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A self contained description of the formalism for dealing with soft gluon emission in
QCD jets is given.

PACS numbers: 11.15.—q

1. Introduction

Perturbative QCD not only predicts the emergence of hadron jets in hard collisions,
such as in e-e- annihilation and in large p, events in hadron hadron collision, but also
predicts very peculiar features for these jets. For long time the analysis was centred in the
study [1] of the jet radiation in the region of phase space of fast emitted hadrons. Only
recently [2-6] it has been discovered how to extend this analysis to the phase space region
of the soft radiation.

In order to describe the problems arising in the soft region consider the most character-
istic quantity for the description of the jet structure: the fragmentation function D{Q, x)
and its moments

1
dx
DM@ = | —x"D@ ) (L.1)
4]
which, apart for inverse power corrections, in perturbative QCD are given by
Ql
dq2 2
Dy(Q) = Dn(Qo) exp wquN(Gt(q ). (1.2)
Qo?
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This representation is the result [1] of theorems on factorization of collinear singularities
in QCD. The anomalous dimensions yy(a) are in general matrices (with quark and gluon
indices) which can be computed by perturbation theory and have the general expansion

0

aY |, ;
() = (“ Ay. (1.3)
n

I=1

At large Q, due to asymptotic freedom

1
WQH = ——s—s, 121b=11C,—2N,, 1.4
(Q ) bIn (QZ;‘/AZ) s A ! ( )
only the first term in (1.3) are in general relevant. This is the leading collinear log approxi-
mation which have been largely discussed in the past. This approximation however is
asymptotically correct only in the region of x finite, i.e. for distribution of the fast hadrons
within the jet. In fact the region x ~ 0 corresponds to N =~ 1, where in general all 4} in

(1.3) become singular. In fact for the gluon-gluon anomalous dimension one finds [1, 7]

) CAI 2aC4.> s
(B LYy

o(N—1) (N —1)*
which leads for the fragmentation function to an expansion of the form

z o n z 1 n+p-1
xD(Q, x) ~ Z (—r-) Z Cop(In (Q%/Q5))" ™7 <ln ~x~) (1.6)
n=1 p=0

This shows that in the phase space region

X< (g)g, o<1, 1.7

the In (I/x) powers are as important as the collinear In (Q/Q,) powers. Correspondingly
all terms in (1.5) equally contribute thus spoiling the leading collinear log approximation.
On the other hand the analysis of this phase space region is very important for the study
of the jet structure. Note in fact that the hadron multiplicity corresponds to the N = |
moment, and that the bulk of the jet radiation is in the range (1.7).

The singularities in (1.5) for N = 1 are of infra-red (IR) type since they arise in Feyn-
man diagrams whenever the energy of gluons vanishes. The structure of these singularities
in QCD is far more complex than in QED, and the question whether all singular terms
in (1.5) are computable in perturbative QCD has been widely debated in the past years
[8, 9] but only recently a perturbative technique has been developed [2-6] to compute all
singular terms in (1.5).

In order to explain the interest of such a calculation let me recall some important
results of this analysis.
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a) The multiplicity. A direct consequence of the fact that y,(«) can be computed
for N = 1 gives, due to (L.5), y(») = const \/x and consequently for the multiplicity

n(Q) = Dy-4(Q) ~ exp Ve In (Q%/4%) (1.8)

2C,
nh

b) Depletion of soft radiation. The fragmentation function has a maximum for
energy E ~ \/QA and the radiation in the central region is inhibited. As it will appear
from the calculation this is due to a genuine quantum effect peculiar of QCD: a destructive
interference is taking place among soft gluons.

¢) Branching structure. In spite of this interference the emission of radiation in a QCD
jet can be described as a classical branching process for gluons and quarks. This implies
that Monte Carlo simulation can be still constructed [10, 11] to obtain quantitative results.

d) Screening of colour charges. The colour charges are screened by Sudakov type of
form factors, i.e. are preconfined [12]. This property not only holds for the fast part of the
radiation, as shown in Ref. [9, 12], but also for the soft part [10, 11]. As suggested [9, 12]
this fact can be used to construct a reliable phenomenological model of hadronization
[11].

In this lecture I describe in detail some aspect of such a recent analysis: it is mainly
devoted to the description of the formalism for dealing with soft radiation and it is based
on the formulation of the soft gluon problem given in the forthcoming Physics Reports
article [6] written in collaboration with A. Bassetto and M. Ciafaloni.

