)

As f (n’') confines strongly the scope of m', the last equation can be expanded in powers
of em’, which yields

[#(m,+moc?8,S)—mgJw(ng, x) = 0 (2.13)
in the lowest order; the higher order equations are

[ (m,+ moc?e,S)— mo ]9 D(my, x)

d
= (n+1) [(1- - Jl(nu-f-moczé”S)) Y (mg, x)
Mg

n 9> 2 (n-1)
=y m AT+ mge“0,S) -y (mg, X) |, (2.14)

where y®(m,, x) = — + ¥(my, x). In the spin 1/2 case (2.13) is the Dirac equation
oniy
(the term myc?d,S changes the electromagnetic gauge only). In the spin O case, if after

the equations are written down the arbitrary mass scale ¢ in 4 is chosen as ¢ = m, (which

2 For ¢ | @, satisfies equation slightly modified as compared with (2.2), but at the end we shall
put € = 1.
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can always be accomplished — see Appendix 1) the equation (2.13) is equivalent to the
prejection equation® &_w(mg, x) = 0 and the Klein-Gordon equation for &, y(myg, x)
(see Appendix 2). Both the Dirac and the Klein-Gordon equation need the initial condi-
tions to be specified on a space-like hypersurface, which is consistent with the confinement
of @(z, x) for t = const on (around) S(x) = const. (c¢f. tormula (2.19) below).

Let us now turn to the calculation ot physical quantities. We note first that if @ is
a slate and g is an observable then the action of g on @ can be transformed onto w(m, x)
with the use of formulae (2.1), (2.4), (2.7), and we denote this transformed operator by
g,- Only in the case of ¢ = m, (or p,) does the operator g, differ from ¢ and

q, = m,+mc?y,S. (2.15)

The formulae (2.10) and (2.11) remain valid for @; = g9 (with corresponding YA’I and
y,(m, x) = q,y(m, x). Therefore we can expand the form <{&,|®, > = (&,, 49, ) used
for determination of physical quantities (see [1]). To this end let us denote

h _I/ZV iLi::m A
Y (1, x) = (27‘[82 —2) j e ¥ (m,x)dm (2.16)
2/
so that
7—8(x)
D1, x) =V, { ——— ,x]. 2.17)
e .
Expanding (2.16) formally one obtains
i—cim T . 1 ih "
V(e x) = e Z "l <’ & e) Sy o 5. @)
n=0

With the help of (2.17) {&,|®, > takes the form
f@Ind, (v, x)d*x = & [ Win¥, (v, x)8(z—S(x)—et')de'd*x.

The expansion of ¢ and substitution of (2.18) for ¥, results in

z €k+l+n
(D,|P,,> =¢ E AR (— DKygn

ky,n=0

n

d
X —— J Ot Pmy, x)5(c - S(x))d*x, (2.19)

dt"

where xy,, are the “moments” (2.9). The confinement of @ around S(x) = 7 is explicit.
In order to secure the reality of physical quantities (which could possibly be lost in each

% In both spin cases we denote &4+ = %(lin). &4 are projection operators.
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order separately) we regard half the sum of (2.19) and its complex cojugate as the proper
expansion of {(g)¢ (P |P.):

ao‘ £k+l+n
<q>¢,<¢:‘¢5) = %8 EE”"!

kin=0

( - l)nKkln

"

d .
" j (g, )0+ (g )Py ®) (e, x)0(x— S(NA*X, (Kpw = Kign)-  (2.20)
It is quite obvious that the whole expansion (both the evolution equation and the
expansion (2.20)) is Poincare covariant in each order separately (all v* are transformed
in the same way as the corresponding ¢, and S is a scalar function).
In the lowest order (2.20) yields (¢ = 1)

(ge{ @D = 4 [ (wing,w+(g, ) nw) (Mo, x)6(1— S(x))d*x. (2.21)

The next to lowest order vanishes (because of (2.8)). The function S(x), as an operator,
is a measure of time, and in the considered approximation we have
(M =mg)De =0, (Sx)=1)De =0, (k=1)
in particular
(M>e =My, <(S(xPo =1 (2.22)

In general even the lowest order approximation is not self-contained if S(x) is not known.
Let us, however, assume that S(x) is such that in some reference frame it depends on the
time variable only: § = S(t), and let T = §-'. Then

, ) dT
Bz =S(1) = 61~ T(x)) =

and the lowest order approximation reads now

_ T wtng p+ (@, 9)tny) (mo, cT(x), X)d*x

(@alr) = 2 § yip(mo, cT(1), X)d*x ’ (223

dT
where the factor o has been cancelled. 7(t) is equal to the physical time which becomes
T

a parameter and all reference to 7 can be dropped. The term myc?6,5(x) (here proportional
to &,,), which adds to 7, in accordance with (2.15), can be absorbed into* 4, and we obtain
a self-contained theory (here {g) (#) indicates dependence on physical time)
spin = 1/2

