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1. Introduction

These lectures are an elementary introduction to the basic ideas of the QCD sum
rules invented by Shifman, Vainshtein and Zakharov (Ref. (1]). The numerous applications
of these sum rules made in recent years have greatly improved our understanding of hadro-
nic physics. I will not be able to give an extensive review of all applications but will only
treat a few which I consider to be representative and most illuminating, in some detail.

* Presented at the XXIHI Cracow School of Theoretical Physics, Zakopane, May 29 — June 12,
1983.
** Address: CERN, 1211 Genéve 23, Switzerland.
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The objective of the QCD sum rules is to calculate resonance parameters (masses,
couplings) in terms of the QCD Lagrangian pa.ameters (a,, the quark masses m.) and
a numbei of vacuum matrix elements which are introduced to parametrize nonperturbative
effects.

In QCD the property of asymptotic freedom makes the use of perturbation theory
possible to calculate hard processes, i.e., at short distances. On the other hand, bound
states of quarks and gluons (resonances) arise because of large distance confinement
effects, i.e., strong coupling effects, which cannot be treated in pertuibation theory. The
idea of Shifman, Vainshtein, and Zakharov is to approach the resonance region from the
asymptotic fieedom side and include power corrections due to nonperturbative effects.
These corrections signal the breakdown of asymptotic freedom and are introduced via
non-vanishing vacuum expectation values of higher dimensional operators like

01G},G1,10> # 0, <0lgq]0> # O, (1)

where G%, is the gluon field tensor, and ¢, q are (light) quark fields. At intermediate distances
there is hopefully an overlap between the asymptotic freedom region on one hand and the
long distance part on the other hand, where reliable calculations of resonance parameters
can be made.

These power corrections are more important than higher order perturbative «, correc-
tions as can be seen from the following example due to SVZ (Ref. [1]). Consider the vacuum
polarizations of the vector current j;'(x) = q(x)y,g(x) and the axial vector current
J8x) = q(x)y,ysq(x). Typical diagrams are given in Fig. 1, with I' = y, or y,y5 respectively.

Fig. 1. Examples of diagrams that contribute to the vacuum polarization to first order in ag. Curly lines
depict gluons, solid lines quarks and dashed lines currents. I" as in the first diagram is the quark-current vertex

In the chiral limit, i.e., for the quark mass m, = 0, which should be a good approximation
for light quarks, there is no difference between the two vacuum polarizations in every
order of perturbation theory. The ys in the quark-current vertex of the axial vector vacuum
polarization can be pulled through to the other side encountering on its way an even number
of y matrices which gives rise to a factor + 1. However, experimentally the mass spectra
for the vector and axial vector channel look very different. In the vector channel there
is the @ meson, while in the axial vector channel we have the 4, meson and the pion.
Therefore, it is the spontaneous breaking of the chiral symmetry which is responsible for
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the m—o-A, splitting, i.e., {(0]qg|0> # 0 and the pion arises as the Goldstone boson of
the broken symmetry. Since the operator gq has dimension three this can only give rise
to a power correction to the perturbative result which behaves like a logarithm.

2. Correlation functions

Consider a current j(x) where for mesons

Jr(x) = gi()rqx), I = 1,75 7 VsV, etc. @
and for baryons

Jr(%) = eal@iC)T 1450 2g4(x), 3
where the indices i, j, k denote the flavour of the quark, «, b, and ¢ are colour indices and
I" determines the tensor structure. By choosing I' and the appropriate combination of

quark flavours g;(x) each current can be given definite quantum numbers (J, P, I). For
instance,

Ju(x) = 5 @(x)p,u(x)— d(x)y,d(x)) 4)

has the quantum numbers / = 1, J*“ = 1—, i.e., the same as g, @', ... .
The vacuum polarization induced by such a cutrent is given by the correlation function
T J1UQ%) = i | d*xe™OIT(j(x)jr(O)I0Y, Q* = —q% ©)

IT°(Q?) is a scalar function of Q2 T,, ... a tensor depending on the current in question,
and T on the right-hand side denotes the T-ordered product.
In general, the function IT/(Q?) obeys a dispersion relation:

n—1

2\n 7,
g = L j Im A s)ds | Z a@®), ©)

n ) S"(s—q°)

where the constants g, are unknown subtraction constants. We note for future use that
these can be removed by taking the appropriate number of derivatives with respect to Q2.
The dispersion relation (6) relates IT°(Q?) to its imaginary part which in turn is related
to a cross section, in particular, for the vector current jr(x) = j(x) = ¢7,4:

9
Im I1%(s) = i so(e*e” — hadrons). @)

By selecting a particular flavour, e.g. charm in the case of jy(x) = cy,c only states with
open and hidden charm and J*¢ = 1-- appear in Im I1, i.e., J/y, ¥', %", ... and continuum
states above threshold (DD etc.). Similarly one can pick up states with other quantum
numbers and/or quark content by choosing another current. At this point feeding hadronic
states plus a continuum into Im IT(¢?) one obtains a representation of IT’(g?) in terms
of the parameters of the hadrons which correspond to the current ji(x). To parametrize
Im IT%(s) one normally uses a narrow resonance approximation writing the imaginary
part as a sum ovet d-functions, e.g. for the vector current of flavour ¢ with charge e, we
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have

2
m 1
Im ¥(s) = — E TR S(s—md)+ — ( 1+ 3’—) B(s— o). (8)
e, gr 4n\ - @

The 6-function on the right-hand side of (8) stands for the continuum. In the vector case
ggr is related to the electronic width of the resonance, but for most other currents the
coupling has no direct physical significance.

This procedure which as yet has nothing to do with QCD expresses 119(Q?) in terms
of mg and g and gives us the phenomenological side of the sume rule. In the next Sections
we will discuss the construction of the theoretical QCD side of the sum rules. Apart from
Ref. [1] this discussion relies heavily on Ref. [2].

3. The operator product expansion (OPE)

Let us turn again to the correlation function (5) and apply the operator product
expansion (Ref. [3]) to the T-ordered product of currents, which is valid at short distances,
ie., Q%> = —q? large:

i | d*xePT((x)i0) = CH + Y. Cr(d*)0,, )]

where I is the identity operator, C} and C! are the Wilson coefficients, and the O, are
local operators constructed from quark and gluon fields. The identity operator I has
dimension d = 0 and C7 contains the ordinary pet turbative contributions (like the diagrams
of Fig. 1). The CI(q?) are c-number functions of g2, they depend on the Lorentz indices
and the quantum numbers of j{x) and O,. The operators O, are ordered by dimension
and the CI(q?) fall off by corresponding powers of g2. Therefore, at short distances the
operators with lowest dimensions dominate and give power corrections to the perturbative
(logarithmic) contributions Cj.

The operator product expansion factorizes short and large distances. The short
distance effects are contained in the coefficients C1(g?) which caa be calculated in perturba-
tion theory by ordinary Feynman diagrammatic techniques, while all large distance effects
are buried in the matrix elements of the operators O,.

