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Technical details of the structure of numerical computations of mass spectra are
presented and discussed.
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1. On a finite lattice

At present Lattice Gauge Theories {1] are showing to be a very useful tool: the possi-
bility of obtaining non-perturbative results, concerning the “supposed to be” theory of
strong interactions, is enormously appealing, and it is beginning to be exploited nowadays
(for a general review about pure gauge lattice gauge theory, non perturbative methods,
and related references, see the lectures of Peter Hasenfratz at this school [2]).

At the same time a complete turn over of the role of computers is happening in theo-
retical physics. From being simple (and somehow superfluous) instruments, they are going
to play an essential role in a remarkable part of the theoretical research: they are going
to be built by implementing the fundamental features of the problem that has to been
solved at an hardware level [3, 4], from the physicists in first person. A general spreading
of a precise “weltanschaung” about numerical computing in theoretical physics seems
to be happening.

We should enter a little bit deeper in our problem, now. The crucial step that leads
to the possibility of using a wide class of non perturbative methods is the rotation of time
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leading from the Minkowskyan formulation in (d—1,1) dimensions to the Euclidean

one, in d dimensions. Now the factor
e”%, (1.2)

where S is the action of the interesting theory, is a probability measure (when properly
normalized). It will be the Boltzmann factor of a Statistical Mechanics in d dimensions
(3+1 = 4 in the real word). Now the main goal is reached: lot of knowledge has been
accumulated in Statistical Mechanics, and we can use it to study our (Lattice) Gauge
Theory.

Consider the correlation length £ of such a theory (expressed in units of lattice spac-
ings). We are on a lattice of length L, and we would like the conditions

I <¢, (1.3a)
<L (1.3b)

to be satisfied. Condition (I.3a) means that we are close enough to the continuum limit:
the coarse graining of our lattice should be forgotten. If we define” § = 2—1:, , Where g2
is the coupling constant of the non abelian gauge theory we are considering, and N is the
number of colours (SU(N), N = 3 in principle, is the gauge group we care about), (1.3a)
will be satisfied in the limit in which § — oo. Condition (1.3b) means that the lattice is big
enough, and that finite size effects are negligible.

Now we realize that, in view of a numerical simulation, the situation is not so easy : if
we want to simulate, for example, a pure gauge SU(3) theory on a lattice containing 10*
sites, we will need to store in our computer of the order of 700,000 link variables (4 - 10*
links, times 18 variables for link). The lattice sounds small, the number of variables enor-
mous.

The success of Monte Carlo methods for studying pure gauge lattice theories is based
on a crucial result that makes this difficulty avoidable : for the operators used to compute,
for example the string tension [5, 21] or the mass of the 0*+ gluonic excitation, the contin-
uum behaviour given by the Renormalization Group (see 2) sets in when &g ~ 1 (where
by &5 we indicate the typical correlation length in the gluonic sector). This will happen,
for example for SU(3), for g2 ~ 1.

Exploiting MC techniques for analyzing a lattice gauge theory coupled to fermionic
matter fields is a more difficult task. We will just quote here the 3 main difficulties : first
the anticommuting character of the fermionic fields, implying a strong non locality of
the effective action, obtained by integrating out the fermionic fields. The second point
is that the bare quark mass is not allowed, on a finite lattice, to be arbitrarily small : it is
controlling the correlation length of the fermionic sector of the theory. The possible way
out will consist in working with unphysically large quark masses, and eventually trying
to extrapolate. Last but not least we will have to face the so called doubling problem : the
discretization of the continuum theory will make a number of unwanted fermionic species
appearing, and/or will explicitly break the chiral invariance of the theory.
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2. About the action : mainly the fermionic.part
The action governing our lattice gauge theory reads
S =S¢+ Sk, (2.1)

where Sg is the pure gauge term and S is the part including the contribution of the matter
fields. A possible choice for Sy is the Wilson original one {1]

Se =B Rey TrUg, 2.2
G

2N
where f = —-, the sum runs over the plaquettes (elementary squares of the lattice), and
4
Ug = UmUn+nU; (n+UJ (). (2:3)

The gauge variable U,(n) lies on the link joining the site n and the site n+ 1. The fermionic
contribution can be formally written down as

S = ), B(n) [(=2 +m)yp] (n), (2.4)

where the y are anticommuting variables defined on sités, and 2 should be defined in a suit-
able way. We mean we will have to face here the problem of “species doubling™, that is
connected to the problem of the chiral anomaly.