(71, —moc)p(mo, x) = 0,

§ w1y +(ap)ty’y) (mo, ct, x)d>x 224
2 [ ytyOp(my, ct, x)d>x ’

()=

* More properly, compensated by suitable phase transformation.
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spin = 0
(n? —mc?)p(mo, x) = 0,

.‘ (9’(§+‘1§+)‘P+(€+q‘f+)?’ @) (Mg, ct, V)d X
2 { pp(mq, ct, X)d’x

@)= (2.25)

where ¢ = .y, The rules for computing physical quantities differ from these usually
employed, but for eigenvectors of observables proportional to matrix 1 (such as energy,
momentum etc.) they yield the same values. To illustrate other applications of these formulae
we compute the velocity and the energy:

spin = 1/2
(3 _
d . d t my, ct, X)d>
;{'(Z)(l):C . j’p: W’( 0 x) X
t <¢jZﬁ> § w1y p(mo, ct, x)dx
dr
(I W%y p(mo, ct, k')d%)”‘ _ el eime, et, x)dx
§ wty%w(mo, ct, X)d*x T ytu(mo, ct, X)d>x
e I
(By(y=c <n°+ ZAO> =c <mocv°+v°v At gA">
c
dz° o
= myC +e(4A”>
dr
_ mac 2 [ yty(my, ct, \)d>x+e [ AWty p(m, ct, X)d’x
§ v%y%p(mo, ct, X)d’x (226)
spin = 0

dz 2 .
d‘C m—o an
=c
P\
dt mg
. 2 s ak‘?’(mm ct, -;)dsx
[ (@r°g+19p) (mo, ct, dx "

1]
EX(t)=c <n°+ §A°> = myc <CZZ > +e(A%

ctf (En°¢+n%) (Mo, ct, X)d>x+e | A%pg(my, ct, x)d3x
| po(mo, ct, x)d’x
(.02l =3¢ (2.27)

d g —
. (X)) =c
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Note, for instance, that the formula for velocity of the particle with spin is the same as
usual; on the other hand, here an eigenvector of %% is not the eigenvector of velocity,
so that the familiar difficulty with velocity eigenvalues +c¢ does not arise.

However, the theory of (2.24) and (2.25) is not covariant as the scalar function S(x)
has to be transformed with the change of reference frame and we must return to the general
case of (2.21): the state which is confined around ¢ = const. in some reference frame loses
this property when viewed from another frame. This is, in our opinion, the reason why
the usual (first quantized) quantum theory of relativistic wave equations fails to be Poincare
covariant (though the equations themselves are invariant).

The assumptions of the present section (smallness of #i/c? and “minimality” of states
as described before (2.7)) are consistent with both the Galilean and the classical limits.
These two will be now considered.

3. Expansion around the Galilean limit

Let us again choose some reference frame and assume that in that frame S = S(z),
so that the physical time is a parameter and as a function of proper time is T(z). Following
the classical analogy we assume that the physical time is equal to the proper time i.e.
T(1) = t+1,, or S(t) = t~—1,. Werepeat now the procedure of Section 2 replacing, however,

h f

consequently l/c by ¢/c (in agreement with the substitution — - g? —12— performed in
c ¢

the preceding section). In that way instead of (2.12) the equation

Af M— Mg 1 - - :
f( - A me+ —c— E,n)—m] pim, 1, x) =0 3.0

i €
>
c ¢

il - -
is obtained (E, = ih P —eA®%), In order that A%, 4-do not fall out from E,, & in the limit,

1 - . . . 1
we assume that A4°, - A have-asymptotic expansions in powers of = beginning with
terms of zeroth order. This assumption is consistent, on the formal level, with the Maxwell
equations and the Lorentz transformation laws. The lowest order so obtained forms the
Galilean limit of electrodynamics discussed and called “magnetic” by Le Bellac and Lévy-
-Leblond in [3].

In contrast to the preceding section here w(m, ¢, x) cannot be regarded as independent

. . 1 : :
of &. Denoting ¢ = &,y for spin = 0 and ¢ = &9+ — &y for spin = 1/2 one obtains
&
from (3.1):
spin = 1/2

1 &2 . -
(—; E¢,— <2mc+ " Ek) E_—y- n) e(m, t, x) =0, 3.2)
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spin =0
(m+ ) _w(m, t, x) = (m—9) (20—Dg(m, 1, x),
2
" -.2 8 2 Ead
(ZmEk—n + — Ek) p(m, t,x) =0 3.3
c
(for spin 0 case see Appendix 2). The expansion of ¢ in powers of &2:
()
@ = 1! Pn (34)
n=0

is consistent with the above equations and transforms them into infinite series of equations.
Each of these will be in turn expanded around m = m, in analogy with (2.13), (2.14).
The idea of the procedure being clear, we shall write down the lowest order equations only
(choosing ¢ = m, in the scalar case):

spin = 1/2
(% E&, —2mocl_—7 - r?) Po(Mo, 1, X) = 0, (3.5)
spin = 0 R
¢-wolmo, 1, x) = 0, (3.6)
@moE,— 1) pe(mg, t, X) = 0. (3.7