For IT'(Q?) we require the vacuum expectation value of (9). Therefore, we only have
to consider spin zero operators. The complete set of ope1ators with spin zero and dimension
d<6is:

1, =0,
0, = mgq, d =4,
0¢ = G;,Gy,, d =4,
Or = qI'yqql»q, d =6,

0, = mtja“vi qG,,, d =06,

Of = fucGinGuiGlpy  d =6, (10
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where m is the quark mass, the A are the usual Gell-Mann SU(3) matrices, Tr (AP = 26%,

i
and Oy = ”2— [‘V;n 7v]

In the next Sections we will discuss which operators contribute to different quark
systems and how to calculate the Wilson coefficients C} and CT. This resulis in an expres-
sion for the vacuum polarization I1(Q?) in the deep Euclidean region in terms of the
fundamental parameters of QCD and the matrix elements {0]|0,]0) whete |0} is the physical,
nonperturbative vacuum of QCD:

IM(Q%) = C1+Cn(@*) <0im3ql0y + C5(Q") <0|G4, G0 + ... . (11

Equating this expression with the physical representation discussed in Section 2 we have
a relation between the parameters of the theory and hadron parameters.

4. Further analysis of the operator product expansion

Consider the simple diagrams of Fig. 1 for heavy quaiks with mass m at Q2 = 0.
In this case, the quarks (and gluons) are far-off mass shell (p?, k2 ~ —m?). Consequently,
they only iravel a short distance (~1/2m) and the free particle propagator will not be
modified by nonperturbative effects, i.e., asymptotic freedom holds for heavy quarks
(and gluons) even at Q? = 0!

In order to probe larger distances we will take derivatives with respect to Q2 at @ = 0.
For these diagrams this gives integrals of the kind (all momenta are Euclidean)

d*pd*k
[(p+k)?+m?]"’

which are dominated by the Euclidean momenta p?, k> ~ m?/n. For fixed m? and n becoming
large p? and k2 tend to zero. Even at p? = 0 the quarks are still far-off shell and their
propagation is described by standard perturbation theory (no quark condensate). For
k* — 0 the gluons approach their mass shell and the gluon propagator will be strongly
modified by nonperturbative effects, which will be expressed by a nonvanishing vacuum
matrix element of the operator G,,Gy,. Higher dimensional operators are suppressed by
extra mass factors. Their contributions are not always negligible. We will come back to
a recent calculation of six and eight dimensional gluon operators when we discuss applica-
tions to charmonium.
So, for gluons we have
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where the blob indicates that the gluon propagator has to be modified by large distance
effects. We first separate the perturbative and soft pieces:

——-@——— = —-- —m- 4 e --= 2

The first diagram on the right-hand side indicates the ordinary perturbative contribution
to the Wilson coefficient C}. Using the OPE the second diagram factorizes into a short and
a large distance piece:

-~ «(ogd, g3 joy (13

&
f

where the diagram in front of the matrix element (0{Gj,G,,|0)> contributes to the Wilson

coefficient Cf; and can be calculated in pctturbation theory. A cross ( x ) attached to a gluon
line indicates that the gluon goes into the condensate. We will sce later what the precise
meaning of this diagram is. Diagrammatically we can now write for the polarization opera-
tor of heavy quark currents to first order in a,:

O
(14)

™ -]
For light quarks we cannot work at Q2 = 0 but have to take Q? large. In this case

the light quark propagator can also be modified by nonperturbative effects. Apart from
gluon operators quark condensate operators will contribute. We have analogous to (12)

and (13):
-— = —-Q__..¢ - —

e

(15)
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Again, a cross ( x ) attached to a quark line indicates that the quark goes into the conden-
sate. For the polarization operator of a light quark current to first order in a, we can then
write diagrammatically (including d = 6 operators, which now play an important role):

-- -- (oG}, G 10).. * -~ - - (O]mdal0*

(16)

¢ -- = - (Ofariedaqf0) + et

From this we can apparently deduce the following rule for obtaining the Wilson coefficients:
cut quark and or gluon lines as appropriate for a particular operator. In the following
Section we will discuss the calculation of the Wilson coefficients in more detail.

5. The calculation of the Wilson coefficients

The operator product expansion is an operator expansion. This means that the Wilson
coefficients are independent of the states we sandwich with, and we can choose any state
to single out a particular coefficient function. To calculate the gluon condensate coefficient
CZ(g?) it is most convenient to take the matrix element of (9) between one-gluon states.
Then

Tu(q+K)%, 42, k%) = <k, ali § d*xe ™ T(j ()i (0)ik, B> ¢y

is the forward gluon scattering amplitude on a colour singlet current. This contains {wo
invariant functions, but since we are only interested in the term which survives when
sandwiched between states with vacuum quantum numbers we have only one:

Ta((q+k)?, 4%, k%) = 2(k* g5 —kkg)CT (g + k)%, ¢, K*))
= (k, 2iG} Gk, BYC (g +k)’, g%, k7) (18)
and C§(g?) is given by
Coa®) = CT((q+K)* 4% k*)ik, 00 (19)

which implies the following interpretation for the calculation of the diagram in front
of the matrix element in (13): expand each (quark) propagator in k2, take the k? coefficient
and let kK — 0.
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As a second example let us calculate in detail the dd coefficient for the baryon current
nxy{x) with the quantum numbers of the proton

IN(X) = Eape(u” (x)Cy,u"(x))ysy"d(x), (20)

where a, b, ¢ are colour indices, T indicates the transposed and C is the charge conjugation
operator. Keeping only the quark condensate terms in the OPE of the correlation function
of two of these currents we have

i | d*xe'™ T (Ny(x)iin(0)) = ... + Cy(p*)dd+C(pHau+ ... 2}
To select C; we sandwich by single d-quark states with momentum p;:
Ca(p*)3.A(p3)d(ps) = i | d*xe™ p§IT(n(x)in(0)) PS>
= —i [ d*xe' PPV, 60,75y d(p3)A(P3)ysy”
O T (™ (x)Cy,(x)” (0)y,Cit” " (0)I0)
Contracting the u-quark fields we get

Cd(pz)acc‘a(PB )d(pS) = 2i 5 d‘xei(p- m)xeabcsabc’757ud(p3)a(p3)757v

i\ e R
X ((27[)4) J.d‘*kd"k oIk = K, (Cy,vky,Cyk'™) G

Using Cyk"C = yk, C* = —1 and performing the integrations gives

° 2

1 ‘ A2 4 )
Ci(p?é. A(p3)d(ps) = — P Scc(Puby— 8uep’) In ( p2> ys7'd(p3)d(p3)ysy",

with d(p;)d(p;) = 1 and d(p;)d(ps) = y(ps+m)/4m we finally obtain, letting p; tend to
zero
1 A?
Cip®) = - — p*In|—}. 22
d(p ) (27t)2 P n<—P2> ( )
Didgrammatically this contribution can be represented as the baie loop vacuum polariza-
tion diagram for the current (20) with the d-quark line cut (Fig. 2).

These examples are rather simple. Especially for higher dimensional gluon operators
the method presented above is too complicated. Recently, considerable progress has been

Fig. 2. Diagram that gives the coefficient Cya(p?) of the operator dd in the OPE of two baryon currents
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made by workirg in the so-called fixed-point gauge, originally discovered by Fock and
Schwinger (Ret. [4]) and rediscovered by a number ot people (Ret. [5]). The gauge condi-
tion is

x,A%(x) = 0. (23)

In this gauge 4,(x) can be expressed directly in terms of the gluon field tensor G,, and its

derivatives
1

Ax) = 6[ adaG,,(ax)x,

= 1 %,G,,(0)+4 x,%,0,G,,(0) + ... 29

Gluonic power corrections can be calculated by considering the polarization opeiator
in the external field of a gluon vacuum fluctuation 4;(x). To calculate the G},G, correction
only the first term in the expansion (24) for 4, has to be taken, for the d = 6 G3 correction
also the next two etc. The gauge invariant structures ~ G? etc. emerge automatically in this
case and do not have to be constructed by hand.

