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STUDIES OF CHIRAL SYMMETRY BREAKING IN LATTICE
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We study chiral symmetry breaking in SU(2) and SU(3) lattice gauge theory using
the quenched approximation. For the SU(2) theory we consider quarks in the /= 1/2,
I = 1,1 = 3/2 and / = 2 representations and find evidence for a hierarchy of relevant energy
scales. In the SU(3) theory with fundamental quarks both the deconfinement and the chiral
symmetry restoration transition occurs at the same temperature. In the absence of dynamical
quark loops both transitions are first order.

PACS numbers: 11.15.-q, 11.15.Ha

1. Introduction

The realizations of chiral symmetries in systems involving fermions coupled to gauge
fields remains a topic of great importance in particle physics [1]. Even before the advent
of non-Abelian gauge theories it was suggested that any theory of the strong interactions
should exhibit approximate chiral symmetries. Furthermore these symmetries must be
broken spontaneously giving rise to massive baryons and massless pions. It is now generally
believed that QCD as the theory of hadronic matter does indeed break chiral symmetry
dynamically. Evidence for this comes from studies of instanton physics [2], anomaly
constraints [3], large N analysis [4] and most recently the hadron spectrum calculations
in lattice gauge theory [5]. In spite of these developments our understanding of the basic
mechanism responsible for chiral symmetry breaking (xSB) is still very limited. The need
for a deeper understanding becomes urgent when one tries to go beyond the standard
SU3).@SUQR)®U(1) model to more general and more ambitious models that attempt
to derive the quark and lepton masses from the theory rather than regard them as input
parameters. Many of these dynamical theories of fermion mass matrices require that chiral
symmetry be realized in ways different from in QCD. Whether some type of non-Abelian
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gauge theory can account for the proper dynamics and whether we will be able to develop
methods powerful enough to investigate complicated dynamical issues is still an important
open question.

In today’s talk I would like to present a progress report on studies of ¥SB in situations
that go beyond conventional QCD. Using lattice techniques we are investigating xSB
in theories with fermions in higher representations of the gauge group and also xSB at
finite temperatures [6]. Most of the models that we discuss (except for QCD at finite
temperatures) are not meant to represent realistic theories of elementary particles. Rather,
we are studying them in the hope that they will provide useful information on the dynamics
of xSB. We have corcentrated on the following questions.

I. What is the connection between xSB and confinement?

2. Is it possible to introduce disparate length scales into a theory with a single gauge
group? Can the “tumbling” mechanism [7] be made to work?

3. What is the nature of the chiral symmetry restoration transition at finite temperatures?

Before describing our methods for investigating the questions let us make a few
comments. Question ! asks whether confining forces are necessary in order to trigger
xSB. According to the intuitive picture one now has of xSB in QCD, the vacuum is believed
to be unstable with respect to the formation of a fermion-antifermion pair condensate {8].
Once such a condensate has formed, chirality is no longer a good quantum number and
chirally noninvariant quantities such as py can develop vacuum expectation values,
{yyy # 0. This picture of xSB tells us that at the very least attractive binding forces
must exist. Although these forces may have to be fairly strong in order for pairs to condense,
it is not at all clear whether confining forces are 1equired (by “confining forces” we mean
forces that prohibit the appearance of asymptotic states with quark quantum numbeis).
We have tried to settle this issue by considering xSB in theories in which fermions do not
experience confining forces at large distance. For instance we have looked at quarks in
| = integer representations of SU(2). The color charge of these quarks can be screened
by the gauge degrees of freedom. A fermion need not pair up with an antifcrmion to bind
into a color singlet state. It can also form fermion-gluon color singlet fermionic states. We
find however that xSB still occurs in these theories. This leads to the conclusion that
%SB can take place even in the absence of long distance confining forces.

Question 2 looks for evidence that the tumbling picture of Dimopoulos, Raby and
Susskind {7] is a viable scenario. These authors have suggested that one can introduce
a hierarchy of length scales into a non-Abelian gauge theory by allowing different types of
condensates to form sequentially. Of course, this idea assumes that confinement and xSB
are independent phenomena, since otherwise there should be only one scale, the confinement
scale (the equivalent of Agcp), that characterizes the theory. Suppose ¥SB occurs when
the “effective coupling”

eesz = gZCZ(l) (L.

takes on a critical value e2, where C,(/) is the quadratic Casimir for representation /. The
coupling eZ; appears in the atttactive Coulomb potential between a quark and an anti-
quark in the single gluon exchange approximation (or more generally the ladder approxima-
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tion). It also is the combination that determines the stability of the chirally symmetric
vacuum in the cffective potential formalism [9].

