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EXOTIC COMMUTATORS AND IDEAL MIXING
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It is shown that ideality of meson octet-singlet and 15-plet-singlet mixing can be ob-
tained from requirement of vanishing of definite set of exotic commutators. Enlargement
of the set does not lead to mass degeneration (as it happens for the octet and 15-plet) but it
leaves the ideal mass formulae unchanged.

PACS numbers: 12.70.+q

1. Introduction

To explain the mass spectrum of hadrons one follows either a group theoretic approach
based on a broken flavour symmetry or a dynamic one based on the theory of quark
interactions (QCD). In the present paper we follow the group theoretic approach. This
is the reason why we deal with particle states belonging to some definite representations
of the flavour group and it is indifferent to us what is the dynamics gluing quarks into
particles.

In such an approach there are perturbative (spurion) methods and nonperturbative
ones. The difficulties of the spurion method are well-known. The choice of the simplest
set of spurions and their perturbation order (usually the first one) is imposed by requirement
to have a calculation scheme with a prediction power. In some cases transformation
properties of the simplest spurions can be determined on the basis of the quark model.
For example, from the quark mass spectrum m, = my # m, it follows that the simplest
spurion breaking SU(3) to SUQ2);®U(l)y is T3 (i.e. the eighth component of an octet).
Geneially the situation is not so simple (e.g. the well-known alternative (3,3*)@(3*, 3)
or (8, N®(, 8) in the chiral SUB)®SU(3)). Yet a more complicated situation arises
in the case of groups with a spin subgroup (e.g. SU(6)s, SU(6)y; see, for exampie, discussion
in [1]).

The fundamental difficulty within the spurion method is that quantities determining
representation mixings remain free. For example, to obtain the Schwinger mass formula
for the SU(3) nonet a particular assumption on the octet-singlet transition in the mass
matrix must be done (the so called Okubo Ansatz). An enlargement of the internal symmetry
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to the one including the spin subgioup (c.g. SU(3) to SU(6)s or SU(6)yw) is not a way out
of troubles. Indeed, the Okubo Ansatz can be justified in SU(6)s or SU(6)w but only as
result of a special and rather arbitrary choice of spurions.

In the nonperturbative methcd the mass operator is a sum of an invariant part and
noninvariant one but with exactly determined transformation properties [2-4). The essential
point is that such a structure of mass operator is exact, i.e. it is not an approximation
based on the assumption that the symmetry breaking is weak. So, we do not in fact expect
that noninvariant coniribution is smaller than the invariant one. The representation
mixing plays a significant role. For example, it is shown [3] that if there is no octet-singlet
mixing in SU(3) then all the octet masses are degenerated.

In all nonperturbative methods known to us [2-8] (see discussion in Section 4) restric-
tions on masses follow from commutdtors

[Gu’ [mza Gb]] =0,
[Gm [mz’ [1712, Gb]]] =0, (L.1)

...............

where m? is the mass operator squared, {G,} are group generators and (g, b) stand for the
exotic combination of indices. Let us remark that restrictions (1.1) can be obtained in the
p — oo limit from the requirement that the exotic commutators of group generators with
their time derivatives vanish

[Gaa Gb] = 0,
[G.. Gy] =0, (1.2)

Below, this nonperturbative appreach is called the exotic commutator method (ECM).

In the present paper we investigate, as examples, the restrictions on masses following
from ECM for meson nonet in SU(3) and 16-plet in SU(4). 1t is shown that the mass
matrix of mixing states is determined almost exactly (there is a freedom in choice of signs
of some nondiagonal elements) by commutators with time derivatives only to third order
in SU3) (or SU(4)) case (and only to second order in the case of SU(3)®SU(3) (or
SU@)®SU(4)) chiral group — see Appendix). The commutators with higher derivatives
do not give further restriction. Mass matrix determined in this way corresponds to the
ideal mixing. These results are obtained in Sections 2 and 3 (for nonet and 16-plet respec-
tively). In Section 4 some models in which exotic commutators vanish are commented upon.
The possible mechanism of ideality violation are discussed in the final section.

2. SU(3) nonet

Let |ng> be the isosinglet state from octet. If there exists an SU(3) singlet state in,)
that mixes with {ng)> then

ineg> = Adnd>+2A,m2, (2.1)
oy = — Az > +2:1n2D, (2.2)
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where
A+ =1 (2.3)
and |y,>, |n,) are physical states. Let us introduce the momenta (k = 1,2,3,..)
16Tk = <nsl (M) ng), (2.4)

where m? is the mass operator squared. From (2.4) and (2.1) we obtain the set of equations

Ay +a3n, = [nsls, (2.5)
31’71 2'72 = ['ls]z, (2.6)
}-x'h 2'12 = [?’Is}?n 2.7

............

where
no={mim®ln);  (i=1,2).