Simple rules can now be formulated for the calculation of the coefficients (Ref. [6]).
For light quarks it turns out to be most convenient to work in the x-representation. The
quark propagator in an external vacuum fluctuation field can then be written as (with
yx = x,7%)

aa’ i X aa
SF (x) ——2 F(S -

2 3 (1Y G§ 2 [Vx0u+‘7kﬁx]+ (25)
where the first tetm is the free quark propagator and the second term the propagator
with one gluon line attached. (Averaged over the indices of the gluon fields a massless
quark propagator with two gluon lines attached gives zero). For a cut quark line we have
the simple rule

F )y = —15 °6,0igqi0). (26)

For heavy quarks the p-1epresentation is more convenient and we have for the various
terms in the propagator:

i
-— - the free propagator, (27a)
yp—m
i 1
-7 8 G R B {o(yp+m)+(yp+ m)oy;} (27b)

with one gluon line attached and

1 i 2,0 m 2
17 18°G4eGho PT= ) (p”+myp) (27¢)

with two gluon lines attached (and averaged over the indices). For higher order terms in this
expansion see Ref. [7].
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Let us consider the calculation of the polarization function for the nucleon current
(20) to illustrate the simplicity of these rules

My(q) = i § d*xe*OIT(M(x)in(ONI0) = i § d*xeFTTy(x) (28)
and ITy(x) can be written as
HN(x) = 28ab05a’b’c'ySyusd(x)cc’)’Syv Tr (Sz(x)“’cyltsu(x)bb,}’vc)a (29)

wheie the u, d subsciipts indicate which type of quark propagates. To calculate the various
Wilson coefficients we only have to substitute the appropriate expressions for S, and S;.
(We take the quarks to be massless). ‘
For instance:
a) the bare loop, the zeroth order o, contribution to the Wilson coefficient C;. All propaga-
tors are free propagatois, i.e.,

i yx
Se=Si=on A
and it is straightforward to find
24i yx
OPx) = — — —5.
N (%) 8 x19
Substituting this in (28) we obtain
n9q) L agtin (2L 30
= — n
i iz 4 Yt (30a)

b) C,: the coefficient of dd in the OPE. The d-quark line is cut, therefore for S; we have
to substitute expression (26), while the two u-quark propagators are free propagators.
We find

2 1
I13(x) = — — <01dd 0>

and after substitution into (28)

7 —q?

¥ (q) = In [ —- ] €0|dd|0), 30b

N(9) (2n)2n T 0ldd|0> (30b)
which agrees with (22).

¢) C,: the coefficient of uu in the OPE. Now one of the u-quark lines is cut, i.e., for one
of the propagators inside the trace we have to substitute (26) and the trace will give
zero, l.e., C, = 0.

d) Cg: the coefficient of G},G5,. In this case two of the propagators in (29) are given
by the second term of (25), the other one is a free propagator (a quark line with two
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gluons attached does not have to be considered). The calculation is still rather lengthy
but straightforward with the result

1 -
mF(q) = TRl In ( )(0! — GGl 0> (30c)
etc.
To conclude this Section let us give as an example the total result for the polarization
operator for the vector current jy(x) = gy,q of light quarks (Q? = —¢?)

i § d*xe™*OIT(j,(x)j{(0)I0> = (Mv—ngm)ﬂv(Qz)

. 1 o Q2
= (quqv_nguv} {_ 17:2 (1 + -7'[_) In -~ Q4 <0 ‘110>
Q"' <0 G" G0 — Q <0!61 WA qd7.ys4°q10)>
4o, . 1
~ 908 : <0137,A"qdy.A"ql0> + . o (31

For heavy quarks the Wiison coefficients are (complicated) functions of m and ¢2 e.g.
for the gluon condensate coefficient C§; for the scalar current QQ with Q a heavy quark
field :

n -
v? 20 1-v v} (v -1)

— s 2 4
[3(3+1 )(1 v) 1 1, I+ 944 +3L] 32)

487: q2

with v* = 1 —dm?/q>.
Expressions for other coefficients for light and heavy quark currents can be found
in the literatwre. For a compilation see Ref. [8].

6. Moments and the Borel transform

So far, we have two expressions for the vacuum polarization operator: one in terms
of physical resonance parameters as discussed in Section 2, and the other a theoretical
expression which is a function of g%, «,, the quark masses and the vacuum expectation
values of the operators Q,. The theoretical expression has beéen calculated for laige
Q*(= —q?) where asymptotic freedom prevails and perturbation theory can be used. To
probe large distances we have to take derivatives of IT7(Q?) at some space-like Q% (for
heavy quarks one can even choose Q2 = 0). This leads to the moments M(Q?)

x>

1 Im I1(s)ds
-1 j

GroyT ¢

. 1 ay
M(Q0) = py (— ;‘Q—z) (Q?)

Q2=Q0?
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For n large enough all subtraction constants in (6) will have been eliminated. Inserting
the representation (8) into (33) we can write

o omg 1

03 = o
OO =T ey

nt1 [ +‘3 (QO)] (34)

where my and gg are the parameters of the lowest lying resonance and (QO) contains
the contributions from higher resonances and the continuum. For high n 8J(Q%) will go

to zero because of the factors
gé < mR+QO >
gr \ mg +Qo

it contains and because gg., Mg, > g, Mg. S0, from a certain » onwards MI(Q2) will
be practically equal to the contribution of the first resonance. This dominance will be even
greater for ratios of moments

MHQYH 1 14840
Mi_(QY)  mi+0Q} 1+6i_(0Qd)°

riQd) = (35)

which immediately gives the mass of the lowest resonance if we are at sufficiently high
n where 31(08) = 61_,(Q2).

For instance, for charmonium a large number of resonances is known and M(QYH
can be calculated to high accuracy One can easily verify that the J/y alone gives ~509;
of MY(Q% = 0) and ~90% of My(Q2 = 0). For Q3 # 0 5,’,(Q0) will converge less fast
to zero and for very large Q3 it will be difficult to extract the parameters of the lowest
lying resonance from (34) and (35). Large (space-like) Q% means moving away from the
resonance region in the Q2 plane up to a point from where it will be impossible to distin-
guish individual resonances. In principle this can be compensated by taking large n. Indeed,
taking higher derivatives of IT(g%) means testing larger distances, i.e., moving towards
the resonance region. The important observation.of SVZ is that there is a region in Q2
(starting at about Q% = 0 for heavy quarks) where asymptotic freedom holds.