In a renormalizable field theory the g2 in Eq. (1.1) should be replaced by the running
coupling constant g2(y). So if one compares two different representations /; and /, with
C,(1,) < C,(l,), then the two types of pairs should condense at different scales x; and p,.
Namely one must have,

g (u)Cy(ly) = g (u2)Ca(l3) = €. (1.2)
If Eq. (1.2) can be satisfied with g?(u, ,) sufficiently small, one can use the one loop expres-
sion for the renormalization group f-function to obtain (f = —bg®..),

Ha 1 .

— =exp| - (Ca(l)) = Ca(ly) | (1.3)

Hy 2bOec

One sees that relatively small changes in the Casimir lead to huge ratios in energy scales.
We have used our studies of SU(2) gauge theory with higher representation quarks to
show that indeed several scales emerge from the dynamics and also to estimate the value
for 2. We find

e, = 4. 1.4

This value is smaller than previous estimates of e2 [1-9]. So it may be easier to find
representations that satisfy Eq. (1.2), while on the one hand keeping g? sufficiently small
so that Eq. (1.3) is applicable and at the same time remaining asymptotically free [10].

The last question we have asked, question 3, concerns the fate of xSB at finite tempera-
tures. In analogy with spontaneous symmetry breaking in condensed matter systems, one
expects all symmetries to eventually become restored as the physical temperature is raised.
This should alsc be true of xSB in QCD. We have studied ¢SB for SU(3) gauge theory
with quarks in the fundamental representation. We estimate the chiral symmetry restoration
temperature 7,55 in QCD to be

T,sp & 200 MeV. (1.5)

We have been interested in xSB at finite temperature also for purely technical reasons.
Even to investigate questions 1 and 2 we have found it convenient to go to finite tempera-
ture. The chiral symmetry restoration temperature T, for different representations / provides
a precise and very physical definition of what is meant by the “relevant scale of xSB”.

2. The method

In order to investigate ¥SB one must employ nonperturbative methods for analyzing
non-Abelian gauge theories. We have taken the lattice approach and have carried out
Monte Carlo calculations of the order parameter (py>. We work on a four dimensional
hypercubic Euclidean lattice with sites labelled by a set of integers n = (n,, n,, 1z, n3).
The effect of nonzero temperature can be incorporated by using asymmetric lattices,
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lattice size = N,N2 with N, < N,. The connection between N,, the number of sites in
the timelike direction, and the physical temperature T is given by

{
T=-—), 2.1
al, (2.1)

where a is the lattice spacing.

The gauge degrees of freedom are unitary matrices U,(n) that reside on the links
between neighboring sites n, n+ u. The U-matrices can be viewed as the lattice analogues
of the path ordered non-Abelian phase

nt+pu

P-explig | Audl] > &% ~ Uy(n). 2.2)
u B

The matter degrees of freedom live on lattice sites. One defines, for instance, four compo-
nent spinors y(n) and (n) at each site n. The lattice action splits up into two parts,

S = Sg+Sp. (2.3)

The pure gauge part S; is the Wilson action
1
Se = E tr {2—[U,+ U} (2.4)
g
p

Where 3 is a sum over unoriented plaquettes (squares) and U, is the product of the four
4

U’s on links bordering the plaquette. For the fermionic action S several different candidates
exist, none of them completely satisfactory. The most straight forward discretization of the
continuum Dirac operator leads to the so called ‘“‘naive’ lattice fermion action.

SEM =¥ pn) (£ v (U (m)p(n+p)— Uk(n— pyp(n— @) + my,}. (2.5)

The action (2.5) describes 16 species (flavors) of Dirac fermions. One can reduce the number
of species from 16 to 4 by working with single component fermionic variables ¢(n) and
@(n) at each site. This leads to the Kogut-Susskind or staggered fermion method

Se =Y o(n) {3 Y n.n) (U (m)p(n+ 1) — Ul(n— myg(n — )+ me(n)}, (2.6)
with
no(n) = 1,  my(n) = (=1  ny(n) = (=)™, pa(n) = (=1 (2.7)

The connection between the four component y’s and the ¢’s is given by (let £ be a constant
spinor normalized to one)

p(n) = y5°r1'y373°¢@(n) = T(n)eep(n),
p(n) = p(n)EtTH(n). (2.8)



321

Eq. (2.6) is the fermionic action we have used for all our numerical simulations. Since
it describes 4 flavors one expects in the continuum limit and for m = 0 to have a theory
with an SU(4)®@SU@)®U(1) global flavor symmetry, which is then spontaneously
broken down to [SU@)]iecter@U(1) if {yy) # 0. .For finite lattice spacing the action
(2.6) has only a subset of the flavor symmetry. This subset includes one continuous flavor
nonsinglet axial symmetry and one continuous vectorlike symmetry (fermion number).
In addition there are 15 discrete axial and 15 discrete vectorlike symmetries. These remnants
of the full flavor symmetry ensure that no fermion bilinear counter terms are produced
as one approaches the continuum limit. So (p(n)¢(n)> # 0 (which one ¢an show implies
{yy) # 0) is a true signal for xSB.)
To evaluatc {pg) one uses the formula,