The plan of the lecture is the following. In Section 2 it is reviewed the soft gluon
technique which allows one to set up a recurrence procedure to compute the general n-gluon
emission amplitude. This will be done by using approximations, partially known from
QED, which allow one to calculate the leading IR and collinear singularities. In Section 3
a factorization formula is deduced which provides the physical basis for the understanding
of the mentioned depletion of soft emission. In Section 4 the general emission probability
is computed by using the results of Sect. 2. In Section 5 it is shown that, in spite of all
interference, the emission process can be described as a branching process and it is deduced
the probability density for the branching that has been used to construct the Monte Carlo
simulation in Ref. [10, 11].

the constant ¢ in (1.8) can actually be computed: ¢ =

2. Saft gluon emission amplitudes

Since only gluons are relevant for the IR singularities I restrict the analysis to the
pure gauge theory; quarks will be included only incidentally. In this Section I describe
an iterative technique to express the n-gluon emission amplitude which is useful to prove
factorization theorems (see Sect. 3) and to compute emission probabilities (see Sect. 4).
For the moment virtual corrections are neglected and will be considered later. This tech-
nique is based on soft approximations, which allows one to reliably compute only the leading
IR and collinear singularities. The corresponding technique in QED, the eikonal approxi-
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mation, gives the Bloch-Nordsiek exponentiation leading to uncorrelated photon radiation.
in QCD instead one expects strong correlations due to gluon self interaction. In spite of
this some of the classical soft photon approximation of QED can be used also in QCD.
In particular in QCD one can introduce the soft gluon vertex approximation. Consider
the three gluon vertex

Q.¥:¢

p+q;6;a

In the soft limit p?> ~ ¢* ~ 0 and E, < E, one has

igfetAp+ @) %L (q) ~ glalT|by2p"3;, 4 .

where, similarly to the eikonal vertex approximation in QED, the helicity A is conserved
and the neglected terms vanish as E,/E, for E, — 0. T are the SU(3) colour matrices in the
adjoint representation

alTby = ify; Y. TT =C,=3. 2.2)

Note that the indices of the matrices are the colours of the two hard gluons in the vertex.

In order to set the iterative technique and the notations let me relate M, the ampli-
tude for three gluon emission, to the amplitude M, for two gluons. In the following I consid-
er the emission out of a colour singlet source at rest. By using the eikonal vertex appoxi-
mation the emission amplitude for three gluons of momentum, colour and helicity p;, b; and
/;, in the phase space region

E, < E, ~E, ~Qf2, 2.3)
is approximately given by
Y’

1P3

{M;lbibybs) ~ g {<M2|b’1b2> <b'1|Tb3!b1>

u3
P2

P2Ps

+{Ma|byb5> (b3 T™|b,) } &13(ps), (2.4)

where the conservation of helicity in (2.1) gives

{M,|bibs> = My(piA1; P2A2)Bs,p, (2-5)
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since the source is a colour singlet. Eq. (2.4) can be written in a simpler way by introducing
the classical colour current for the soft gluon p,:

a3 #a
P P2

Jpy = TP 2 T S (2.6)
P1Ps 1235
where 77 is the colour matrix for the gluon i such that on a general colour state one has:
T|b,b, ... b,> = by ... b} ... b,) <bj|T"b)>. 2.7
In fact (2.4) can be written as
(M3ib1bybs> = g{M,J""(p3)ib1by e, (ps), (2.8)

where the two terms in (2.6) represent the emission of the softest gluon p, from p, and p,,
with the corresponding colour matrices. Note that since the source is a colour singlet
one has

(My(Ty+T,)" byb,) = 0, 2.9

as can be checked from (2.5). This ensures the current conservation p4Ji(p;) = 0.
A similar expression holds if gluons 1 and 2 are substituted with quark-antiquark:
In (2.6) one has to replace T; with 4;, the matrices in the fundamental representation.
The first essential differences with respect to QED appear in the case of M,. In the
strongly ordered region

E, < Ey; < E,~E, ~Q)2, (2.10)
consider the graphs

p
g " 'R
P, P,
P P
P
2 pz 92

In the eikonal approximation for the vertices in (2.1) the first two graphs give

w?

