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BINDING OF MATTER TO A MAGNETIC MONOPOLE*
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After Dirac had firmly planted the concept of a magnetic monopole in the minds
of experimental and theoretical physicists the search for this particle has not stopped. Since
it can manifest itself only through the interaction with ordinary matter many matter-monopole
systems have been investigated. The purpose of the present paper is to give a short and there-
fore incomplete review of the literature concerning the question whether an electron, a proton
or an atom can be bound to a magnetic monopole.

PACS numbers: 14.80.Hv

1. Introduction

In 1931 Dirac [1] showed that the formalism of quantum mechanics inevitably leads
to wave functions whose only physical interpretation is the motion of an electron in the
field of a single magnetic pole. He then remarks that “Under these circumstances one
would be surprised if Nature had made no use of it”. Dirac’s preof of the quantisation of
the magnetic charge g, i.e., of the statement that the quantity 2¢ = 2eg must be an integer,
was not transparent enough to the taste of Fierz [2]. He subsequently produced a proof
based on the requirement that the solution of the Schrodinger equation must form part
of a representation of the rotation group.

The bibliographies of Stevens [3]and of Strazhev and Tomol’chik [4] show that the
curiosity generated by this hypothetical particle has never disappeared, although waves
of interest can be seen. One such wave started when 't Hooft [5] and Polyakov [6] found
a magnetic monopole solution to a classical non-abelian gauge theory. The period between
1973 and 1976 is described in the bibliography of Carrigan [7]. Recently the interest in
monopoles has been intensified for two reasons: Cabrera’s experimental observation [§]
of a candidate for the monopole and Rubakov’s theoretical analysis [9] of monopole
catalysis of proton decay.
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In order to have additional methods for detecting magnetic monopoles it is natural
to investigate the possibility of binding such a monopole to an atomic nucleus or to
a molecule. Such an investigation, both theoretically and experimentally, was first perform-
ed by Malkus [10], who suggested that chemical binding indeed is possible. He obtained
his results by interpolating between two extreme cases:

(i) the electron moving in the combined field of a monopole and an atomic nucleus both
situated at the same position and
(if) calculation of the diamagnetic and paramagnetic energy for a large separation of the
monopole and the nucleus.
The result of such a calculation may, however, be very misleading, especially since it has
been shown [11] that the singular magnetic field requires special methods for the solution
of the Dirac equation. The simplest molecule contains one monopole, one proton and one
electron. This molecule is of atomic size (~ 1 A) and has atomic binding energy (< leV).
A detailed analysis of this molecule was presented in a recent paper {12] and will be discussed
in Section 3. While this molecule is of interest by itself, there are several additional moti-
vations for its investigation. First it is the prototype of a new class of molecules. Many
other similar molecules can be easily envisaged, including for example the binding of
a monopole to organic molecules or to ferromagnetic materials [13-14].

Secondly, if the Rubakov-effect does exist, it is a priori not excluded that such mono-
pole molecules will speed up the decay of nucleons, possibly leading to spectacular events.

In the next section a short review is given of papers dealing with the binding of one
charged particle by a magnetic monopole. In the third section the existence of monopole-
-molecule bound states is discussed.

2. Can a monopole bind an electron, a proton or an atomic nucleus?

The classical dynamics of a particle with charge ¢ moving in the magnetic field of
a fixed monopole of strength g has been reviewed by Carter and Cohen [15] and only the
most essential properties of this system will be mentioned here.
(i) The charge e moves with constant velocity on the surface of a right circular cone,
which has its top at the position of the monopole and its axis in the direction of the
vector

J=1L+s,
2. . - . o
where L is the orbital angular momentum and s = —ge = —eg — is a vector of con-
r
stant length in the direction from monopole to charged particle.
(i) When the cone is cut open and spread on a plane the orbit is a straight line. This
shows that in the classical case no bound states are possible.

(iiiy The angular momentum contained in the electromagnetic field and defined
1 - - - - -
by i § rx(ExB)dr turns out to be equal to s.
7

(iv) The vector J is conserved and is interpreted as the total angular momentum.
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(r) Goldhaber [16] has shown that Newton’s equation of motion can also be derived
lp*  L-s

from a Hamiltonian H = 5> With s considered as an independent

2m mr
vector-variable with Poisson-brackets (s;, 5;) = —¢;;,5, provided s = —ge is satisfied
at some initial time. It can be said, therefore, that because of the presence of the mag-
netic monopole the particle acquires an additional intrinsic spin, which in the quantum
theory has the value g = 1.