For sake of clearness we will start by illustrating the problem in d = 1+ 1 dimensions
[7, 8]. Consider the Dirac equation in the continuum : our spinors will have the form

U4t
= , 2.5
Y <w2> (2.5)
and we will use the conventions

1 0 01
Yo = <0 __1> =03 V5= <1 0> = Gy. (2.6)

The Dirac equation will be
i = —iys0,p. 2.7)

If we consider the eigenstates of s, such that

Py = Fopy (2.8)
for planar waves
Py ~ KRR 2.9)
We will get-
iEX, = F(—ikX, (2:10)
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and the dispersion relation

E= 41k, —-wo<k<ow .11
(see Fig. 2.1).

75:—1 \'5:1

*X

AN

Fig. 2.1. Dispersion relation in the continuum

We try now to discretize the spatial part of our Dirac equation, being as naive as we
can. So we define

((n+1a)—y((n—1)a)

ad.y(n) = 5 , (2.12)
and we consider the plane waves
p, = T KnatEOx (2.13)
Now wc get
oke _ p-iKa
iEX, = 4+ - X, (2.14)
2a
and the lattice dispersion relation
in k
E=+ 0% (2.15)
a
Now we will get a low energy excitation not only for
ka <1, E = +k+0(k%a?), (2.16)
but also for
ka=n—-kKa, KkKa<l, E=~ Fk'+0(k?a®. 2.17)

The phenomenon of species doubling is here. Fig. 2.2 illustrates that in the continuum limit
two Dirac spinors are present.
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The generality of this phenomenon is impressing (and deeper, perhaps, of what is
proved nowadays). To make it clear we will give here the content of the Nielsen-Ninomiya
theorem [9]: consider the class of lattice fermionic theories for which the bilinear part of
the action reads

S = —ifdtY P~ [ dr ¥ PEHE- (). (2.18)

Assume now locality of the interaction, translational invariance on the lattice and hermiti-
city of H. Assume also exact conservation of the charge Q (lepton number), and that it is
locally defined, quantized and bilinear in w(x). The statement is that under these assump-
tions the appearance of equally many right- and left-handed species of Weyl particles is
unavoidable.

Fig. 2.2. And on the lattice (“naive” discretization)

Let us resume what is happening : we start from a 1 flavor theory, and we discretize
itin a “naive” way (defining the lattice derivative as in (2.12)). Now we take the continuum
limit and we get a theory with 2¢ fermionic species. We know, moreover, that it will be
very difficult to eliminate this disease. We will have to pay a price, that will usually consist
in giving up all or part of the chiral invariance on the lattice. We will describe now two
possible approaches to the problem.

2a) A la Wilson
Define

[2y](n) = 2 X [Gu— DU m)p(n+ 0=, +rDU (n=Pyp(n—p]  (2.19)

with 0 < r << 1. We have added here an irrelevant operator to the action (the kinetic
energy of a boson multiplied times a) : the effect of this term will be of removing the
unwanted modes, but also of breaking a// the y5 invariances of the theory. Nothing will
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prevent the interactions from inducing a mass for the fermions, We rewrite Sg as
LM (KL [0u— DU (mp(n+ )~ (1, + DU (n—Pyp(n— W] +9(m)}.  (2.20)
n B

The bare quark mass can be identified with

1 1

B B
= m — B e = ———
™ M=K T 2K,

2.21)
where m, is the parameter needed for removing the explicit chiral symmetry breaking.
In this formalism the problem we were discussing at the end of the first section (going to
the critical point of the fermionic sector of the theory) is the problem of approaching X..
We will be forced from the finiteness of our lattice to work at some (K,— K) # 0, and to
extrapolate at K = K_. But since here the fundamental symmetry of the theory (chiral
symmetry) is explicitly and completely broken at K s K, the safety of the extrapolation
will be very unclear : PCAC results cannot be trusted a priori, and essential changes of

behaviour of the forces of the theory in the limit K — K, cannot be excluded. Moreover
K, is analytically known just in the two limits

B = oo (free fermions),

K, ; (2.22a)
=0 » K

. (2.22b)

]

]
LS T

At finite non zero § K, has to be found numerically : that introduces a new problem that
will complicate the numerical experiment.