1 1 1
g <M, { T + Tf‘Tf”} |by by > Py i (2.11)
(P3+Pa)P1 (P1DPs PiPs3

The difference with QED is the non commutativity of colour matrices so that one can not
use the eikonal identity

1 1 1 1 1
+ = . (2.12)
(P3+Ppa)P1\P1Ps  P1P3 PiPs P1P3
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However in the strongly ordered region (2.10) the first term in (2.11) is the most singular
collinear contribution in (2.11) and corresponds to the emission of the softest gluon p, from
the external line p, (first graph). In the following only this contribution will be kept thus
implying that only the leading collinear singularities are reliably computed. On the same
basis one can approximate the propagator

1 1
(ps+pa)Py  Papy

, E4<E,, (2.13)

thus the contribution to M, in (2.11) is approximated by

43 iy
P o —”l—} b,b,>. (2.14)
pPiP3 PiD4

g? < M, { TP

Note that in QED Eq. (2.12) allows one to keep also non leading collinear contributions
and gives a result analogous to (2.14). Thus in QED these non leading contributions are
cancelled.

In the region (2.10) the contribution for the third graph can be expressed by repeated
use of eikonal vertex approximation in (2.1): first p; is emitted by the hard gluon p, ; then
the softest gluon p, is emitted by the external line p;, and one obtains

2 b p‘lu L rba p’;‘
g < M,y T{ —— {biT™iby) ibyby>. (2.15)
PiP3 P3Pla

These examples show how the full amplitude M, can be obtained in the phase space
(2.10): first the soft gluon p; is emitted from the hard gluons p, and p, thus giving the
amplitude M,. Then the softest gluon p, is radiated by the harder gluons p,, p,, and p;.
By using the previous expression for M; in fact one obtains the iterative form:

(Myibybybsbyy = g{M3J**(p,) |bybyb3>eri(pa), (2.16)

where J(p,) is the classical colour current for the emission of the softest gluon p, from
the harder ones p,, p,, p;:
3

23
J#s(py) = Z T p—”p— @2.17)
ira

The iterative structure in (2.16) and (2.17) can be generalized and the amplitude M, for
the emission of n gluons p,p, ... p, can be related to M, _,. In fact if p, is the softest gluon,
it is emitted by the harder ones via the classical colour current

n-1

Hn
Josn(p,) = E n""f‘—p-; E, <E,_, ... Ey; (2.18)
iFn

i=1
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and one obtains the reduction formula

(M,jbiby ... by ~ 8<Mn—x-]b"“"(Pn) 1b,b, ... bn—1>8;:(pn)9 (2.19)

which corresponds to the diagrams

A 1
Pz P

i

This reduction formula is obtained under the following approximations. i) Eikonal vertex
formula (2.1). This implies that only leading IR singularities are under control. i) The
softest gluon is emitted only by external lines and the propagators are approximated as
in (2.13). This implies that only leading collinear singularities are under control. The
approximations in ii) are not necessary in QED where one can use (2.12) and its generali-
zations.

The iterative structure in (2.18) and (2.19) can be used to obtain M, in the strongly
ordered region of phase space, e.g.

En << En—l < cen < E3 < E2 o El o Q/2. (2.20)

In fact in (2.19) the amplitude M, _, for the emission of gluons p, ... p,—, can be related
to M, _, by reducing the softest p,_, and so on.
Notice finally that for the conservation of charge one has (cfr. 2.9)

M (Ty+ ... +T,)%bby ... b, > =0 (2.21)

thus the emission current in (2.18) is conserved. This implies that instead of (2.19) one
may use the current

n—1

J(p,) = Z Ti( L ~"—>, (2.22)
. plpn r’pn

i=

with # a fixed vector. This form is useful to show the gauge independence of physical
results and to prove general factorization theorems.

3. Factorization theorem

The reduction formula for the softest gluon allows one to derive various factorization
properties according to the angular configuration of the harder gluons. Here 1 review
a particular case which provides the physical basis for understanding the mentioned inhibi-
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tion for soft gluon emission. Consider the emission from the colour singlet source of n+ 1
gluons p, p,, ... p, where in the c.m. the softest gluon p is emitted with large angles with
respect to the others. The gluons p, ... p, are in two opposite narrow jets J, and J, and
then the soft current for the emission of p can be approximated by

p!
I(p) = g AN ] (—‘1‘- - —qi)- (3.1)
pip q4,P 4q2Pp

i=1

Here g, (g,) is the momentum of a gluon in the jet J, (J,), and charge conservation in (2.22)
implies,