The expressions above give the phenomenological side of the momenis. Taking
derivatives of the Wilson coefficients we can write for the theoretical moments (for heavy
quarks in which casc only the gluon condensate gives a nonperturbative contribution)

M;(&) = A(n) [L+a,(j; e+ ba(J; O], (36)
where ¢ = Q%/4m? and

an
¢ = ——<01 = G Glul0>/(4m*)? 37

is the matrix element of the gluon condensate. 4%(n) is the n™ derivative of the bare loop
contribution; A’(n) ~ (m2)~". The dimensionless coefficients a,(j; &) and b,(j; &) are the
moments of the a, contribution of the Wilson coefficients C} and Cg respectively normalized
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with respect to the bare loop. Explicit expressions for a, and b, can be found in Refs. {1]
and [9] (for & = 0) and in Ref. [2] (for £ # 0). The coefficients |g,| and |b,| grow with
n (b, like n® for S-states and like 3n® for P-states) but decrease with & (or Qg), which has
to be chosen such that for a range of n values ja,u ], 1b,¢] < 1 tor first order perturbation
theory to make sense. We will see later in applications to the charmonium spectrum that
for the calculations to be reliable Q2 has to be chosen unequal to zero. As an example
we have plotted the coefficients a, and b, for the axial vector current as a function of n for
various values of £ in Figs. 3 and 4. For a certain value of £ there will be a range of n values

I
2 i -
o
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Fig. 3. The coefficient a.{(4; &) for the axial vector current as a function of # for various values of &

for which the experimental side of the moment equation (34) (or the ratio (35)) is dominated
by a single resonance, while the asymptotic freedom side (36) is still valid. For smail n there
occurs a breakdown since the effect of higher states in (34) should become noticeable and
at high » the expansion (36) does not hold when b,¢ becomes too large compared to 1. The
stability region in n will change with ¢ and one should study the stability of the moments
for growing £. Further on we will discuss applications of this method to the charmonium
system.

Equation (36) is only correct for equal mass heavy quark systems. For light-heavy
systems the quark condensate will also give a contribution to (36) which again must be
small compared to 1 for the expansion to be valid. For light quark systems more higher
dimensional operators come in. The moment method can in principle also be used in
this case, choosing a large mass scale Q® where all corrections are small. If Q2 tends to
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Fig. 4. The coefficient 5,(4, &) for the axial vector current as a function of » for various values of &

infinity the number of derivatives which can reliably be calculated is also arbitrarily large
and one can consider the limit

Q* > oo, n - o, Q*n = M? fixed. (38)

In this way a new variable M7 is introduced instead of Q2. It coiresponds to introducing
the Borel transform of [17(Q?):

Lyl’(Q*) = Im L (Q’)"( - ——-d—>" @, (39)

@z~ (n—1)! dQ*
Q2/n=M?2

which results in a Borel improvement of the series (9) since an operator of dimension d is
suppressed by a factor 1/(3 d—1)!. Applying L, to (6) we get

. 1 2 ;
Ly I19(Q%) = = f dse™*™* Im 114(s), (40)

where the weight function in the dispersion integral has been replaced by an exponential
one. In one of the next Sections we will discuss a few applications of this method.
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7. The operator matrix elements

Before we can turn to applications of the sum rules we need the vacuum expectation
values of the various operators O,.

For heavy quark systems we only have (0|a,/nG},G},10>. This matrix element has
been determined phenomenologically from the charmonium spectrum (see next Section),
resulting in the value

<0} %S— G,,G,10> ~ (340 MeV)*. (41)

It is very encouraging that recent determinations from lattice simulations agree with this
value (Ref. [10]).
The quark condensate {0|mqq|0> is known from current algebra

(m,+my) {Oliu+dd|0y = —m?2f2, (42)

wherc f, is the = — pv decay constant, f;, = 133 MeV. Using isospin invariance and SU(3)
symmetry, and m,+my =~ 15 MeV, we find

{01qi0> ~ —(250 MeV)®, q = u,d, s;
OImgql0> ~ —(100 MeV)*,  m = m,, my. (43)

We note that {0|mqqi0> < {0lx,/nG?|0.

For the four-fermion operators we follow SVZ in assuming dominance of the vacuum
intermediate state, which makes it possible to express them in terms of (0|gq|0). For
instance,

<01y, A"qqy,A"q10) = —15> <0Gq|0>*,
<0igysiqgysAqi0y = —§ <01Gql0>. (44)

In the applications that we will discuss other operators do not play an important role.

Some of the operators listed above are not renormalization group invariant and will
have anomalous dimensions. In the following we have neglected these but they can be
included in a straightforward way.

8. Charmonium

As a first application we will consider the moment method described in Section 6
for the charmonium spectrum. The first important result in charmonium spectroscopy
using QCD sum rules was obtained by Shifman, Vainshtein and Zakharov (Ref. [11])
when they predicted the 0—+ resonance 7, at 3.0 GeV (at the same time ruling out the
X(2.83) as a possible candidate). Later a full treatment of all charmonium levels (including
the P-states) has been given in Ref. [2]

As shown in Section 6 the mass of the lowest lying resonance follows directly from
the ratio of moments (35) and (36) giving the moment equation

Aln—1) [1+a,-,(J; s+ b,-1(J; )]

2,02 _
my+Q5 = Al(n) [1+a,(; O+ b,(j; ]

(45)
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(Here we have neglected the contributions from higher resonances and the continuum.
A continuum contribution can be included on the theoretical side of (45), but as can be
seen from Fig. 5 for the vector channel it does not play a role in determining the mass.)
Since the values of b,(J; &) for P-waves are on average a factor three larger than the b,(J; £)
coefficients for S-waves, & has to be chosen larger for P-waves than for S-waves to fuifil
the condition |b,¢| < 1. In Fig. 6 we show the stability region for the ratio of the pseudo-
scalar to the vector current for various values of £. It is clear from this picture that £ = 0
provides a rather small window for determining resonance parameters. We will come
back to this at the end of the Section when we discuss recent results by Nikolaev and
Radyushkin on the calculation of contributions from d = 6 and d = 8 gluon condensate
operators. On the other hand, if we choose ¢ very large the contribution from higher
resonances to the sum rule will be so large that we cannot extract the parameters of the
lowest lying resonance in a 1eliable way. We have no criterion to decide which ¢ to choose

s,
m
3L + -
fa] x
32- 0 & .
(o] o -
31 ——~—°—§——g—g—g——+———— 3.095
30 |
i i I i n | "
4 6 8 0 2

Fig. 5. Results for the vector state of charmonium from the moments (45) for various choices of the starting
point s, of the continuum contribution (X :4/5, = 4.4 GeV; +:4/5; = 4.2 GeV; [:4/5, = 4.0 GeV
and O:4/5, = 3.8 GeV)
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Fig. 6. Stability region in n for the pseudoscalar S-state of charmonium for various values of £. For all §
values the parameters are as in (49)
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as for most channels there are no higher resonances known, and we cannot calculate its
contribution to the moments. For each channel we have determined ¢ empirically, but
apart from the vector channel we have no guarantee that the contribution from nigher
resonances goes quickly enough to zero with n. It seems reasonable however to assume
that the spectra in other channels are similar to the vector channel.

One should also note that o, (and m_ ) being running parameters are ¢ dependent since
the region which dominates the dispersion integral in (33) will be different for different
Q3Z. Moreover, «, also depends on 7 as noted by SVZ. At present we are not in a position
to be able to give quantitative estimates of this dependence. Instead, at a certain value
of & we choose a, constant at a(Q2%+4m?), with its value calculated from the asymptotic
freedom formula -

2
o,(Q2 +4m?) = Ag_phmﬁﬁﬁTQ,f[.h.f
25 5 Qo+4m;
1+ on o (4mg) In o

c

(46)

with a(4m?) ~ 0.3.