(vi) When the charged particle passes straight through the monopole L =0,but Echanges
sign suddenly, so that the total angular momentum is not conserved. This is the first
indication that trouble will arise if the monopole is considered as a structureless
particle.

As to the quantum case, already in his original paper [1] Dirac showed that an elec-
tron without spin and described by the non-relativistic Schrédinger equation, cannot be
bound to a magnetic monopole. For an s-state this equation takes the form

[dz 2 d i,

—— + e — —
dr? rodr r?

2mw
f(r) = — h—zf("%
in which 1, = n*+2n+% is a dimensionless number. This shows that there is no natural

h
unit a, with the dimension of a length <like the Bohr-radius a, = -———) from which an
oame
2

energy Ey = ; can be formed.
0

This result was confirmed by Tamm [17] in a paper in which he introduced generalized
spherical harmonics. These have additional lines of zeroes as compared to the usual spher-
ical harmonies and this created the idea that a quantum mechanical description of a charged
particle moving in the field of a magnetic monopole is possible only when the monopole
has attached to it a string of magnetic dipoles, extending to infinity. This picture was
corrected by Wu and Yang [11] who showed that the Dirac string disappeared when
instead of working with a single wave function the concept of section was used. Roughly
speaking this amounts to having two wave functions, one for the northern and one for the
southern hemisphere, which are connected by a gauge transformation in a region on both
sides of the equator. Their method solves the problem of how to avoid the singularities
which necessarily arise if one tries to describe the nonsingular magnetic field of a monopole
by a single vector potential. The same problem occurs if one tries to use one network of
coordinates for the non-singular geometry of a sphere. Banderet {[18], using the Dirac-
equation for a charged particle with spin 4 and anomalous magnetic moment M, showed
that for M # 0 the wave function was unacceptably singular in the origin, where the
monopole is sitting. For M = 0, i.e., for the Dirac-electron, the solutions are well defined,
but it turned out that also in this case the electron could not be bound to the monopole.
Teller [19] has remarked that this result is an immediate consequence of the form of the
Dirac-equation for a particle moving in an arbitrary magnetic field describable by a vector
potential, but in the absence of an electric field.
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The singular behaviour of the wave function of the Dirac-equation was partly avoided
by Malkus [10}, who considered the Pauli-equation for a charged particle with arbitrary
magnetic moment. Below a certain critical value he finds that there are no bound states.
Above this critical magnetic moment states with an arbitrarily low value of the energy
are found. This is an example of the well known difficulties [20] arising in quantum mech-
anics when the potential is highly singular. Therefore, in order to give a correct treat-
ment of the wave function close to the monopole one should either take the structure of the
monopole into account., e.g. by considering its non-abelian character, or prevent the
particle to come too close to the monopole. The latter can be done in two ways.

The first is to give the monopoles a hard core. This was done by Bracci and Fiorentini
{21], who considered the Pauli-equation for a charged particle with an anomalous magnetic
moment. They find that the proton with an anomalous magnetic moment x = 1.79 can
bind in a j = 0 state to the magnetic monopole. The binding energy is 15 keV and for the
linear dimension of the wave function they obtain a value of 32 fm. These results, however,
are in disagreement with the calculations of Ref. [22], which are based on the Dirac-
-equation. It is also suggested [21] that once a bound state of a monopole with an atom
has been formed, it will soon contract to a system in which the atomic nucleus is bound
directly to the monopole. In the last section, however, evidence will be given to show that,
contrary to this suggestion, an atomic bound state will have a very long life time and
therefore will not make a rapid transition to the nuclear bound state.