_ 1 Te~
(ppy = lim gj‘w det (G™') [tr G(n = 0, m, U)Je™"°,

m—0
# = [dU det (G™')e™ %5, (2.9)

where G(n, m, U) is the fermion propagator in a background gauge field configuration
{U}. The quenched approximation which we will be using throughout the present work
consists of setting the determinant det (G') = 1. There is then no feedback from the
fermions onto the gauge field dynamics. In calculations of {pg) one first performs a pure
gauge Monte Carlo to set up typical gauge field configurations at fixed values of the coupling
constant. For each gauge field configuration one inverts the fermionic action to obtain
the propagator G(n, m, U) and in particular G(n = 0, m, U) for several masses m. One
must then average over as many different gauge ficld configurations as possible and then
try to extrapolate to the limit m — 0.

Let us now go on to the numerical data and explain how one reaches the conclusions
discussed in the Introduction.

3. Results for higher representations of SU(2)

Fig. | shows the raw data for {9y, ., vs m for the gauge group SU(2) and / =1
adjoint quarks on lattices with N, = 4. The error bars reflect statistical errors only resulting
from an averaging over 48~ 60 inversions of the lattice Dirac operator for fixed f = 4/g?
and m. Although we are interested in the limit m — O one sees that there is considerable
freedom in how this extrapolation is performed. On the other hand it is well known that
one cannot have spontaneous symmetry breaking in a finite system. So as long as N, the
spatial lattice size, is finite {yy), o Will eventually vanish as m decreases below a certain
M. If one is trying to extract infinite volume ph)fsics one must be careful not to rely on
data for m < m,;, in making the m — 0 extrapolations. One can obtdin a rough estimate
of m,,;, by using the relationship between (yy) and the density of eigenvalues g(4) of the
Dirac operator near A~ 0

{pyd = % 2(0), 3.1
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Fig. 1. The raw data (pydmzo Vs m on an N; = 4 lattice for / = 1 quarks

where V is the number of lattice sites. In order for a finite system to mimic infinite volume
physics one should ensure that

m > mean separation between eigenvalues near A = 0 (3.2)
or
1 1
My > e = e ot (3.3)
e©@) VvV Cyyd

Keeping Eq. (3.3) in mind, we have extrapolated to m — 0 along the full lines drawn
through the data in Fig. 1. The extrapolated values are then plotted vs § in Fig. 2. From
Fig. 2 one estimates a critical value f, at which (yy) vanishes for N, = 4. Similar plots
are shown in Fig. 3 for N, = 2 and N, = 6. One reads off,

2.8040.20, N, =2,
B. = {3.1540.15, N, = 4, (3.4)
3.3040.20, N, = 6.

In the next step we must convert the results of Eq. (3.4) into a physical quantity, the chiral
symmetry restoration temperature 7, for adjoint quarks. In the weak coupling (8 ~» o©)
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region T,, being a renormalization group invariant, must depend on the coupling and
the lattice spacing according to,
51 —3n1p
aT, o f121e 1t | (3.5

In Fig. 4 we plot aT, and aTy, the corresponding critical temperature for / = 1/2 funda-
mental quarks. The data for N, = 4 and N, = 6 are consistent with scaling (Eq. (3.5)).
In addition the data aiready shows that ySB occurs in / = integer (screenable) representa-
tions and also that different critical temperatures characterize different representations.

We have also accumulated data for / = 3/2 and ! = 2 quarks. All our SU(2) results
are summarised in Fig. 5. We also show the deconfinement temperature Ty for the pure
SU(2) gauge theory. From Fig. 5 one can read off various ratios of scales.

1.0 < T,_-/Td\ec < 1.3, (3.6)
Tu/Te = Ti=y/Ti=y)2 = 8.614.5, (3.7
aT
1.0 scaling curve
G
= \ \
= \ \
i - —e\e
i \ \
i \* \
\
0.1 }— \ \\
» \ \
[ Te Ta
o0l 1.15 2fo 215 31.0 315
B=4/g*

Fig. 4. The chiral symmetry restoration temperature for / = 1 adjoint (T4) and / = 1/2 fundamental (7¢)
quarks
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Fig. 5. The deconfinement and chiral symmetry restoration temperatures in SU(2) lattice gauge théory

2

102.7i0.3’ (3.8)
103.43:0.4' (3.9)