Similarly m_ depends on Q3. At Q% # 0 the quark mass is chosen to be renormalized
at my(p2 = —(&+1)m?) which (in the Landau gauge) is expressed in terms of m, = my(p>
= —m?) by the following formula

m(& o {2+é
n {1+

In(2+&)—21n 2} . (47)

Our parameters are ¢ (as defined in (37)), «, and m,. The values chosen for & are £ = 1.0
for S-waves and ¢ = 2.5 for P-waves. For these values the stability region for the moment
equations (45) is sufficiently large to make reliable estimates for the masses of the states.
Using Eq. (46) the o, values for S- and P-waves have been calculated.

Figures 7 and 8 show the masses as determined from the ratios (45). These moments
are very sensitive to the quark mass. Even a slight change in the quark mass would spoil
the beautiful agreement with the experimental mass value for the vector case (Fig. 7a).
We believe that this calculation provides the best evaluation of the charmed current quark
mass at this value of Q2. Values at other Q3 can then be obtained from fromula (47).
In particular, the value of the quark mass to be used at ¢ = 2.5 for the P-waves is now

fixed, and we can also calculate the quark mass at the Euclidean point p? = —mf, ie.,
0? =0:
m(p? = —m?) ~ 1.28 GeV. (48)
The following set of parameters has been obtained

S-waves (¢ = 1.0) P-waves (¢ = 2.5)

m, = 1.25 GeV, m, = 1.22 GeV,

¢ =0.14x107%, ¢ =0.14x1072,

a, = 0.27. a, = 0.235,

o = 4.0 GeV, %o = 4.8 GeV. 49)
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Fig. 7. Results for (a) the vector and (b) the pseudoscalar states of charmonium from the moments (45).
All parameters as in (49). For comparison the experimental mass values have also been indicated

We stiess that only ¢ and m (¢ = 1.0) are free parameteis. The values for a, follow from
Eq. (46) with a(4m2) ~ 0.3 and Eq. (47) has been used to calculate mg at £ = 2.5. The
parameter set (49) leads to the following numerical results for the masses

N('Se): m = 3.01+0.02 GeV,  (exp. 2.98),

J/p(®S,): m = 3.10+0.01, (3.095),
xCPo): m = 3.40+0.01, (3.41),
x(CP,): m = 3.50+0.01, (3.51),
x(CP,): m = 3.56+0.01, (3.56),
x(*P)): m = 3.51+0.01, Q) (50)

The agreement with known masses is extremely good.

Having determined the masses, we can use the moments (34) directly to calculate
the couplings gg. Contamination by higher resonances will be larger than for the ratios
(35) and we do not expect to obtain as accurate results as for the masses. Only for the
vector channel gy is related to the physical width I'(ete™). Neglecting all higher resonances
we find

I'yy(ete™) = 5.3keV, (51)

which compares quite favourably with the experimental number Iy (e*e”) = (4.7
+0.6) keV. We estimate that the error in (51) is 10-20% due to higher resonances.
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Recently Nikolaev and Radyushkin (Refs. [12] and [13]) have reported calculations
of the Wilson coefficients of six- and eight-dimensional gluon operators. The coefficients
of the six dimensional operatois {G*) turn out to be small and their contribution to the
moments can safely be neglected. However, the coefficient functions of the eight dimen-
sional operators (G*> appea: to be much larger than expected (at Q2 = 0). Employing
a few models for the vacuum to calculate their contributions to the ratios r, they find

38 |- 3 =
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Fig. 8. Results for the P-states of charmonium from the moments (45). All parameters as in (49). For
. comparison the experimental mass values have also been indicated

those to be large (~ 509 of the {G?) contribution for rg). These vacuum models and in
particular the assumption that-a similar factorization procedure as for the six-dimensional
quark condensate operators (see Section 7) can be used to express the matrix elements
{G*> in terms of {(G?)? has recently been criticized by Novikov et al. (Ref. [14}). They
show that contrary to the quark condensate operators such a factorization does not give
a reliable estimate for the matiix element.

However, this still does not tell us that the {(G*) contribution is indeed small. We have
already seen (see Fig. 6) that Q2 = 0 provides a very small window for determining reso-
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nance parameters. The moment n = 6 is already outside the fiducial region. If we move
to Q% # 0 the values of a, and b, will be suppressed (see Figs. 3 and 4). The point is that
contributions from higher dimensional operators will be even more suppiessed.
At Q% = 4m? (i.e. £ = 1) the suppression of contributions from d = 8 operators will
be about four times larger than from d = 4 operators, which could easily solve the problems
raised by Nikolaev and Radyushkin.

Let us conclude this Section with a few remarks on the upsilon system. Here the
method used for charmonium fails (see Ref. [2]). Due to the higher quark mass the non-
perturbative effects are now essentially negligible:

mc 4 4
¢b = ¢c( ) ~ ¢c/100
my

with ¢ defined by (37). On the phenomenological side this is reflected in the fact that the
resonances in the upsilon system are relatively much closer together than in charmonium
and one would have 10 go to very high »n to ensure dominance of the lowest lying state
(and at the same time a non-negligible nonperturbative contribution). At high n higher
order perturbative contributions have to be taken into account (the k™ order o, correction
grows essentially like (\/Zas)" with n the moment number). A program of this type has
been performed by Voloshin (Ref. [15]) using nonrelativistic Borel transformed sum rules.
His result for the P-levels, however, is lower than the recent data from CUSB and CLEO
(Ref. [16]).

9. Light quark meson systems

As explained in Section 6, for light quark systems we use Borel transformed sum rules
(Egs. (39) and (40)). In this section we will discuss the ¢ and A, mesons in some detail.
For other examples see Refs. [I, 17] and [18].

The polarization operator for the vector current is given by Eq. (3 I) For the ¢ meson
the current is the / = 1 combination j,(x) = $(uy,u— d,z,‘d) From (31) one easily finds
for the polarization operator for this current

n_ L o, Q2 1
mQ*» = o (H— —;)l Q‘ {O{m iiu + m,dd|0)
a £ — a a 0
24Q4 <O Gnan\JO) Q (0!(“7"475& u- a’)’p)’si d) f >
- @3‘ <O\(ity ,A"u + dy,A°d) Z 4v,2A'910). (52)

g=wud,2

Substituting the approximations for the various operators discussed in Section 7, and
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performing the Borel transform of (52) we ariive at the sum rule

2 1 a(M
fe“’“ Im [I(s)ds = — M? [1 M)
87 n

+ M— {0[mgq|0)

e <0I > Gy Ginl0> =~ vl > <0/7910>

n2 448 o,
T

For o, we choose a, (M =~ my) ~ 0.6 (A ~ 200 MeV). Substituting the numbers given
in Section 7 for the various matrix elements we get (M? in GeV?)

1 o 0.04 0.03
M Im I(s)ds = —M* |14+ 2L 4+ o~ = 54
Ie m s = g T MY M >4
A second sum rule can be derived by differentiating (54) with respect to M?2;
1 o 004 006
"M Im [I(s)sds = = M*| 1+ = — 55
J'e m JI(s)sds ™ h [ . va + g (35)

In these two expressions the power corrections are relatively small compared to the unit
term even at M2 ~ m? ~ 0.6 GeV?, and at such M? the integral over Im II(s) is dominated
by the @ meson.