A second way of preventing the charged particle to pass through the monopole was
given by Kazama, Yang and Goldhaber [23]. They observed that the Hamiltonian derived
from the Dirac-equation was not well defined when the total angular momentum was
equal to j = |g]—% = 0, where ¢ = Zeg, which is the product of the electric charge of the
particle and the magnetic charge of the monopole. According to Dirac [1] the value of
2¢ should be an integer. The Hamiltonian became well defined after adding a small amount
to the magnetic moment, which thereby became 721‘—3——(14-@. The value of x, which
could be positive or negative, eventually was approaching zero. In this way the singularity
in the origin was avoided for x # 0. It appears of course to1 xk = 0, but the authors of
Ref. [23] were able to show that by changing the boundary condition in the origin the
problem remained well defined for x — 0. For the case of electron-monopole scattering
(E > M) this was done as follows. After a simple transformation the Dirac-equation
for the large and small components F(r) and G(r) took the form (here shown only for
k>0and g =

E A mre- " low, Y5 -|m-e-—"_|Frn
e = - ), — = —E- r.
dr 4Mr? G dr 4M 2

Vixl
M

The x-terms can be neglected for r» R = . In this case it follows from the above

d
equations that 7 (E+ M)G*+(E—M)F?)} = 0. This means that in the F—G plane
r
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the point representing the two amplitudes moves on an ellipse with varying r. The size of
the ellips, however, shrinks to zero for |x| — 0. On the other hand, for r — 0, the k-terms
are the only important terms on the right hand side of the differential equations. The
solution is given by F(r) = —G(r) = ¢ */*™". In the F—G plane, when r — 0, the point
approaches the origin along a straight line, which corresponds to the correct boundary
condition. From the above construction it is seen that if now the limit k — 0 is taken the
condition F(0) = G(0) = 0 is replaced by lim —"- —
r—0 G(I‘)

haber (KYG) boundary condition gives a self-adjoint Hamiltonian, which is free of the
singularities with which previous formulations were plagued. This method of letting «
go to zero either from the positive or from the negative side is a way to describe the short
distance properties of the monopole. This is certainly not unique as was recently shown
by Wu [24]. He constructed not just two (v — 0+ and x - 0°), but a continuous set of
limiting cases, described by a parameter o ranging from —n to + r and consistent with the
requirement of relativistic invariance.

With these KYG-boundary conditions and using the method of sections of Ref. [11],
Kazama and Yang [25] then considered the question whether a Dirac particle, with an
extra magnetic moment given by w, can be bound to an infinitely heavy monopole. They

—1. This Kazama-Yang-Gold-

1
find that for x > W{- there are infinitely many bound states with j = |g|—%. A more
q

detailed investigation of this case has been given by the authors of Ref. [22]. They find
for instance a proton-monopole bound state with a binding energy of 263 keV and a radius
do = 9.3 fm. These bound states disappear when x — 0. For k > 0 Kazama and Yang
find an additional bound state with energy £ = 0, i.e., with a binding energy equal to the
rest mass of the Dirac particle. The analogous state in the work of Wu [24] has an energy
between — M and + M, depending on the parameter w. Although the electron has a non-
vanishing anomalous magnetic moment, it is not certain that this E = 0 state (or its Wu
analog) really exists for the electron-monopole system, since the anomalous moment
is due to radiative corrections and is therefore not completely pointlike. Its existence will
also depend on the structure of the monopole as is shown by the example of the SU(5)
grand unified monopole. For this case Walsh, Weisz and Wu [26] showed that there is
no zero-energy bound state.

3. Can a monopole bind an atom?

The answer to this question may be of importance for the possible monopole catalysis
of fusion [27] and fission [28], but not much work has been done on this subject. There
is of course always the possibility to add one or more electrons to the deep lying states
of a monopole bound to an atomic nucleus, as discussed in the previous section. Here,
however, the attention is restricted to monopoles which are bound chemically, i.e., with
energies of the order of 1eV,

Malkus [10] has considered the Pauli-equation for an electron in the magnetic field
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of a monopole together with the electric field of a charge Z|e|, both fixed in the same
position. He finds that this system gives the same binding as when the monopole and the
free atom are separated by an infinite distance. Since the combined effect of diamagnetic
and paramagnetic energy is to give more binding when the monopole and the atom come
closer together, there will be a minimum in the energy of the ground state as a function
of their separation. For the electron-proton-monopole system he estimates the lowest
energy to occur at a proton-monopole separation R = 0.56 a, {a, is the Bohr radius)
and to lie about 7 eV below the ground state energy of —13.6 eV of the H-atom. The
monopole-atom potential calculated in this way, i.e., using the Born-Oppenheimer approxi-
mation [29], is certainly deep enough to give bound states. Actually, since at large distances
the Zeeman-term, which is linear in the magnetic field and therefore proportional to R-2,
dominates the repulsive diamagnetic term ~B2 ~ R~*, the potential will support an infinite
number of bound states.