T,=YTi=-3T=-T,; (3.2)

iely ieJy

T;, and Ty, are the total charges of gluons in J; or J,. Within the approximations used
in Sect. 2 each jet J, or J, originates from a single gluon then T, and T,, are simply the
charges of the adjoint representation: T,z1 = T}2 = C,. Using now (2.19) one finds that
the emission of the gluon p factorizes:

29,9
My My > =~ g% MJIYP)™(PIM,> ~ g2C 2

I EEDTYE VAN 3.3
‘(qlp)(qu)< oM 33

Similarly to QED one finds then that the softest gluon emitted at large angle can only
probe the total charge of the system, while the charges of individual gluons are not resolved.

The important consequence of this fact is that the inclusive emission of p in this kine-
matical configuration is inhibited. In fact due to the Lee Nauenberg Kinoshita theorem
when Eq. (3.3) is summed over n, all IR and collinear singularities in |M,|* cancel against
virtual corrections. The emission of p in this configuration is then essentially given by the
Born contribution, a far non leading term. On the other hand the soft radiation requires
a large angular phase space which is then inhibited. As recalled in the Introduction this
physical effect is due to interference of soft gluons. In fact the factorization property (3.3)
is obtained by taking into account all possible emission graphs of the softest gluon p. This
class of graphs can not be reduced, in any gauge, to ladder type of Feynman graphs.

4. Emission probabilities

The results of Sec. 2 are used here to compute the n-gluon emission probability in the
soft limit. Virtual corrections will be discussed in the next Section. In the strongly ordered
region of phase space

E,<E,_;<..<<Ey<E,~E ~QJf2 4.1
the softest gluon p, can be reduced by (2.19) and gives for the probability

(MM, ~ — g M, JXpIM,_>; 4.2)
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where
n—1
(Pepi) 1 Eir
AR E BT ——2— = » RTE— : 4.3)
o (pkpﬂ)(pnpk’) ok E: éknfnk’
h#k'=1 k,k’
and
PPy
b = = 1—cos O 4.4)
Kk E.E, Kk

Here the form (2.18) for the current has been used, and the sum over the polarization
is substituted by — g,, since the currents are conserved. This corresponds to use the Feynman
gauge where the Feynman diagrams corresponding to (4.2) are given by

Similarly one can work in the axial gauge (4 - n = 0) and it is easy to show that this
still corresponds to (4.2) where the emission current is given by (2.22). The charge conser-
vation in (2.21) implies then that the reduction formula (4.2) is gauge invariant.

Eq. (4.3) shows explicitly both the IR (&, = 0) and collinear (¢,,&,- = 0) singularities
coming from the softest gluon p,. The dependence on the other momenta can be obtained
in a similar way by successive reduction of p,_, ..., p; gluons. This calculation however
can be greatly simplified by the following observations.

1) Note first that the current for the emission of the softest gluon p, scale as 1/E,.
This fact determines the dependence of |M,|? on the various gluon energies. In fact the
reduction of each gluon p; (i = n,n—1, ..., 3) brings a factor 1/E? and this gives

M,

Fn(Qh ety Qn) —_ (Q)4 Fn(Ql’ st Qn) (45)

E ... EX 2 E: . E?
where F, depends on the angular directions only.

2) In spite of the strongly ordered phase space considered (cfr. 4.1) the result is symmet-
ricin Ey, ..., E,. As a consequence of Bose statistic also the angular dependence in F, must
be symmetric.

3) According to (4.2) and (4.3) the dependence of F,(2,, ..., £2,) on the direction
of p, is in the form (&,,&,x-)~! k # k'. In fact the momentum p, does not enter in successive
reduction of p,. |, ..., ps. Due to the symmetry of F, the dependence of any other direction
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must be of the same type. Conditions 2) and 3) determine the form of F,:

: 1
F (@, ..,9Q)=h, : '?'* (4.6)
iyda o Sinih

perm.

with &;; given in (4.4).

Finally the constant A, can be obtained by computing the contribution to {M,|? for
the fundamental permutation in (4.6) i.e. the term (&,, ... £,,)~!. Consider, in the phase
space region (4.1), the successive reduction ot p, ... p;. The wanted contribution to |M,|?
can be obtained by the following steps.