We now saturate as before for the charmonium system Im I1(s) by one resonance in
a narrow resonance approximation, plus a continuum with threshold s, in the form of

a 0 function:
nmﬁ
Im II(s) = —5

Q

. 1 o :
d(s—md)+ P (1 + —n—> 0(s—so). (56)

Substituting (56) into the left-hand side of (54) and (55), transferring the continuum contri-
bution to the right-hand side of these equations and taking the ratio we find the following
expression for the mass of the resonance

: o, \T So \ —uap2 0 04 0 06
1+ =) 1= {1+ —5 ) e™™
m, = .

e 0.04 0.3
<1+ 3"—) [1—e ™4 — —
T

&)
M* M°

The value of s, chosen, s, = 1.5 GeV?, is suggested by the expeiimental data on R in
e*e~ annihilation. For this value of s, a stable mass prediction is obtained for a range of
M?2. For very small M? the power corrections blow up and for large M? (57) is dominated
by so. In Fig. 9 we have plotted the mass prediction as a function of M? for a few values
of so. Contrary to the charmonium system where the results were insensitive to the threshold
choice, it can be seen from Fig. 9 that the resul.s are sensitive to the actual choice of So, but
the stability criterion fixes s, quite accurately.
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Fig. 9. The theoretical prediction for the p-meson mass from Eq. (57) for a few values of the continuum
threshold so(+:50 = 1.75 (GeV)?, O:s5o = 1.50(GeV)?, X:so = 1.25(GeV)?). The strong coupling
constant z, = 0.6

To consider the situation a little mote in detail we follow SVZ and write for the predic-
tion of the mass

mg = Mz.fcont(A/lz)j;h corr(l‘/lz)s (58)

where fi, corr (M?) is given by (57) without the continuum contributions (s, = 00) and f,on,
is the ratio of (57) and fiy, ... Both these functions have been plotted in Fig. 10. Without
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M
Fig. 10. The p-meson mass with and without power corrections for s, = 1.5 (GeV)2. Also shown are the
functions fion: and fih corr defined in the text. The region between the arrows 4 and B is considered to be
reliable for determining the resonance parameters
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POWer COTrections fy, orr Would be equal to 1 and without continuum (s = @) f.onWould
be equal to 1. The deviations from these values give a measure of the importance of the
power corrections and the continuum. The arrows 4 and B indicate the region in M?
which is reliable from a theoretical point of view and still sensitive to the resonance contii-
bution. For these reasons the sum rules are not considered when the continuum contribu-
tion and/or the power corrections exceed 30%. The assumption is that unaccounted power
corrections are of the order of the square of the power corrections that are kept. This keeps
the accuracy of the calculations at the 109 level.

Curve 3 in Fig. 10 gives the result of the sum rule without power corrections while
curve 2 is the actual mass prediction. No stability is obtained without power corrections
which contribute substantially to get a stable mass prediction.

The sum rule (54) can be used directly to determine the p-meson coupling. The final
results for the g-meson parameters are

2
e L242,  m, =~ 770 MeV, (59)

4
which compares very favourably with the experimental values 2.36+0.18 and 776 +3 MeV.

Similarly one can also consider the J = 0 currents j,(x) = $(uyu+dy,d) and j(x)
= %sy,s, which correspond to the w and ¢ mesons respectively.

For the A,; meson we have to consider the isospin [ = 1 (J* = 1+%) axial current
Jux) = —}(Eyuysu—-ayuy,d). For the polarization operator we have

1 Q? 1
0,Q% = = (1+ )Q m-—— + 507 {Omyiiu + m,dd|0)

24Q2 <01 > G5,Gh 10>+ 50 (Ot(uy,‘,t u—dy,A°d)*|0)

mxs . j8 a . 28
+ @—g <0i(iiy,A%u + dy,A°d) Z 3v,A°q10). (60)
q=ud,s

Using the values for the operator matrix elements and performing the Borel transform
we find the sum rule

0.10
x, 0046 ] )

- { ;
J " Imn‘(”d‘”s—w[”"{" VYT

Again a second sum rule is found by differentiating both sides of (61) with respect to 1/M 2,
Finally we get

2
5o Lrd g M2 0.10
I+ — 4 ™M | o
, ){ ( M 2M‘)e ] Me

- 62
7R %o\ o] 0046 010 ©2)
1+ % 1——(1+-—7e‘°/ - — - —F
n M M M

and we can use this equation to find the mass of the A; meson.
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However, we can derive an alternative sum rule by considering the divergence of the
axial vector current j,(x) = §y,ysq. This divergence has a pseudoscalar and an axial compo-
nent, The resulting polarization function has been given by SVZ in Ref. [1}and leads to the
sum rule

o, 0.046 0.05
=% (63)

1
“SMI I T,()ds = — M2 |14+ — + —-
fe m IT,(s)ds P +n+M‘+M§

Actually, the sum rule (61) is just the derivative of (63) because up to the order we work
ImII, = s ImII, in the chiral limit. This implies that if we saturate Im I7, and Im I,
by resonances, plus a continuum, the continuum threshold is the same in both cases (or
different by m? which is negligible). We have

T o2 2 -2 2 1 %s
ImIl, = 5}',, 0(s)+mmy fo, 0(s—my )+ i 1+ — 0(s —s¢), (64a)

Im I, = nmj fi28(s—mi )+ gi <1+ ﬁ) (s — so), (64b)
b T :

where the constants f,, and f; are defined in the usual way
Oliy,psdiny = if,P, and  (Oliy,ysdlAd> = 21 mi

Substituting (64a) into (64b), transferring the continuum and pion pole contributions to the
right-hand side and taking the ratio with the second sum rule we find

o, R 0.046 0.10
(1+ —7;)[1_ <l+m)e so/M ] - e —_ —-}F

2 2 \
=M ,
R o Ce, 0046 005  4nf?
- M MM

(65)

where the pion coupling constant f, = 133 MeV. The behaviour of the two sum rules
(62) and (65) as a function of s, is different and it turns out that they only result in the same
resonance mass for s, =~ 1.75 (GeV)2. The result for the A; meson mass is shown in Fig. 11
from which we find

my, = 1.1540.04 GeV (66)

in good agreement with the experimental value usually quoted.
We can also use (61) and (63) directly for determining the A; coupling constant.
Again the two sum rules agree very nicely and give (Fig. 12)

7= =

4n
—— =~ 0.15-0.18.
e

This completes our discussion of light quark meson systems. Following the same
procedure all L = 0 and L = 1 mesons have been discussed in Refs. [1, 17] and [18].
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Fig. 11. The mass of the A, meson from the two sum rules Eq. (62) (O) and Eq. (65) ( x). The continuum
threshold so = 1.75 (GeV)?
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Fig. 12. The A, coupling constant 4x/f%, from the two sum rules Eq. (61) (O) and Eq. (63) (x) defined
as Oluy,ysdiA> = /2 fi!m} ex

10. Baryons

Two-point functions of baryons have been discussed by several authors (Refs. [6, 19-
~23]). As an example we will discuss the sum rules for the nucleon in some detail, since
we need the results in the next Section when we discuss three-point functions. Extensions
to all other octet resonances and to the decouplet resonances have been made in the papers
referred to above.
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For the nucleon we choose the current (20) which has the right quantum numbers.
Then

