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Spontaneously broken chiral symmetry fixes the low energy structure of QCD to a large
extent. I show how to determine the Green’s functions to first nonleading order in a simul-
taneous expansion in powers of the momenta and of the #- and d-quark masses. In particular,
T discuss the corrections of order M; to the low energy theorems for wm scattering.

PACS numbers: 11.30.-j, 11.40.-g

1. Motiration

In the framework of the standard model the gauge theory of SU(3), x U(1), .. is a very
accurate effective low energy theory. The Lagrangian

Lot = Lot Lo (LY

should describe all low energy processes (energies E < My) up to small corrections of order
e*(E/My)>.

The QED part of the effective low energy theory is responsible for the structure of
atoms, molecules or solids — it affects the structure of the proton or of the pion very
little. In the following 1 will discuss the low energy properties of the Green’s functions
associated with the quark currents; in this context, QED only generates small perturba-
tions which are adequately described by the first few terms of a perturbative expansion
on powers of e. I neglect these perturbations altogether, i.e. work to lowest order in e:

S’PCH = gQCD‘ (1.2)
Apart from the coupling constant g (or, equivalently, the renormalization group invariant
scale A4) the QCD Lagrangian contains the vacuum angle 6 and the mass matrices associated

with the quarks of equal charge as basic parameters. The general quark mass term is of
the form URMUUL+DRM,,DL+I1 c., where U and D collect the qualk fields of charge
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% and -3 respectively. With suitable unitary transformations of Ug and U, one may bring
the matrix M, to-diagonal form with positive eigenvalues m,, m,, ...; likewise M, may
be brought to positive diagonal form [1]. If the determinant of the original quark mass
matrix, det M = det M - det M}, is not real and positive, this change of basis however
involves a chiral U(1) transformation which only leaves the theory invariant, if one
simultaneously transforms the vacuum angle in such a way that the sum

0 = 0+argdet M (1.3)

remains the same. (Note thai the experimental information about the eigenvalues of the
quark mass matrix [2] excludes det M = 0 by many standard deviations. The phase of the
determinant is therefore a meaningful number.)

If 8 is not a multiple of = the theory does not conserve CP. From the experimental
upper bound on the electric dipole moment of the neutron one concludes [3] that & must
be very close to a multiple of n. It is clear from (1.3) that 8 is defined only modulo 2. We
are therefore faced with two distinct possibilities @ ~ 0 or § ~ n. 1 have recently argued
[4] that the spectrum of QCD does not distinguish between these two possibilities and that
we do not know which of the two is realized in nature. (The issue is of relevance for models
which predict quark mass relations; if it were known that  is close to zero rather than close
to n, models which predict 6 ~ 0, det M > 0 would be ruled out.) To simplify the discussion
I disregard the small CP violating effects and idealize the two cases to § = 0, § = n.
Instead of pinning down the chiral U(1) transformations by the requirement that all quark
masses be positive, one may use this degrec of freedom to eliminate the vacuum angle in the
Lagrangian of QCD

f=0. (L.4)

In this convention 8 is the phase of the quark mass determinant. If § = 0 the determinant
is positive; in this case the quark field basis may be chosen such that all quark masses are
positive. If 8 = n the determinant is negative, in this case it is convenient to take the three
light quark masses m,, m,, m, as negative, whereas the heavy quark masses m. m,, ... are
taken positive. With these conventions the matrices M, and M, are real, the quark mass
term in the Lagrangian is independent of y s and may be written as Mg = m du+mdd+ ....

The running masses of the heavy quarks ¢ and b are known rather precisely [2}:

m. = 1.35+0.05 GeV,

my, = 5.6+0.4 GeV (1.5

(running masses in MS scheme at scale u = 1 GeV). The ratios of the light quark masses
are also known very accurately [2]:

my
2 1.76+0.13,
mu
mS
M o 19.6+1.6,
my
B - 435422, o= L(my+my) (1.6)

my—m,
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but their absolute size is known only to about 30%:
Im,| = 5.14£1.5 MeV,
Imyl = 8.942.6 MeV,
img = 175455 MeV (1.7

(running masses at ;= 1 GeV).

The spectium of the theory is approximately SU(3)-symmetric (flavour symmetry
u <> d«>s): the mass of the £ e.g. is not very different from the mass of the proton
(My. = 1189 MeV, M, = 938 MeV). The mass difference m,~m, (which is responsible
for the breaking of the symmetry) must therefore amount to a small perturbation. Since
m, is 20 times larger than m, this implies that m, itself must be small (m, must be small
in comparison to the typical energy of a quark in the proton or in the Z+;if this were not
the case there would be no reason for the wave functions of the two bound states to be
approximately the same and hence no reason for the bound state masses to be approxima-
tely equal).