2by A ta Kogut-Susskind [8, 11, 12, 13]

We assume we are working in d = 4 euclidean dimensions. The naive discretization of
a 1 flavor theory leads to a 16 flavors one : the mechanism we are going to describe here
will lead from a 1 flavor theory, via the lattice, to a 4 flavours continuum theory. We state
the final result. By defining on every site of the lattice a one component anticommuting
variable we get the fermionic lattice action

SE = L 4 {[Dex] () +(=)"[Dyx] (n)

+(=)="™[Dx] () +(=)=™*"[By] (n) + my(m)}, (2.22)

where D, is the covariant version of the central derivative

1
[up] (n) = by {(n+ ) —y(n—m}. (2.23)

Which is the procedure for building the y variables? We start from the original Dirac
spinors

yi(n),
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where i is a colour and a is a Dirac index. Now we define the new 4 component spinors
n4(n), such that [11] -

wa(n) = VRGO ini(n) = Tnn). (2.24)

The transformation T is unitary, and is such that, when we express Sg in terms of the g
fields, we find that the 4 Dirac components decouple. The left over of the y matrices struc-
ture is a collection of minus signs, that with the choice done in (2.24) are represented by the
matrices

4,(n) = —a, (M1,  a,(n) = (—1TmreTmey (2.25)
Asit has been remarked in Ref. [14] it is necessary for the 4, matrices to satisfy the condition
4,(mAa(n+pA,; (n+#)4](n) = —1. (2.26)

Conversely it can be shown {12] that any set of A matrices satisfying on the lattice the con-
dition (2.26) will lead to the correct y matrices structure for the Dirac spinors. Since the
action decouples we can just discard 3 of the Dirac components, by setting

1(n) = 6141 (2.27)

for example. We just remark (and we will go back to this point) that the same mechanism
will apply to the fermionic Green functions.

In this approach we have a discrete ys invariance, preventing the presence of mass
counterterms. A residual doubling (2% = 4 fermionic species in d = 4) is present in this
formulation.

3. Various masses and chiral symmetry breaking

In doing a numerical simulation of a gauge theory coupled to fermionic fields one is
as first trying to answer the two questions:

a) What is the mass spectrum of the theory?

b) Which is the realization of chiral symmetry?

These are obviously just two of the many problems asking for a solution, the ones we will
discuss here. One would also like to learn, for example, what is the effect of the fermions
on the deconfining transition at finite temperature. Measurements have been done for the
anomalous magnetic moments u, and g, [15], and the computation of the structure func-
tions of the proton seems doable. At the moment, anyhow, the most important point
to be investigated is by far more preliminar : what are the size, the origins of the systema-
tical and statistical errors? Is it possible to keep them under control with the present dis-
ponibility of computer memory and time?

We want to compute the pattern of the hadronic spectrum for the continuum limit
of our lattice theory: we will look at the asymptotic behaviour (n, — o0) of the fermionic
Green functions. When we use Wilson fermions the identification of quantum numbers
will be straightforward: with Kogut-Susskind fermions, on the contrary, it will be by far
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more delicate. The second point we will discuss will be the spontaneous breaking of chira
symmetry. Here we really want to avoid an explicit breaking, so we will have to think
in terms of Kogut-Susskind fermions: we will look at the order parameter

{PO)P(0)> = | du Tr {G(0, 0)}. (3.1)
Here G is the quark propagator, solution of
(=2 +m)G(n, 0) = 4,0, (3.2)

and dyu is the appropriate integration measure. We are integrating over all possible configu-
rations of the gauge fields.

In the mesonic sector of the mass spectrum we will have to look at operators like (for
the pion, for example)

Gy(ny) = § <n(m)n(0)), (3.3)
where ’
n(n) = p(n)ysp(n), (3.4)
and G, turns out to be
Gu(n) = Y. § du Tr {G(n, 0)G*(n, 0)}. (3.5)

-
n

For Wilson fermions we will just write in a straightforward way the lattice transcription
of the continuum operators (sce [16] for a complete analysis). For mesons

M(x) = fzf Cro B A" (x), (3.6)

where the sum is over flavour indices, Cy,,, are the appropriate Clebsch-Gordon coeffi-
cients. A is a colour index, and I is the appropriate combination of y matrices. For example

2y (x) = #4(x)y,d*(x). (3.7)
For baryons, indicating by C the charge conjugation matrix,
Bix) = Y Cr.pup[v (0Cysy ™ (0)]98> (e asc- (3.8)

Su.f2:03
The proton operator, for example, is
Py(x) = [“A(X)C')’sda(x)]“ac(x)suo 3.9
For a meson we will compute

G,(x) = {<M()M(0)*>

i
=~ Z Cri1:Chsa J d[UNd[F)d[y]e " )y ()@ O " ¢"X0), (3.10)
FiyeenSs

and we will go to zero momentum by integrating over the spatial hyperplane.