(3.7) is the Schrédinger and (3.5) the Lévy-Leblond equation [4]. For the calculation
of physical quantities the formula (2.20) should be used, where for y’s their expansions
are to be substituted. We leave it to the reader to convince himself that the lowest and
next to lowest order terms yield (¢ = 1)

spin = 1/2
_ [ obE.ad, +Eq8_ —E_gé.)po(mo, 1, X)dx
<q> (t) - I ‘ngﬂpo("lo, t "x’)de ' (38)
spin = 0
- >3
a5 (1) = § 9o(€+9E +)po(mo, t, X)d’x 39

.ﬁ'go%(mo, t -‘x.)dzx
and that the resulting formulae together with (3.5), (3.7) constitute the usual nonrelativistic
theory.

| € -
Let us now similarly replace — by — in the transformation law of y: y'(my, t, x)
¢ ¢

= Wy(m, t', X) where

-

¢ = y[t—-b— g.(;-a)],

(x—a) v
2

x' = R1 [32—21’+(y—1) -—v—'—B-yi:’(t—-b)]
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and W = 1 for spin 0, and W is the bispinor transformation for spin 1/2. This transforma-
tion law is consistent with the expansion (3.4) and in the lowest order we get
spin = 1/2

-

po(mo, 1, x) = [(1* Ei— §-§5+> €, S(R) 4 +6—5(R)€,]
X oMo, t—b, R™'(x - a—u(t— b)), (3.10)
spin = 0
Pu(ing, 1, X) = (Mg, t—b, R™I(E—a—p(t—b))) (3.11)

(for the matrix transformation in (3.10) see Appendix 3). Both transformations form
representations of the Galilei group. We recall, however, that not only y but also S have
to be transformed. In general this would break the Galilean invariance, but we again
leave it to the reader to verify that in the considered approximation the change in S can
be completely compensated by the translation in #4: t; = to+b and by placing the factor

gh THETEENTTO) 0 the rhus. of transformations (3.10), (3.11). This appears to be

the origin of that familiar factor, which is here the nonrelativistic remnant of the function
S(x). The theory of (3.5)(3.9) is covariant with respect to transformations (3.10), (3.11)
(with potentials 4" transforming according to the magnetic limit of electrodynamics).

Finally, let us take the product of two states @,, @, with different masses m,, m,.
We obtain a formula similar to (2.19) in which ~,,, are replaced by

i

.'h L G i c—l ny—my)te
(-1 (L{) J/"")f”’(t)r"e”E ( dr.
4

These coefficients, being the Fourier transforms of Schwartz functions, vanish with decreas-
ing ¢ faster than any power of &. This is how here the nonrelativistic mass superselection
rule originates. Similar result is obtained if different values of f, are assumed.

4. Expansion around classical limit

In the present Section we follow the procedure of Section 4 once more, but here the
Planck constant will consequently be assumed to be small.

The substitution of ¢ TK(x)qo(m, x) for w(m, x) in equation (2.12) yields

Af m—my, l- Y 2 e
f( ) M (P,,+0,,(mc S+K)— EA"> -~m] p(m, x) = 0. (4.1)

€ [
8n
p= =7 P 4.2)
n:

We assume now the expansion
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and replace P, in (4.1) by the operator P, (m), defined in the Appendix 4 and having
the following properties:

Am—mopy 2 p ) = P P 2
f - eu(m) ~ &7, c=1x(M) = Py, (M) = €°P,.

These properties can be interpreted as realization of # — e2h. The equation (4.1) yields
in the lowest order in € for m = m,

[./( (5,,(:11002$+K)— SA,,) —mo} Polm, x) = 0, (4.3)

|/
(see Appendix 4). With the denotation v, = — (6u(moc2S +K)— < A,,) this is equiva-
Mg 4

ent to
v? = ¢? 4.4
and for spin = 1/2
("vu—)po(mg, x) = 0, (4.5)
for spin = 0
&_@olmo, x) = 0. (4.6)

The lowest order of the continuity equation which follows from (4.1) can be transformed
with the help of (4.5), (4.6) into

CF)(x) =0 4.7

. [
where F = (§+¢7’o)ff+¢’o(mo, x) for spin = 0 and F = ¢}y°po(mo, x) = ) ‘P,E‘Po(mm_x)
for spin = 1/2. It is simple matter to show that in the considered approximation
[ v*F(x)8(x — S(x))d*x