The mass of the charmed quark on the other hand is not small. If one gradually
increases the mass of the strange quark until it reaches the value m. the mass of the bound
state uds gradually increases from 1116 MeV (the mass of A4,,) to 2282 MeV (the mass
of A5;.): the mass difference m_— m, is responsible for half of the mass of the udc bound state,
it is not a small perturbation.

Since the light quark masses are small, it is appropriate to treat the corresponding
mass term in the Lagrangian as a perturbation

gQCD = ygcp— m-,,ﬁu et mdad fand m,SS (1.8)

and to expand the bound state masses, Green’s functions etc. in powers of m,, my, m;
(note that the masscs of the heavy quarks are retained in .ngCD). This procedure is called
chiral perturbation tneoty {5}

The unperturbed system, #Jcp, is exactly symmetric with respect to independent
rotations of the right- and left-handed components of the quark fields u(x), d(x), s(x).
The vector and axial currents

i ;l

A‘y‘tq; A;=q_;“')’ﬂs‘1§ i= 15"'s8

arc exactly conserved. One assumes that the ground state of the theory breaks this SU(3)
x SU(3) symmetry down to SU(3): the vacuum is not symmetric with respect to the chiral
transformations generated by the axial charges:

Q.i0> # 0.

The eight states Q,:|0> describe massless, pseudoscalar particles, the Goldstone bosg_ns
of the spontaneously broken symmetry. Since the eignt lightest hadrons n¥, n°, K*, K°, K¢,
n are indeed pseudoscalar, it is natural to identify them with these Goldstone bosons.
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Why are they not exactly massless? The group SU(3) x SU(3) is an exact symmetry only
if the quark masses m,, my, m are turned off. In the real world the quark mass term produces
explicit symmetry breaking, e.g.:

0,(i1y"s) = i(m,— my)iis,

0,(fiy"ysd) = i(m,+my)itysd. (1.9)

The (mass)? of the pion, e.g., vanishes only if m, and m, are set equal to zero; in the real
world it is proportional to m,+my,:

M? = (Im,|+m,)) - B+0(m?). (1.10)

The sensitivity of the pseudoscalar meson masses to the masses of the light quarks explains
why the pion and kaon masses are so different: the mass of the kaon is given by

ML, = (Im,+im)) - B+0(m?) (1.11)

where B is the same constant as in (1.10). The ratio MZ : M2 1s large, because |m,| happens
to be much larger than |m,|, |m,l.

The hidden, spontaneously broken, symmetry is not only responsible for the occurrence
of Goldstone bosons — it fixes their low energy properties in terms of a single constant
F, which measures the matrix element

014, in*(p)> = i8"p,F,. (1.12)
The pion must e.g. couple to the nucleon with strength

gaMy

8xNN = +0(m) (1.13)

(Goldberger-Treiman relation). Another example is Weinberg’s formula for the nr scatter-
ing amplitude [6]
s—M?
As, tu) = 3 +0(pY. (1.14)

n

This formula in particular allows one to predict the S- and P-wave scattering lengths. The
P-wave scattering length e.g. is given by [6]

L 1

_ v 1.15
M= 42 (1.13)

If the quark masses m, and m, are put equal to zero (in which case the pion is a genuine,
massless Goldstone boson) the low energy theorems (1.13) and (1.15) must hold exactly.
What happens in the real world ? Since the symmetry underlying these low energy theorems
is only broken by the masses m, and m, which are tiny, one should expect the theorems
to hold rather accurately, even in the real world. Comparison of the experimental result

a}]exp = (0.038+0.002) (M) (1.16)
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with the theoretical prediction (1.15)
ajln = 0.030(M,.)"* (1.17)

however, shows a 259 discrepancy! This is puzzling for the following reason. Equation
(1.9) shows that the breaking of SU(2) x SU(2) is measured by m, + m, whereas the breaking
of isospin symmetry is measured by m,—m,. Since m, is almost twice as large as m, the
sum m,+ m, is not much larger than the difference m,—m,. If we find large violations of
SU(2) x SU(2) why is isospin such a good symmetry? Alternatively, one may compare
SU2) x SU(2) with SU(3). Since m, +my is about 12 times smaller than m,—m,, we shoud
expect the typical corrections to the SU(2) x SU(2) low energy theorems to be about 12
times smaller than the typical violations of SU(3) which are of order 20%. We should
thus expect deviations of order 209): 12 ~ 2% rather than 25% as obseived.