Calculating matrix elements of commutators (1.1) in the p — oo frame between octet
states and using as intermediate states one-particle ones from octet we obtain the mo-
menta

[”8]1 = ';— al+%‘ b’ (2.8)

with a = n, b = 2K—n, n (K) is the mass of pion (kaon) squared.
Let us discuss now some properties of the system of equations (2.3), (2.5)-2.7).
a. If only Egs. (2.3) and (2.5) are taken into account one obtains

Af _ n2—[nsls , A= _[i’ls_]_li'll (2.9)
N2y M2—My
Assuming 1, > r; we have
m < sy <12
b. If Egs. (2.3), (2.5) and (2.6) are taken into account, we have the consistency condition

[ns]a—(ny+n2) [Ms]y +1im2 = 0. (2.10)

This is the Schwinger mass formula.

¢. There are two consistency conditions for the system (2.3), (2.5)+2.7). One is (2.10)
and the second one is

[ne]s—=(m1+n2) [ns]2+mn2[ns], = 0. (2.1
From (2.10), (2.11) and (2.8) we obtain
a+b,

i+,
N1, = ab.
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So

Ny =mn, #H,=2K-n 2.12)
and

=1, =2 (2.13)

The relative sign of 4; and 1, remains undetermined; it depends on the sign of the matrix
element
o = {nglm?ing)
since
AA(n—m) = a = i([’ls}z—([’?a]x)z)uz-
: 1 2 : . iy
If « <0, we have 4, = &+ iR Ay = F 3 Thus we obtain the ideal mixing (see
V
Appendix). There is no ideality when « > 0.
d. It is now obvious that any additional equation

An’ + a3 = (761

for k > 3 is simply an identity.
e. If we apply the above method to the octet only (4, = 1, 4, = 0) then we obtain
i) from Eq. (2.9) the GMO formula

n = [ns]y = + (4K—n);

if) from Eqgs. (2.10) and (2.8) the equality n = K = n,;

iii) the equations containing third and higher momenta do not give any further
restrictions.
So, the representation mixing is necessary in ECM to remove the mass degeneration if mo-
menta higher than first are taken into consideration.

3. SU4) 16-plet

Let |5s> and |n,5> be the neutral isosinglet states from 15-plet and {5,) be an SU(4)
singlet state. Let us define the parameters 4;, J;, x; (i = 1,2,3) as

ng> Ay Ay A3 n>
s> | =10, 62 63 In2> 3.y
10> K Ky Kj3 ins>

where |n;> (i = 1, 2, 3) are physical states. The parameter matrix is orthogonal.
Let us introduce the momenta

[nsde = <nsl (m*)* Ing, 3.2
[n1s)e = <l (mz)k M1, 3.3)
[o]i = <{nsl ('"2)" (115> = {nysl (mz)k [ng>. (34)
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According to these three kinds of momenta three systems of equations can be written
(instead of the one system (2.3), (2.5)+(2.7) in the case of SU(3))

A+ 25 +A3ns = [nsle (3.5)
o' + 835+ 83 = [M1sle (3.6)
'{151’7';‘*'/:252’7’5'*'/1353'72 = [«]s, 3.7

k=0,1,2,3,... and [nglo = [n15)o = 1, [a)o = O.

If we consider only first three equations from each system (3.5)-(3.7) we obtain mass
formulae that can be regarded as a generalization of the SU(3) Schwinger mass formula
to the SU(4) [8].

When we consider first four equations from each system then we obtain the following
consistency relations

Aq[ns]o—Az[nsli +4s = [ns]s,
Ay[nys]a=Az[M1s]i + 45 = [155]s (3.8)
Ay[a],— Az[e], = [a]s,
where 4; (i = 1, 2, 3) are invariants of the squared mass operator
Ay = ni+n2+1s,
AZ

iz + 1213+ 3k,
A = ninans. 3.9)
From exotic commutators in SU(4) we obtain
[nsde = §a*+3 b,
[nisde = $a"+d5 b5+ 3 8 3.10)
i
WG

K—n=F-D,

[a]k = (ak - bk)s

wherea =n, b = 2K—n,¢c = 2D—n.
Solving the system (3.8) with the momenta (3.10) we find

Al = a+b+c,
A, = ab+bc+ca, (3.11)
A5 = abc.