1) For the reduction of p, in(4.2) one keeps only the terms with the factor (£,_; ,&, ).
This corresponds in (4.3) to the terms with (k, k') = (1, n) or (n, 1) (i.e. p, is emitted by
Pn-1 and py):

. 2 én—l 1
M,* = —g? —
' E: gn—l,nén,l

<Mn—1’1-}anb—1Mn*l>+"- . (47)

2) For the successive emission current of the soft gluon p,_, one keeps only the contri-
butions for the emission from p, and p,_,

P pyy) = b ey P2 gy (4.8)

1Pn-1 Pn—2Pn-1

In fact the two terms give the momentum factor &, ,_»/(¢, ,— 1,1 ,n—2). The colour matrix
operation is made by using the identity

—(TiTI T+ T TYTY ) <al T’y = C TiT;-,, 4.9)
and one finds
2 én—Z,l

[Mniz = ‘-g4c <
4 Et%Enz—l Cn-—l,n—lén—l,niu,l

My TETE My >+ (4.10)

Note that (4.10) has the same colour structure as (4.7). Therefore the reduction of p, .., goes
through similar steps. After the reduction of p, ... p; one finally finds

1 - $an
M2 > = —(gC,)"? :
Caw Y ENE3&s. &

(M,TITIM ) + ...

"

62,1

EZ .. E? {52,3 o an

where the charge conservation (T, +T,)?> = 0 is taken into account to give —7,T, = Cj,.
If instead of the fast gluon p, p, one has a quark antiquark pair, T; and 7, must be replaced
by 4, and A, so that —1,;4, = Cr = %. Notice that introducing Q* = 2p,p, = 2E,E,¢,,,
the final result in (4.11) can be written in the very symmetric form

iMn|2 = |Mzi2 % Q‘(gch)"_z zl (Siyiy -~ fi,.i,)_l, 4.12)

perm.

= |M,|* (g°C)""*

+ permutations of (3,4, ... n)}; (4.11)
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where the sum is over unequivalent terms. This result is obtained in the strongly ordered
phase space region (4.1) but due to its symmetry it holds in any other ordered region.

Let me now come to discuss the structure of the singularities in |M,|>. In Eq. (4.11)
there are n—2 IR singularitics as £; - 07 = 3, ..., n. Moreover there is & maximum number
of n—2 collinear singularities since at most n—2 variables £;; are allowed to vanish. In
fact consider for instance the contribution from the fundamental permutation in the phase
space region (4.1). Since p, and p, are opposite in the cm, the maximum collinearity comes
for ps ... pyparallel to p,,and p, ... py; , parallel to p,, where k = 2, ..., n. For this configu-
ration &, = & ;44 =~ 2 while the remaining &, are small, thus

&2 1 1

52,3 én,l 62,3 &k-l,k €k+l,k+2 én,l

1

(4.13)

This proves that for the leading collinear contributions, the only ones that are reliably
computed within the used approximations, the emission probabilities factorize in a forward
and a backward jet distributions.

5. Generating function and branching process

In order to discuss the structure of the emission process it is useful to introduce the
generating function. According to the factorization in (4.13) one may limit the discussion
to a single jet. Apart for virtual corrections the differential distribution for n-gluons in
a jet of total energy E = Qf2 is given by (cfr. 4.11)

n n

d’p - aC,\" ! - i
dv‘")=||—'25 E -1 —2 H—E e o G Tt e, (51
w 2F, n( X; >{< n) E? (Cirig -+ e yi) } (5.1)
1 1 1

perm.

where x; = E;/E. Similarly to QED, the IR and collinear divergences can be cut off by
attributing a virtual mass Q, to the emitted gluons so that

_ Pipj
u EE;’
.o s Gt 1\_s
1~g>§,j>%—E7 x—l2+.;c? Eéu. (52)

The upper limit £ is set to ensure that the radiation is not emitted in the direction opposite
to the jet. Since ¢ is related to the jet total aperture, the jet invariant mass Qj,, is related
to ¢ by

Qe ~ 2E%. (5.3)
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The generating function for the jet distribution in (5.1) is defined by

GyE,u) = E —u jdw(") E (aCA> J -‘{—)—‘—i
Xy
1

"

a*Q,
X P 0 ;=1 ) T(pyp2 - Pa)s (5.4)
7
1

where T, contains the angular dependence

I I 1
T:(Pan v Py = z 6(5‘51,:4-1)9(5;'.1“ —Ei,i+1)' (5.5)
Litt

From this expression one derives an evolution equation which allows one to take into-account
also the virtual corrections. As suggested in Ref, {5}, instead of considering as usual the
evolution in the jet mass Q,,,, because of (5.3), one may consider the evolution in &. In fact
by using the identity