To see whether the observed deviations from the low energy theorems of current
algebra indeed pose a problem we have to go beyond these crude estimates and calculate
the perturbations generated by the quark mass term. Truong and his collaborators [7]
have pointed out that the so-called unitarity corrections to the low eneigy theorems of
curient algebra turn out to be large in some cases. The unitarity corrections constitute
an important part of these perturbations — they are however not the only contributions.
In the following, I briefly sketch a method which allows one to determine the corrections
to the low encrgy theorems in a systematic manner |8, 9]. I restrict myself to SU(2) x SU(2),
i.e., expand the quantities of interest in powers of m, and my at fixed m,, m,, ....

2. Generating functional, Ward identities

Let us first look at the unperturbed system (m, = m, = 0). Since the vector and axial
vector currents ate exactly conserved, the corresponding Ward identities lead to a closed
system of constiaints relating the Green’s function:

G = O0ITV,, ...V, A, ... 4, 10> 2.0

to G, ,_; and to G, ». To solve these constraints it is convenicnt to look at the generating
functional Z(v, a) which collects all of these Green’s functions. One adds external vector
and axial vector fields to the Lagrangian

Lo = Laco+ A0 (X)"q +3a,(x)y"ysq 2.2)
and considers the vacuum-to-vacuum amplitude in the presence of these external fields
€2 = (0 out 0ind,,. (2.3)

In the present context, v,(x) and a,(x) are 2 x 2 matrices acting on the flavour of u and
d quarks:
i

eu(X) = 0h(x) % a,(x) = ai(x) % . (2.4)
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The Green’s functions are recovered from the generating functional by expanding Z(z, a)
in powers of v,, a,. The contribution quadratic in g, e.g. is the two-point-function of the
axial current

Z(v, a) = % j dxdyai(x)a%(y) <OITA*(x)A™ (0> + ... (2.5

The Ward identities are equivalent to the statement that the generating functional is in-

variant with respect to the following SU(2) x SU(2) gauge transformation of the external
fields

Vk(x) (Uu + au) Vg(x) + iVR(x)au Vl;r(x)s
=y = V(%) (£, = a )VI(x) + iVi(x)3, Vi(x),

v, +a,

[2

Z{t', a"y = Z(v, a). (2.6)

(A formal “proof” of this property is easily obtained: one subjects the right- and left-
-handed components of the quark fields to the transformation

qr(x) = Va(¥)gr(x);  qu(x) = Vi(x)qu(x) (2.7)

which formally leaves the theory invariant. Chiral transformations of this sort are in general
however afflicted with anomalies [10]. In the case of SU(3)xSU(3) e.g. the generating
functional is not invariant under the set of gauge transformations analogcus to (2.7),
but picks up a contribution from the anomaly. In the case of SU(2) x SU(2) there is no
anomaly in the isovector currents — the generating functional is invariant under the
gauge transformation (2.6).) I recommend it as an exercise to check that the gauge invariance
of Z indeed implies the Ward identities relating say the 3-point-function {0|TV,4,4,[0>
to <0ITV,V,10>, <0|TA4,4,|0>.

3. Low energy expansion of Green’s functions in chiral limit

If the theory does not contain massless physical states then the Green's function
admit a Taylor series expansion around p = 0, e.g.

i | dxe®ETIOTA()ANI0) = cfgyy+cTPupy+cTEWP + .. 3.1

This expansion is equivalent to an expansion of the generating functional Z(, @) in powers
of derivatives of the external fields:
Z = [ dx{} cfay(x)a™(x)+ % c5d,a*(x)é,a™(x)+ ...}. (3.2)
Gauge invariance imposes restrictions on the coefficients ¢y, ¢,, ...: the coefficient ¢, e.g.
must vanish, ¢, is equal to —c3 etc. The leading term in the low energy expansion of Z is
given by
Z=cfdxtr {Fy,F""+FLF"" Y+ ..,
F., = 8,F\—o,F,—i[F,,F]; 1=R,L,
R . Lo_
F,=v,+a,; F/=rv,—a, (3.3)
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A single constant ¢ thus determines the leading low energy behaviour of the 2-, 3- and
4-point-functions associated with the vector and axial currents, e.g.