Comparing (3.11) and (3.9) we conclude that
Ny =mn, fy=2K-n, n3=2D-n
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and from (3.5)(3.7) we obtain

It is now easy to see that equations with higher momenta do not give further restrictions.
Similarly as in the SU(3) there are two essentially different parameter matrices. Indeed,
the relative sign of A; and x, remains undetermined

Agi(fy—n2) = {nglm?ined = i(['ls]z_([’18]1)2“([“]1)2)1/2-
Choosing {nglm®|n,> < 0* we obtain the ideal quark contents of physical states

1 - -
Wl) = :/"—2:(uu+dd)> )
> = Iss),
ns) = ICE>-

The quark contents are not satisfactory if {nglm?|i,) is positive.
Similarly as in the SU(3) case the representation mixing is necessary to avoid the
degeneracy in the 15-plet if the second and higher momenta are taken into consideration.

4. Some remarks on models

The absence of exotic terms on the right-hand side of Egs. (1.1) can be meant either
as a particular dynamic assumption, or as a property of some models. We would like to
make some remarks on two models based on the SU(3) (or SU(4)) symmetry.

a. The free quark model

The relations (1.1) can be proved [7] if the symmetry breaking is caused by the nonin-
variant piece of quark mass operator in the Lagrangian

L = g(iy,6"+M)q,
ie.
M = M, +4Mis in SUQ3);
M = MinV+AM1}'8+AM2'115 ill SU(4);

where {1,} are generators of quark representation in SU(3) (or SU(4)). Then

d'l H N . N
[T,,(t), = Tb(t)] - f 3G 0 (00 [Aa (M, . [M, 4] . JaGrt). (1)

n

So, there is no exotic term on the right-side of Eq. (1.2).

! This sign has been obtained in the broken SU(8)w symmetry [1].
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Let us consider the matrix elements of commutators (1.2) between one-particle states
in the p — oo limit. Selecting one-paiticle intermediate states and using the standard
method (e.g. see [9]) we obtain

dv
<“ [Tm [’"2’ Tb]] iﬁ>l-particle = j‘—"} Qab(v)’ (42)
<1i [Ta’ [,712’ [’”29 Tb]]] |ﬁ>1~parlicle = jvaab("L (43)
{a! [Ta, [1112, [mz. [mzs Tb]]]] lnﬁ>1.panic1e == ~[‘1""9;:17("')- etc., 4.4)

where the integrals represent many-particle contributions. The spectral functicns g,,(v)
are calculated in the p — 20 limit and they are sums over many-particle intermediate
states |n)

0a(v) = (2m)* ¥ 8%(p+g—p,) {<o, pID(0) in) {n|Dy(0) 1B, p>

— <2, pIDy0)In) {nD(0)iB, P> }z-0s
where v = pog, and D, = 4,V (4-divergence of vector current V%). The Regge-pole model
for the asymptotic behaviour of ¢(v) gives [10]

o(v) ~ v,

where «.(0) is the intercept of the trajectory with exotic quantum numbers. We see that
convergence of the many-particle integrals requires ,(0) < 0, 2,(0) < —1, and 2,(0) < —2
for (4.2), (4.3) and (4.4) respectively.

b. Nonlinear realization of SU(3) [3] and SU(@4) {4]

There are Goldstone particles in such theories. Restrictions on the mass operator
are a consequence of the assumption about the Regge asymptotic behaviour of Goldstone-
-hadron scattering amplitude approximated by tree graphs. If 2,(0) < 0, then [see [3, 4])

<1I[T;l’ [“nz‘ Tb]]*ﬁ)l-panicle = 0:
if 2,(0) < —1, then (see {3))

<1'[Tas [,nl’ [’7129 Tb]]]iﬂ>l-panicle = 09
if 2,(0) < =2, then

<ai[Ta’ [mz’ [mz’ [le’ Tb]]]]lﬂ>1-particle = Oa

where combinations of indices (a, b) are exotic.

To end the remarks on models we note that the experimental situation about exotic
trajectories and especially their intercepts is far from being clear. In the SU(3) case the
requirement a,(0) < —1 does not contradict the experimental data [11]. However it i
not known to us if «,(0) < —2 does not.
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5. Final remarks

Generally, the mass formulae corresponding to the ideal mixing are not well obeyed
by the experimental values of masses. The most spectacular disagreement happens in the
case of the 0~ nonet in SU(3). Gn the other hand the 1~ nonet in SU(3) is often quoted as
an example of a good agreement. But in SU(4) the 1~ mesons do not obey the mass formulae
for ideal mixing (e.g. from y = 2D*—¢ one oblains my;, = 2.75 GeV).