-

c
5& Tc(Pl cPp) = Z Tdpy .- pk)TC(pk+l9 veis Puds (5.6)

k
one finds the evolution equation

1~¢
.9 c
¢ 55 Gelbs ) = 1 [ dz % Z(I:Z) [GAzE, 0)GA(1 - 2)E, W)~ G(E, ], (5.7

&

where ¢ = Qo/(E ./ £) and the virtual corrections have been included by the usual procedure
of replacing 1/(1—z) with the distribution 1/(1 —z);, which gives in (5.7) the additional
term — G (E, u) in the integral. This ensures that for u = 1 G(E, 1) = 1 is a solution.
The Lee Nauenberg Kinoshita theorem is then satisfied since G(E, 1) is independent of
the cut off Qo. Moreover the function G¢(E, 1) is just the total emission probability which
1s then correctly normalized. Note that the z-distribution in (5.7) corresponds to the soft
limit of the Altarelli-Parisi gluon distribution

2C,

TR (5.8)

P@z) = 2c,,( -

1—2z
+ — +z(l—z)) ~
1—z z

where P(z) at the leading collinear log level includes also IR non singular contributions.

It is surprising that, in spite of all interference graphs here included, Eq. (5.7) allows
one to interpret the jet emission as a tree process. In particular in the emission the opening
angles of successive branches along the tree are ordered. Such a structure implies then



289
that a Monte Carlo simulation for this jet emission can be constructed [10, 11]. In order
to describe the branching, the role of interference and the structure of Monte Carlo simula-

tion it is convenient to transform the evolution equation in (5.7) into the integral form by
introducing the virtual form factor 4(¢, E) defined by

& 1~
dV!
A(é,E)Eexp[-% f : f dzP(z)-f‘—], (5.9)
¢ 2n
éo &

where &' = Qo/(E\/?); g = /2 for & = &,. Eq. (5.7) takes then the form

4 1~g
d¢’ 4(¢, E)
GAE, u) = ud(é, E)+%j‘~§7 j dzP(2) - A((c 5 Gy (ZE, w)Gy (1—-2)E, u), (5.10)

o [

where A(¢, E) represents the probability for no branching while the second term describes
the fragmentation according to the graph

q? = 2E%z201-) €' (5.11)

(1—z)E,q2

In the phase space region

, 4192
¢ = ——"e < &L 5.12
) (1 — Z)E2 ¢ ( )

In the successive branching for g, and ¢, the iteration of this angular ordering gives
’:1, 52 < é' < 65 (5'13)
so that along the tree the branching angles are ordered. According to Eq. (5.10) the branch-

ing probability for (5.11) is given by

dé a A E)
dp = 1 —— — 0 6 \ 5.14
zé, ()2 A E) (E—EN0(¢" - E0(¢" &) (5.14)
which provides the basis for the Monte Carlo simulation of Ref. [10, 11].
To understand the role of interference observe that, when soft gluons are involved
(z - 0, or (1—z)— 0), the phase space region of angular ordering in (5.13) does not
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exhaust the full kinematical phase space of the tree graph in (5.11). The meaning of this
limitation is that outside the region (5.13) tree and crossed Feynman diagrams cancel
each other, while within the region (5.13) only tree graphs are leading.

Note that the mentioned inhibition of the soft radiation is a direct consequence of
this angular ordering: the emission of soft radiation requires a large angular phase space,
but, after a few branches the allowed decaying angle is shrunk to small values.

When no soft gluons are involved the region (5.13) corresponds to the fully allowed
phase space for the branching in (5.11) and one recovers the previous results of the jet
calculus [9, 13].

Many other important physical consequences can be obtained from these results on
the analysis of soft gluons. These have been examined by analytic asymptotic methods
[2-6] and by Monte Carlo methods [10, 11]. These numerical simulations have been
extended [11] to include a hadronization model which relies on preconfinement [12] of
colour charges. I refer for these results to the original papers and to the talk by B. Webber
to this School.

I should like to thank A. Bassetto, M. Ciafaloni and B. Webber for many helpful
discussions.
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