Ti-3/2/Th=
’Tl=2/T‘l=3/2

{

One sees that condensates for the higher representations / = 3/2 and / = 2 introduce
a large hierarchy in scales. It is interesting to use (3.8) and (3.9) to estimate the critical
coupling ¢? of Eq. (1.2). We restrict ourselves to the higher representations since only
they involve g2’s that are sufficiently small so as to make the Casimir scaling hypothesis
applicable. According to (1.2) one has,

e; = g.Cy()). (3.10)
As g, we will take the running coupling constant at the scale given by T}. In terms of the
“momentum space” definition of the coupling constant,

1

260 I Ty/ Amom ~ 2bo[In T/AL =10 Ao/ A1]’
T,/ A, can be read off from Fig. 5 and from Ref. [11] one has A /4, = 57.5 for SU(2),
so, one finds,

g2 > grom(Ty) =

(3.11)

3.
A
z (3.12)

The two values for / = 3/2 and / = 2 are close enough to each other, so that our results are
consistent with Casimir scaling with e? ~ 4.
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4. QCD at finite temperature

Up to this point we have been using finite temperature mainly as a technical device
for getting at the relevant length scales in xSB. On the other hand studies of QCD and
the electroweak interactions at finite temperature has recently been attracting more and
more attention [12]. The main interest has been in understanding physics in the hot early
universe soon after the initial Big Bang. One now believes that the universe underwent
several phase transitions as it cooled down. It is important to estimate consequences of
these transitions and look for consistency checks between our current theories of clementary
particle interactions, cosmology and present ddy astrophysical observations. In addition
there exists the exciting possibility that unusual phases of matter can be created and studied
experimentally in heavy ion collisions.

There are two phase transitions that are associated with QCD. One is the chiral
symmetry restoration transition that we have been discussing a lot already. It is determined
by the order parameter {yy).

N o

=0 T > T

The other transition, which is usually discussed only for the pure gauge theory is the

confinement-deconfinement transition. For the quarkless theory this transition is character-
ized by the Wilson line order parameter

uyr

W(x) =trPexp[ [ dtde(t, x)]. (4.2)
0

The expectation (W) determines the free energy F, of a single static quark.

(WS = o~FalT — {0 T < Ty, (confinement) 43)

finite T > Ty (no confinement).

Initial investigations of T, using lattice methods came from strong coupling analysis
[13]. Subsequent numerical work also found evidence for a phase transition in the scaling
region [14]. We have calculated both (yy) and (W) for SU(3) gauge theory with funda-
mental quarks in the quenched approximation. Results are shown in Fig. 6 for N, = 2
and N, = 4. The first fact one notices is that the two transitions, deconfinement and chiral
symmetry restoration, occur at the same time. This behaviour is different from what we
found for higher representations of SU(2). Presumably the quadratic Casimir for funda-
mental quarks is too small, so that when confining forces disappear the remaining non-
confining forces alone (characteiized by g3(Ty..)C,) are not strong enough to support
%SB. The next point to notice is that the change in the order parameters is very sharp. We
take this as evidence for the first order nature of the transition. From the data of Fig. 6 one
can deduce

Tyee ® Tosp ~ (0.46£0.10) /o, (4.4)

where o is the string tension. If \/o & 450 MeV as usually assumed, then one obtains the
value T, =~ 200 MeV quoted in the Introduction.
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Fig. 6. The order parameters {yy> and (W in SU(3) lattice gauge thcory with fundamental quarks

Most of the lattice work to date on QCD at finite temperature (including the work
presented here) has been carried out in the quenched approximation, in which dynamical
quark loops are ignored. So important physics could be missing in the numerical simula-
tions. For instance once dynamical quarks are included the Wilson line is no longer a good
order parameter since external static charges can now be screened by dynamical quarks.
There is no longer an absolute need for a phase transition. Whether the deconfinement
transition will survive as a bona fide phase transition depends crucially on factors such
as the order of the transition in the quarkless theory, on the mass of the quarks and on
the number of flavors N;. Since quarkless SU(3) theory exhibits a first order transition
it was believed that dynamical quarks will not wash away the deconfinement transition
as long as the mass is not made too small and V; is not too large. However a recent calcula-
tion by Hasenfratz, Karsch and Stamatescu [15] indicates that the inclusion of relatively
massive quarks already destroys the transition. They have incorporated quark loops in
their calculations using a lowest order hopping parameter expansion and argue that the
deconfinement transition disappears for m smalier than 3.5T, ~ 4.3T, (~ order of a GeV).
Undoubtedly much effort will be spent in the coming months (years) to obtain a more
precise picture of the deconfinement “transition™ in a realistic simulation of QCD with
quarks.

Dynamical quarks are not expected to affect the chiral symmetry restoring transition
quite so dramatically. Here (ypy) still remains a good order parameter in the presence
of quark loops, so the phase transition should not disappear. However both the order of
the transition and also the value of T g5 could differ from in the quarkless case. My collabo-
rators and I are working hard towards setting up practical schemes for including dynamical
quarks so that better estimates of the ciitical temperatures can be made.
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