[ F(x)d(t—S(x))d*x

() =

If the support of F was of linear dimensions of order of ¢ at ¥ = 0 (i.e. on hypersurface
S(x) = 0) then due to (4.7) F remains concentrated on every hypersurface S(x) = 1, hence
in the lowest order

2 (1) = (K2 (1)), (4.8)
i.e. the trajectory is a line tangent to the field ¢*. (4.4) now shows that in the present limit

d
¢ is indeed the wusual classical proper time. Due to (4.8) there is 76((2) ()
4

= (1"9,G) ({z) (7). Setting G = ¢* and taking (4.4) into account we arrive at the classical
equation of motion:

d4? d
mo 73 <20 () = EF (23 (@) S22 (4.9)

dt
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Finally, we give the equation of motion of spin along the trajectory, which results from
application of the above approximation procedure to the original equation of motion
for §* given in [I].

d
TSy = (P (5™ = Fi()) (5™ (4.10)
T mgce

Among the quantities (S*") only spin variables (§*> = +¢"*(§’*> are independent,
as due to (4.5) there is

(8% = — (g% x<§>). (4.11)

The independent equations resulting from (4.10) take in the rest frame of the particle the
form

d - = -
(& = (S x A2 4.12)
T myc

It should be stressed that here the covariant equations for covariantly transforming
physical quantities in the classical limit are obtained.

APPENDIX 1

The arbitrariness of mass scale

The generator of the evolution .# for a spinless particle [1] must employ, for dimen-
sional reasons, a mass scale g:

x
M = — 1’ + oal. (AL1)
QC

Apart from the metric operator = a+o! the matrices «, at enter into the theory only

o ,
through — and ga'. We shall show that the change of the mass scale is equivalent to
)

&

certain transformation conserving the metric:
UtyU = 1. (A1.2)

Indeed, the matrix transformation

U= \/—9’7 oo+ \/—9—- oot (AL3)
0 0

fulfills (A1.2), leaves all operators proportional to matrix 1 unchanged, and
o o
U'—U=—, U 'gtU =gt (Al4)
0 Y

(the anticommutation rule for «, af has been used).
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APPENDIX 2

Spinless particle and the Klein-Gordon equation
The equation
o
(Ec—z n*+ gat-m) w(m,x) =0 (A2.1)

which appeared in connection with the spinless particle is equivalent to
cX(om—m2a—p*at)yp(m, x) = a(n? —m*c*)yp(m, x). (A2.2)
Combining this with the square of (A2.1) we see that (A2.1) is equivalent to the set

(72 —=m*c*)yp(m, x) = 0,

(om—m?*a— p*at)yy(m, x) = 0. (A2.3)
With the use of equalities
odfgy = (1-2)¢,, ol = —(1+a)- (A2.3)
the last equation is shown to be equivalent to
(m+ )¢ -y(m, x) = (m—p) Qa—1& ., p(m, x). (A2.5)
APPENDIX 3

The Galilean limit of the bispinor representation S(A)
We apply to S(A) = S(B)S(R) (R — rotation, B — boost) the e-limiting process.

o & 1. . .
The substitution of — for — in B yields in the two lowest orders
c c

k
€
B*, = o' +e", &g = —Z— ey = 0. (A3.1)

It follows that S(B) in the same ordei is

-L;“ {3 € -
S(B) = T 14 3%')'0}’. (A32)

Substituting now y = {,p+eé_gp in
v = S(B)S(R)y

we obtain in the lowest order in &*

/ S+(R) 0
(f + (PO) — -l; - (5-(' ?’0) (A3.3)
$-9o ~ 2% “§yEiSL(R)  S(R)J\&-%o

where S;(R) = £:S(R)¢ . The transformation (A3.3) is a representation of the Galilei
group [4]. It can be checked that higher orders are consistent with the expansion of .
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APPENDIX 4

The evolution equation in the limit h — 0
Wishing to obtain the expansion of the equation (4.1) when # — 0 it is convenient
to write P, as
P, = [a,(m~mg)*+ay(m—mo)+(1—a,(m—mo)* —a(m—mg))1P,, a;€R
and substitute

P, - P,(m) = [a‘(m—mo)2+ea2(m—m0)+82(1——a1(m—mo)z—az(m "mo))]Pw

It is immediately seen that P, (m) has the properties stated in Section 4. The simplest
choice would be a; = a, = 0, but it would lead to contradiction; since in the lowest
order in ¢ we would obtain an algebraic equation for g,(m, x) which could not be satisfied
for different values of m simultaneously. If on the other hand a;, # O the lowest order
equation reads

e
[4( (al(m—mo)z P,+0,(mc*S+K)— - A,,) —m] @o(m,x) =0
[

and for m = mg simplifies to the algebraic equation (4.3).
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