N(q) = i | d*xe"*OIT{ny(x)inO0}I0> = T,(a*)+vq112(4*). (67)

So there are two invatiant functions. Counting dimensions, one easily finds that IT,(g?) has
an odd number of dimensions while IT,(g?) is even because of the factor yg. This implies
that in performing the operator product expansion the Wilson coefficients ‘of even dimen-
sional operators (I, G,,G},, 41'g3l"q) in I1,(g*) will be proportional to the small quark
mass m, while the operator g will appear without m, and gives the dominant contribution
to I1,(g*), the more so since the contribution of the five-dimensional operator Go,,G,.q
turns out to be zero for octet baryons (Ref. [6]). To IT,(g?) all operators contribute but
since

iK0im3ql0)} < <0| - G, G,l0>

we can neglect the gq piece. Therefore the diagrams of Fig. 13a contribute to I7,(¢?) and
those of Fig..13b to I1,(¢?). The calculation of some of the Wilson coefficients for the
polarization operator induced by the current (20) has been discussed in detail in Section 5.

e

Fig. 13. Diagrams to be calculated for the Wilson coefficients of the operators in the OPE of two baryon
currents; (a) for IT,(¢*) and (b) for I1,(g*) as defined by (67)

The choice of the-current (20) is not unique. A-second possibility (of the same dimen-
sion) is the one with y, replaced by o,,. However, it has been argued by Ioffe (Ref. [19])
that chiral symmetry breaking terms are strongly suppressed in the polarization operator
of this current and consequently the resonance should not couple strongly to this current.

On the phenomenological side we take only the nucleon state into account with
coupling iy to the current, therefore

+ continuum, (68)

where the coefficient of yg gives IT1,(g%) and the My piece IT,(¢?). Collecting the various
contributions (see Section 5) to the two invariant functions and performing the Borel
transform we arrive at the two sum rules:
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for I1,(q*)
2aM* = 2Q2n)* AZMye ™ MM (69a)
and for I7,(¢?)
MS+bM?+4a? = 2Q2n)*Ahe MM (69b)
where
a = —(27)?(0|3ql0> ~ 0.6
and

b= n2<O[ * G2,Ga,10) ~ 0.13.

Taking the ratio of these two equations (including a continuum con.ribution to the leading
terms of (69a) and (69b)) we get

So
2aM* [1 —exp (—so/Mz) (—2 + 1)]

My(M?) =
M6[ —exp (—so/M )<2M2 + W +1>] +4a*+bM?

(70)

In first approximation (neglecting the continuum and the power corrections in (69b))
we get with M? = MZ

My = {—2(2m)*(0Gq0>}'* ~ 1 GeV, (71)

which for a first approximation is amazingly good. This result can be-improved by consider-
ing the full expression (70). Recently (Ref. [23]) the contributions of higher dimensional
operators than the ones considered above have also been calculated. They turn out to be
non-negligible in some cases. 1 feel however that progress in describing the fine structure
in the octet and decouplet will be limited as long as the first order o, corrections to the bare
loop and the quark condensate piece have not been calculated.

11. Three-point functions

In this Section, I will discuss an extension of the sum rule formalism to three-point
functions. Several applications have so far been made (Refs. [24-27]), but I will consider
only some of the results for coupling constants of hadrons to Goldstone bosons (Ref. [24]),
in particular the pion-nucleon coupling constant gy, and geer

Let us consider the three-point function of two baryon currents and one meson current

A(p, p', q) = | d*x | d*ye™* T OT(1p(x)T m(»)1a(0))10), (72)

where p’ = p+gq. We are interested in the couplings of pions to mesons and baryons, i.e.,
for the meson current J,,(x) in (72) we choose the pseudoscalar curient (for n°)

Jp(x) = @(x)iysu(x)— d(x)iysd(x). (73
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We also assume in analogy to the two-point function case discussed in detail before that
we can apply the operator product expansion to the T-ordered product of currents in (72)

[ d*x § d*ye?* T (p(x)J u(1)iip(0)) = ; Cu(p, P's 9)0; (74)

where the C(p, p’, ) fall off by powers of p?, q2, and p'? according to the dimension of O,.

Phenomenologically the baryon-pion coupling can be represented by the diagram
in Fig. 14, /g is the coupling of the baryon to its current and gp is the coupling of the meson
to its cutrent. For the neutral pion we have

2
g = L M (75)
V/2 mg
| b
|
q!
gp
i L

'

p As OnBB’ Ag’' P

Fig. 14. Diagrammatic representation of the phenomenological side of the sum rule for vertex functions;

7np and g+ are baryon currents, Jp is the pseudoscalar meson current. A and Ay are the couplings of the

lowest-lying batyons to the currents, gp is the coupling of the pseudoscalar meson to the current, and ¢,pp’
is the three-point coupling

with f, = 133 MeV the pion decay constant and m, the mass of the quark. We will assume
that each channel is saturated by a single resonance (in principle of course contributions
of higher resonances can be taken into account analogous to the two-point function case).
For the transition B — nB with B & J = 1/2 baryon we then get for the phenomenological
side of A(p, p’, q) (with p? = p'?):

APy @) = 22 2 (qive) L fom (76)
p,p,q)= ~B(p2__M123)2 74%75)8x8B 2

g*—m} J2 m,
which results from the effective Lagrangian L = gBiyst - 7B and is just the product of the
two fermion propagators, the pion propagator and the various couplings.

The first important observation is that (neglecting the pion mass) there will always
be a 1/g? pole on thé phenomenological side. To get rid of all possible subtraction constants
we take the Borel transform with respect to Q2 = —p*. There is a slight problem in this
procedure since by taking p? = p'? there could in principle be subtraction terms which
do not vanish under simultaneous borelization. However, they are not present in the cases
we are considering (see also Refs. [14] and [28] for a discussion of this proceduie). We will
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give an alternative derivation of gy using two-point functions which leads to an equivalent
sum rule showing that the three-point function method is correct. The Borel transformed
expression (76) gives

—Ma2/M2
eMB/M { f;: 2

12 . me
AR~ a My(yqiys)grps 3T 3

S Me 77
M qg’—m; J2 m, an

where M? is the mass scale connected with Q2 via the Borel transformation.

To determine the pion-baryon coupling constant theoretically we will identify the
leading terms in the operator product expansion (74) which have a 1/¢? term with Eq. (76)
(and with (77) after borelization), i.e., we will deteimine the Wilson coefficients which
have a 1/¢g? term for the lowest dimensional operatots in (7).

Counting dimensions it is easily verified that A(p, p', ¢) has an even number of dimen-
sions; therefore, taking into account the yq factor the Wilson coefficients of all even dimen-
sional operators will be proportional to the small quark mass m,, while the operator gq does
not have this m, and its contribution will be greatly enhanced compared to the other opera-
tors. This implies that up to dimension four we only have to take quark condensate contribu-
tions into account and that we can neglect all perturbative and gluon condensate contribu-
tions. Therefore,

A(p, p's @) = Cp, P', @) <0iaul0>+ C4p, p', q) 0idd|0). (78)

The diagrams which we actually have to calculate to obtain C, and C; have one quark
line cut and are given in Fig. 15. It can easily be seen that only the diagrams of Figs. 15a
and b have a 1/g? term.