299

In the Kogut-Susskind formalism we will have to express the operators of interest
as functions of the one variable fermionic varibles x(n), defined in (2.27), combined with
some suitable minus signs. We will use here the most simple approach: we will assume
we are close enough to the continuum limit to have an unbroken flavour symmetry, and
we will identify the wanied operators with their continuum expressions. For a more com-
plete lattice analysis see [18]. We indicate now by 2%3 the covariant form of the K-S deriv-
ative

[ e}

d T ny
Tp(m) = 3, @) (=7, @.11)

where &, is the usual central derivative, n = (ny, ..., ny), (3.11) is the expression we get
by applying the fransformation (2.24), and we define g(n) by

(—D*5+m)g(n) = dg (3.12)
If we compute numerically
P(n) = | du Tr {g(n)g*(n)} (3.13)

we can eventually get information about the zero momentum operators (n = (n,, n,, n3))
Gi(ng) = 3, P(w),
Gy(na) = 3, P {(=)" +(=)"+(-)"},
Ga(na) = T, P(0) {(=) 74 (=) 7 4 (=),

Gi(ns) = 3, P(m) (=) """, (3.14)

By applying the transformation (2.24) to the operators having in the continuum theory
the quantum numbers of the w, @, A, @ and B (tensor) if the contributions to the K-S
action breaking part of the chiral symmetry [12] (terms of order @) are small enough [18],
we get that in the limit n, - ©

G, ~ e™ ™,

-m Ne , —MBhe
GQ ~ e Q"'+(_) ‘e ’
GAl ~ e-—mam_*_(__)nze—mmm’

Gy ~ €™ (=Yg, (3.15)
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4. The numerical computation
4a2) A general scheme

We are able now to describe, in a very schematic way, all the steps we need to go
through our numerical computation.
Point 1. We have to generate, by some standard (or non standard |{28]) algorithm,
a number (big cnough, in the sense of giving rise to a small enough statistical error) of
configurations of gauge fields. In principle we should thermalize our gauge fields according
to the measure
e“(sG+SF), (41)

where a possible Sg (Wilson) is defined in (2.2), and the formal definition of Sg is given
in (2.4).

The fermionic contribution to the action is quite complicated to be taken into account:
the Grassmanian character of the fermionic variables implies that Sg has a non local charac-
ter. And, on the contrary, probabilistic algorithms work well for actions as Sg just thanks to
their locality. So using as weight (4.1) is still an open problem: some efficient methods
begin to be implemented (see for example Ref. [22], where results for {py) in presence
of the full weight (4.1), for 4 = 4 lattice QCD are obtained).

The solution used up to the moment is to implement what is called (from a solid state
terminology) the *“‘quenched approximation™ [23, 17, 24, 19, 25]: we will give some details
in Sec. 4c. Here we just give its definition: it just means that the gauge fields are equili-
brated according to the measure

e e, (4.2)
The feedback of fermions on the gauge fields is neglected. Let us remark that it seems plau-
sible nowadays that a computation done by using (4.1) takes less than a factor 10 more
than a quenched one [22]: morcover the only difference between a quenched computation
and a *“full” one is in the choice of the measure. All the other steps (points 2 and 3 of this
section) are identical.

It should be noticed that the configurations we are talking about should be statistically
independent : since the computation of the observables (quark Green functions, in point 2),
takes the main part of the time of the computation we like the terms that will contribute
to the statistical sum to be completely independent one from each other.

Point 2: We have to compute the quarks Green function. Since we are interested in
the long time behaviour (see for example 3.15) we will have to compute very small numbers.
We will use a relaxation procedure (see Sec. 4b).

Point 3: Given our Green functions we will form the propagators of the interesting
particles, and extract masses (with suitable fits).

4b) Large time behaviour of the fermionic Green functions

We already said that, since we are interested in the large time behaviour, we will
better not use a statistical procedure. We want to solve

(=2 +m);;Gp(0,n) = 30" 4.3
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A possible numerical way of solving this equation consists in introducing a computer
time 7, and writing down

'[?G—tc(i%i) = —(2+m)G(0, n)+6, @5

(where we omit the colour indices). If the limit exists then

lim G0, n) = G(O, n). (4.5)

With a discretized time
Gevy = (1—em)G,+£2G,+80, . 4.6)

1
If we set e = — in (4.6) we get the Gauss-Seidel scheme
m

1 1
Gipy = —2G,+ — b,4. “.7
m m

For Wilson fermions the procedure (4.6} is quite effective, and the optimal ¢ is found to be
1

quite close to — (see Ref. [25)): for Kogut-Susskind fermions the diagonal part of the
m

operator we want to inverse is smaller than in the Wilson case, and a too small ¢ would
be needed to make (4.6) converge. So the use of a second order algorithm is suitable.
References to other inversion schemes can be found in the literature (see for example
Ref. [13] for the conjugate gradient method).