From these rather crude estimates, and similar ones given by Bracci and Fiorentini
[21], one can conclude that if the (neutral) magnetic monopole exists, it can certainly be
bound to atoms, molecules and other chemical compounds with a nonvanishing magnetic
moment. In order, however, to find the vibrational spectrum and to determine the stability
of these bound states against transitions to the states in which the monopole is bound
directly to the atomic nucleus, it is necessary to perform a more accurate calculation and to
find the form of the monopole-atom potential.

Such a calculation was presented in Ref. [12] and the results will now be described
briefly. The system considered consisted of one electron with mass M and magnetic mo-

e . . . . .
ment M (1+x), of a neutral magnetic monopole which was fixed in the origin of the

coordinate system and of a proton, without magnetic moment, which was also fixed,
but at a distance R from the monopole. The Dirac-equation for the four-component electron
wave function was written as Hy = Ey with the Hamiltonian

Kqpa - r e’

H=a(—iV—ed)+sM— -
#(—iV-ed)+p 2mr? [Fr—R{

The number ¢ = eg has the Dirac-value ¢ = %, while 4 is the vector potential for the
magnetic field of the monopole. To avoid singularities in this vector potential the method
of Kazama and Yang [25] was followed and the wave function ¢ was treated as a section
[11]. Without the Coulomb-interaction between electron and proton the total angular
momentum

-

- - - - r
J=rx(p—ed)—q-+%d
r

would be a conserved quantity with eigenvalues j(j+1) and m, for J? and J, (j and m,
integers). With the proton situated on the positive z-axis m, is still a good quantum number,
but the total wave function now contains all j-values. Only m, = 0 is considered. Forj = 0
there are two radial wave functions denoted by v,(r) and v,(r), whereas for each j > 0
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there are four functions, collectively denoted by v,(r) with n = 3,4, ... . In order to find
bound states the usual boundary conditions must be imposed on the functions v;, v, ..., viz.

limo,(r) = lim v, (r) =0 for n >3,

r-0 r—w
The same boundary conditions apply to v,(r) and v,(r) as long as x % 0. For the limiting
case Kk — 0% the boundary conditions for r — 0 must, however, be replaced by those derived
by Kazama, Yang and Goldhaber [23], i.e., by

vy(r) K

0 0a(r) ]’

Before discussing the results of the numerical solution of the eigenvalue problem the case
is considered where the functions v,(r) for n > 3 can be neglected. This will happen when
R becomes small compared to the Bohr radius a,. The equations for v,(r) and v,(r) then
become

dl)l dvz ..
—— = (M+E+Vova(r), —==(M—-E-Vpv,(r),
dr dr

with
e2
72— for r < R;

or) =

e2
—forr = R.
r

These equations are exact if the proton is replaced by a uniformly charged spherical shell
of radius R, whose center coincides with the monopole. Without Coulomb-interaction
it is seen that for k — O+ a solution is given by E = 0 and v,(r) = —0v,(r) = e™™". This
is the deeply bound state found already by Kazama and Yang [25]. Because of the addition-

-09

1

40 —>R 50

Fig. 1. Effective monopole-atom potential for x — 0~ (full line) and for ¥ — 0+ (dashed line). The dotted
line gives the dia- and paramagnetic energy
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al Coulomb attraction this state will persist and even have a negative energy, which means
that the binding energy is larger than the rest mass of the electron. It is questionable whether
under such circumstances the Dirac-equation is still applicable. The attention is therefore
restricted to the states with binding energies of the order of 1 eV or less. The result of a nu-
merical solution of the full eigenvalue problem, both for x — 0* and for k — 0, is shown
in Fig. 1. Note that this effective potential between atom and monopole is much less attrac-
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Fig. 2. Level scheme of monopole-atom bound states for x — 0~ (on the left) and x — 0+ (on the right).
The energy unit is cm~*. The values of the angular momentum are shown along the horizontal axis, which
lies 1.646 eV below the energy of the free atom

tive than the rough estimate of Malkus [10]. In the present case the potential has a minimum
2