P .
=

N/
4]
Fig. 15. Diagrams which contribute to the Wilson coefficient of the operator gg. Only diagrams (2) and (b)

have a l/g* term with ¢ the pion momentum

Let us now apply this to the calculation of the pion-nucleon coupling constant g,xn, 1.€.,
in (72) we have the current (20) for ng and the #x° current (73) for J,. The calculation of the
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diagrams is straightforward and gives the results

1 q . A?
C,= - (—2—755—‘3"»:15(11)5)172 In —-p2 s (79a)
q A2
4= — (2n)2 % q—z(l)’s)l’z In -p2 . (79b)

Here we have already taken p'? = p? and only wiitten down the 1/g* terms.
Substituting (79) into (78), taking {iiu) = {dd)> = {gq), performing the Borel trans-
form, and identifying with the phenomenological side (77) we get

AR ‘ﬂ Myg L mt = M*(—4m,<0/3910%) (80)
N M4 N&aNN \/2 L4 (271_)2 q .

Now we use the PCAC relation (42) and the two-point function result for the nucleon
current Eq. (69b) to eliminate A% We get

200t 3 2 (1488 4 )—l 81)
&N = 7'5 My LYY .

A remarkable feature of this relation is that it is almost independent of M2, In first approxi-
mation, i.e., without the power corrections g = 16. Taking b ~ 0.13, a ~ 0.6 and
M? >~ M2 we obtain the prediction

g X 12.5 (82)

with an estimated error of about 20%, in very good agreement with the experimental
value gihy =~ 13.5.

We could also use relation (69a) to eliminate 1% which gives an estimate of the quark
mass

.ﬁ:mingN _ (2”)2 nzm:

AM?J3 T 2M*My

my(M?) = ~ (6—8) MeV. (83)

We also note that relation (81) has a completely different structure than the Goldberger-
-Treiman relation

ZanN = ﬁM". (84)

Let us now give an alternative derivation of g, using two-point functions. For this
we consider the quark condensate terms in the OPE of the T-ordered product of two
nucleon currents

i | d*xeP T(n(x)iin0) = ... + }; Cip)arq+ ... (85)
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We find
T, 1 2 A2 . N
Ci(p)drd = — Gy p’ln —7 dd + iysdiysd
r
1 T 2 ¢ 1 ap,
+ 3 (ypY'yp+20™Y") {dy.d+ysdyysd} + il 7pdopd (86)

and a similar expression for ZrC,f(p)ﬁI' u which, however, does not contain a ##ysu term.
Sandwiching between the vacuum and a one pion state we select precisely the gysq terms
since the pion does not project on any of the other structures.

For the phenomenological side we get (with ny(x) = AyN(x) and the effective Lagran-
gian L = gxwNiys(z - m)N)

<0li | d*xeP* T(n(x)iin(0)) %)
= i [ d*xe"i | d*ulAn*COIT(N(X)L(u)N(0)|n°>

2 (1—~g§‘;3 i75). (87)

= I =
N Pz‘ N

For the theoretical side we use
2
1 fimy
n.

L (uiysu—diysd) = —= 88
7 (Riysu—diysd) 73 mymg (88)
Borel transforming and equating the two sides we get
2 1 1 fm?
ZannlAnlZe MV = o LS (89)

M* — .
n? " J2 2m,

Now we use Eq. (69a) to eliminate A3 and we obtain the Goldberger-Treiman relation (84).
The most important point of this exercise is that the Wilson coefficient of the gysq
term in (86) is identical to the one obtained in the three-point function case. This shows
that the procedure followed there is correct.
As a final example we will calculate the coupling constant g,,, using three-point func-
tions. In this case all currents in (72) are mesonic currents, two vector cuirents and one
pseudoscalar current. The phenomenological side now reads

gmnauvaﬂq“pﬂ . \/ if;m: . mf\mg
(@-md) (P -md)(@*-ml) 2m,  fufe
Counting dimensions one can easily verify that also in this case the quark condensate
contributions dominate. The possible diagrams are the same as in Fig. 15 with one quark

line less. The calculation of these diagrams is extremely simple since they do not contain
any loops. Selecting only the 1/g2 pieces, the result for the invariant amplitude is

<0igg|0y (1 t )

A(p, P, ) = (90)

(2t 3 Gén

q p p
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Identifying this with the 1/ terms in (90), taking p* = p'> = — 0? and applying the Borel
transform with respect to Q? as before we get (with ms = mZ, f, = f)

e~ metIME J2fm? _ni_ __2501('111]0)

8awen M* 2m, Az = ME (92)
To eliminate f, we use the two-point function result (53):
12n2m? , o
7 -2 eTmlMY - 3 2 [1 + —~ +higher corrections:]. 93)
o n

For explicit expressions of the higher corrections see Section 9. At M2 ~ m‘f the sum
of all corrections amounts to about 109,. Substituting (93) into (92), using PCAC, and
rearranging the terms we get

uer = /2 (21)° '{3 ~ 13 GeV™!, (94)

Q

which is very close to the current algebra result

2 -
=-—-=15GeV ™"
2

r

g weR

Again we note that our result (94) is independent of M2,

This independence of M2 resulting in extremely simple formulae is the great advantage
of our method compared to other three-point function calculations. The calculation of
Ref. [27], for instance, results in an extremely complicated expression for g,,, which is not
only a function of M2 but also of Q2 = —g*. Both variables can vary in a certain range
controlied by the magnitude of the power corrections, resulting in a range of values for g,,,,.

12. Conclusion

I have given an introduction to the basic ideas underlying the QCD sum rules invented
by Shifman, Vainshtein and Zakharov (Ref. [1]), and discussed some of the applications
made in recent years ranging from heavy quark two-point functions to light quark meson-
baryon couplings.

It is important to note that different nonperturbative operators control the various
quark systems. The charmonium and upsilon systems have only gluon condensate contribu-
tions, and from this we obtain an accurate determination of the fundamental gluon conden-
sate parameter ¢ (for a determination of {«,/nG?) involving only light quarks see Ref. [14]).
In the open charm and beauty systems (not discussed here but see Refs. [29-31)) the chiral
symmetry breaking starts to play a dominant role, which is also the case in light quark
baryons (Section 10) and in couplings of hadrons to Goldstone bosons (Section 11), while
for light quark mesons (Section 9) the quark condensate terms are small since they are
multiplied by a very small mass.

Although some states are difficult to calculate due to technical problems an impressive
body of results has been accumulated, which shows that it is possible to calculate resonance
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masses and couplings to a high degree of accuracy in QCD in terms of the Lagrangian
parameters and a number of vacuum expectation matrix elements which parametrize
nonperturbative effects due to the complicated vacuum structure of QCD. The method
has its limitations, of course, in particular it does not appear to be possible to determine
the properties of radial excitations. In fact by using moments or Borel transformed sum
rules we ensure dominance of the lowest lying resonance. 1t is never possible to eliminate
completely the contribution from higher resonances and/or the continuum. This introduces
errors which are typically ~10% in the determination of masses (with the exception of
charmonium where much greater accuracy is obtained) and ~ 209 in the coupling constants
which we have discussed.
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