Consider (4.6): when m — m_ (Wilson fermions) the ¢ which guarantees the conver-
gence becomes very small, and the convergence prohibitively slow. Moreover in a finite
system the operator —% +m may have a negative eigenvalue already for m > m,.

We said up to now that statistical methods are not useful to compute the long time
behaviour of the Green functions: as far as {yy) is concerned, anyhow, we are dealing
with a number of order 1. By means, for example, of a Langevin equation, we can get a very
precise estimate in a reasonable computer time. Let us consider the two complex fields
¢, and @,, and the two equations

d
(_i; q)l(x’ T) = (-@'*‘m)‘l’x(x: 1:)+r1(x, T),

d
77 7200 D) = (=2 +m)ga(x, 1) +n(x, 7), (4.8)

where 7 is here the Langevin time, and the noise 5 is the same in the two equations, with

{nlx, o)) =0, <n(x, Dn(y, T = 26(x -1 (x~y). (4.9)
Now it is easy to check [22] that
lim {g(x, DPI(y, 1> = G(x, ). (4.10)

T @
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4c) Quenching

Which is the sense of the quenched approximation? The action of our original theory
has the form

S = SgLUT+ Y idy;[ Uy (4.11)
tJ
By defining the Grassmanian integration in the usual way
§d[yld[ple”® = det {4[U]}e™ 5] 4.12)
we can define an effective action
See[U] = Sg[U]—Tr In {4[U]}. (4.13)

We want to compute G(0, n): the situation is shown in Fig. 4.1. The two sources are
in 0 and n, the dashed line is the external fermionic line, integer lines are internal fermionic
lines and wavy lines are the gluonic contributions. The gluonic contributions are given
by the measure exp {— Sg}, the internal fermionic lines by the det (4). So a quenched

i o
. o
B —

Fig. 4.1. Typical graph contributing to G(0, n)

approximation turns out to be the equivalent of neglecting the internal quark loops.
If we consider a theory with n; flavours we will get

Serr = Sg—n¢ In {det (— 2+ m)}. (4.14)

So our approximation is an n; = 0 approximation. In second it is equivalent to implement
the Zweigg rule: is very plausible [24] (and well confirmed by numerical experiments on
the Schwinger model {23]) that his main result is the readjustment of the unphysical length
scale of the lattice theory. Lastly in the limit of the infinite number of colours internal
fermionic loops are uneffective.

5. Conclusions (preliminary)

We have given here some technical details about the structure of a numerical mass
spectrum computation. It should be said that the situation of MC simulations is at a turning
point: lattices are becoming closer to be “big enough” [29] (~ 1 Fermi in Ref. [19]),
making small the correlations between propagators computed in different configurations
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(see Fig. 1 in Ref. [19]). Astonishingly enough, one of the most important outcomes of
quenched computations is going to become the determination of the string tension, a pure
gauge quantity. The output of Ref. [19] is that, due to the too small evaluated Wilson
loops, the result of Ref. [27] (and the first Creutz result, Ref. [5]), can be off of a factor 2.
This trend is confirmed by Ref. [20], and by the analysis of Ref. [2]]. The crucial point
is that the analogous of Eq. (4.6) for Wilson loops does not exist: they have to be evaluated
by a statistical procedure, and too big Wilson loops (thetones giving the wanted asymptotic
value) have a too small value to be observed in a reasonable computer time.

The structure of Kogut—Susskind fermions is going to be understood better and better:
analytical (strong coupling) work [12] is making transparent the role of the symmetries
(mainly the discrete lattice chiral symmetry), and numerical simulations for SU(2) with
a high statistics (50 configurations) on a fairly big lattice (8° - 16 in the time direction)
are showing that mesons have a quite stable and credible pattern [18]. Masses of ¢, 4,
are coming out very stable and in a good agreement with ““‘Rosenfeld tables™.

The pattern of the explicit restoration of chiral symmetry for K — K, in Wilson
fermions (and the supposed to be spontaneous breaking) has to be clarified. Also for
Wilson fermions information about the spectrum is starting to be more reliable [19]:
statistical errors seem to be now under control. Dedicated machines should provide, in the
next period, the way of getting real checks about the consistency between Q.C.D. and
nature. Lot of efforts are needed: but they seem to be worthwhile!

During the school we learnt a lot from discussions with S. Wadja that we acknowledge.
We also thank B. Peterson, J. Shigemitsu, P. Windey and J. Wosiek for interesting dis-
cussions at the Zakopane School, and A. Billoire for a lot of stimulating discussions,
and for a critical reading of the manuscript. We thank Me S. Zaffanella for her fast and
accurate typing of these notes.
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