= 13.6eV. Also shown in

at R = 0.9 g, with a value —1.13 Ey, in which Ey =
1]

Fig. 1 is the para- and diamagnetic energy of a H-atom in the field of the monopole at
a distance R. With this effective potential the Schrodinger equation was used for the
calculation of the vibrational and rotational levels of the monopole-atom system. The
results are shown in Fig. 2. It is seen that there are differences depending on whether the
limit x — 0+ or x — 0~ is taken. A continuum of results would be obtained, probably
lying within these two extremes, when the boundary conditions as derived by Wu [24]
would have been used. It should therefore be stressed that the structure of the monopole,
even in the limit of a point particle, is important for the atomic properties of the bound
state. The correct choice for this structure should be made on the basis of a more compre-
hensive theory.

4. Conclusions

In the previous section it was shown that the potential which can bind an atom to
a magnetic monopole is not as deep as was estimated by Malkus [10]. Nevertheless, once
such a bound state is formed it is separated from the deep lying nucleus-monopole states
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mentioned in Section 2 and from the Kazama-Yang state with E = 0 by a barrier which still

has the sizable height of about 1.5eV (Fig. 1). The atomic states will therefore be depopulated

and make transitions to the tightly bound nuclear states, only when the temperature of the

environment is about 20000 K or higher. Then also dissociation into a monopole and a free

atom will be possible. In principle a transition to a nuclear bound state can also be made

by tunneling through this barrier of height 1.5 eV and width of about 1 A. The average
4r

time necessary for this process is of the order of 1 = —— ¢**. In this formula o is a character-
o

istic frequency of the bound state, so hw =~ 0.3 eV. The factor in the exponent is given by

2z 2ra, .
K=— ldr ~ 2M B,
h jip r A \/ A

where B is the barrier height B ~ 1.5 eV. Substituting these values gives a lifetime against
tunneling which is much larger than the age of the universe.

From this it is clear that>once a monopole has lost its kinetic energy by atomic or
nuclear collisions in the interior of the earth it can easily form absolutely stable chemical
bonds with molecules of the surroundings. The question how a slowly moving monopole
loses its energy in matter has been answered in a recent paper by Drell, Kroll, Mueller,

1 dE
Parke and Ruderman [30]. A typical value of — e where ¢ is the density of matter,
g dx

is 1 MeV - cm?/g for a velocity f = Zo 10~%. This means that a monopole with mass
¢

106 GeV/c* and with this velocity can completely lose its kinetic energy of 5.107 GeV
when passing through the center of the earth. Once it is stopped it can easily form a mono-
pole molecule with the surrounding material. It will not fall to the center of the earth,
because, when a monopole with this mass is displaced over a distance of 1 A in a gravita-
tional field of 10 m/sec? it only loses 0.1 eV in potential energy and this is small compared
with the energy difference of 1.8 eV between the H-monopole bound state and the dissocia-
ted H-monopole system.

An opposite effect is given by the earth magnetic field [10]. A monopole of strength

he e

. 300 . o .
g = 2% = % gains o HeV/em when moving in the direction of a magnetic field
e o s 4

of H Gauss. Fot a field of one Gauss this amounts to only 10-* eV/A. There is therefore
no hope that under the influence of the earth magnetic field the monopole molecules would
diffuse to the surface of the earth, so that they could simply be fished up from the Hudson
Bay.

Also the Rubakov effect is not a promising way for detecting monopole molecules,
because the field of the monopole at the position of the proton 1 A away is not strong
enough to appreciably accelerate the proton decay.

Nevertheless, if monopoles really exist the work of Drell c.s. [30] shows that since
the formation of the earth quite a few could have been captured by molecules. Extensive
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searches in deep ocean deposits and lunar rocks [31], however, have not resulted in the
discovery of a single monopole and have only set limits on the production cross section
and on the occurrence in cosmic radiation.

Since the vibrational spectrum of a monopole molecule, as shown in Fig. 2, is different
from that of an ordinary molecule, it may pay to have the IRAS satellite look at the far
infrared spectrum of a celestial object which is suspected to have an abundance of mono-
poles. The author, however, will neither look nor pay. '

It was a pleasure to cooperate with Professor J. A. Tjon and Professor T. T. Wu.
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