Different mechanisms might be rcsponsible for the violation of ideality of mixing.
We do not discuss that ones which are connected with QCD (as, for example, the U(1)
problem) but mention scme of those related to the broken flavour symmetry.

a. Contribution of many-particle states

The crucial role for applicability of ECM plays the value of intercepts «,(0). This
problem has been discussed in Section 4. If the multiparticle contributions appear to be
finite then the mass sum rules should be moditied. However such a modification would
be strongly model dependent.

b. Mixing of the larger number of one-particle states

There is a possibility in the framework of ECM to admix additional flavour singlets
(e.g. gluonium) and/or full multiplets (e.g. radially excited states [12, 13]). There are some
arguments in favour of taking into account the radially excited states:

— the masses of SU(4) 16-plet cover the mass region of radially excited nonets of SU(3);
— the standard mixing (octet + singlet) in the 0~ case disagrees not only with the mass
spectrum but also with the Alexander-Lipkin sum rules [12].

This mechanism of ideality violation is now under consideration. The results will be

given elsewhere.

c. Additional mixing of ideal states via gluons

This additional mixing seems to be necessary. However definite results can be expected
culy for heavy multiplets (when &, <€ 1). A situation is similar to that in QCD when meson
spectrum is calculated : good results are obtained only for heavy mesons (y(cc), Y(bb)) [14].

The authors are very grateful to Professor V. Ogievetsky and Drs P. Kosinski and
J. Rembielinski for illuminating discussions.
APPENDIX

To obtain the mass formulae corresponding to ideal mixing in the chiral SUB)®SU(3)
symmetry we apply a little different formalism.
The mass matrix for the octet isosinglet |ng» and the SU(3) singlet 5o is of the

form
s @ (A1)
jud 7’0 )
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where ng = {nslm*is>, fo = {Nolm*|ite> and x = {nglm?|ne) = {(nolm*lng). In the
SU(3) symmetry we can calculate 5g, 17, and 2 from the momenta [#g]; (i = [, 2, 3) using
the following relations

[ns]1 = s, (A2)
{’78]2 = rlg+a2! (A3)
(185 = na+(2ng+no)2>. (Ad)

The values of 1g, o and o can be calculated as well in the chiral SUB)Y®SU(3) symmetry
from following exotic commutators

[Tm Tb} = 09 (AS)
[7:13 Tb] = 0 (A6)
[4a T,] = 0, (A7)
(4, T,] =0, (A8)
[4, T,] = 0. (A9)

where 7T,+ A, are the generators of SUB)QSU3).
From Eqgs. (A5)-(A9) we obtain? [ng],, [1s], and [a]; = {ngim*ine) = 2aK. Using
the relation

[2]2 = a(ng+no) (A10)

we obtain i, independently of the « sign.
In both cases (SU(3) and SUBIQSU(3)) we get

ng = 3 (4K—mn),
o = %(ZK‘*’”),
@’ = 8(K-n).
The eigenvalues of the matrix (Al) are
n=mx, 1 =2K-n=m

independently of the sign of «.

Because of
1 2
>\ (55 = e\ [ined
N NG J6
ine> 2 LI D
n = = i'15
0 J6 3

2 For the details of the calculations see Ref. [5, 6] where the commutators (A5), (A7) and (A8) only
have been discussed.
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1 -~ -
where |y, = —\/—i-(uu+dd)>, [ney = [ss) and choosing

22
€= — 2+/2 (K—mn)
3
we have
> = inw, 2> =0
i.e. ideal quark contents corresponding to the ideal octet-singlet mixing with tg § = — \/5.

The opposite sign of « leads to nonsatisfactory quark contents.
Let us make some remarks on the chiral case.
a. Commutators containing derivatives higher than second order do not give further

restrictions on masses.
b. The commutators (AS5), (A7) and (A8) without additional assumptions do not

give information on octet-singlet mixing [5].
c. If we use only the commutators (A7)-(A9) then we get n, = n (ns and o being
free parameters). So, the mass equality n = 7 (typical for ideal mixing) can be obtained

as well under weaker assumptions.
d. All the SUB)®SU(3) results can be copied in the SU@)®SU(4) symmetry.
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