i | dxe®>TIOITV()VY) 10Y = ¢6™(p,py— gup®) +0(p*),
i | dxe'?CTC0ITAL(X)ANy) 10) = ¢6™(p,py— guP?) +O(p*). (3.4)

In the chiral limit (m, = m,; = 0) which we have been considering in the last section
(and which must be taken if Z is to be gauge invariant under SU(2) x SU(2)) the spectrum
of the theory however contains massless states — the Goldstone bosons. These states
produce poles at p*> = 0 and cuts starting there; the Green’s functions do not admit a simple
Taylor series expansion in powers of the momenta. The two-point function of the axial
current, e.g. behaves like

p

v
2

i J dxe'?=TIX0ITAL(x)A4())I0) = 6*F} Puby L (3.5)
near p? = 0: it is of order one rather than of order p? as in (3.4). Furthermore, since the
momenta also occur in the denominator, the leading low energy behaviour of the generating
functional is not given by a local expression such as (3.2), but starts with a nonlocal piece
of the form

Z = L F?[dxdyd*al(x)4 (x—y)&ayy)+ ... (3.6)

This term by itself is not gauge invariant — it requires the presence of similar contribu-
tions e.g. in the 3-point functions. The structure of these contributions is determined
by chiral symmetry (gauge invariance) alone. To determine the full generating functional
at leading orde:r in the low energv expansion one may consider any model Lagrangian
which is invariant under SU(2) x SU(2) and for which the ground state spontaneously
breaks this symmetry down to SU(2). Chiral symmetry guarantees that the leading low
e ergy behaviour of the Green’s functions associated with the vector and axial currents
is the same as in QCD, provided only the value of F, in the model is the same as it is in
Q CD [11, 12]. In this context the most convenient model is the nonlinear o-model, because
in this model the leading low energy behaviour is given by the tree grapns (graphs with
n loops generate contributions which are suppressed by n powers of p?, [12]). Since the
set of all tree graphs is equivalent to the corresponding classical field theory this model
offers a particularly simple construction of the leading term in the low energy expansion
of the generating functional. The construction involves the following steps:
(i) Introduce a classical four-component field U#(x) subject to the constraint

UTU = (US> +(UY? +(UH*+(UP? = 1. 3.7

Under SU(2) x SU(2) the field U” transforms according to the vector representation
Dt/ 12y

(i) Define the covariant derivative V,U” by
v, U° =06,U%+a,U’,
V,U' = 6,U +e*tU' - a}U°. (3.8)

n
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This definition insures that V,U* transforms like U*,
(iif) The Lagrangian

Z, = L F.{dxv,UV'U (3.9)

1s gauge invariant. The leading term in the low energy expansion of the generating functional
is given by the extremum of Z, with respect to variations of U“:

vV, U= U4 U™V, U) = 0. (3.10)

This equation of motion determines the field U“(x) in terms of the external fields (%), a,(x)
provided we specify appropriate boundary conditions. In Euclidean space the boundary
condition on U“(x) for external ficlds of compact support is U° — 1 as |x| - co0. In Min-
kowski space this amounts to the requirement that U%(x) only contains positive (negative)
frequencies as x® — +o0(—o0) and that U° tends to 1. (A priori the direction of the unit
vector U” at infinity is arbitrary; the boundary condition U° — 1 corresponds to the
limit M, — 0 of the massive g-mcdel.)

I recommend it as an exercise to check that this prescription indeed reprcduces the
term of order a,a, given in (3.6). One can also easily obtain the four-point function
{0|TA,A4,4,4,|0> by solving the classical equation of motion (3.10) to tne necessary accura-
cy in the expansion of U* in powers of the field a,. The residue of the pion poles contained
in this Green’s function determines the leading low energy behaviour of the nrn scattering
amplitude in the chiral limit:

A(s, 1, u) = ;-2 +0(p"). (3.11)

b2

4. Ward identities for m,, my; # 0

In the preceding two sections the quark masses were turned off; SU(2) x SU(2) was
an exact symmetry of the Lagrangian, broken only spontanecusly by the asymmetry
of the ground state. If the quark masses do not vanish, the Ward identities satisfied by the
vector and axial vector Green’s functions do not constitute a closed system; instead they
relate these Green’s functions to those containing the scalar and pseudoscalar operators
gAq and gAysq. The divergence of the axial current iy,ysd e.g. is related to the density
itysd. To analyze the consequences of the Ward identities it is convenient to extend the
generating functional by adding external scalar and pseudoscalar fields to the Lagrangian

&L = LYo+ dv(X)V'q+Ga,(x)y"sq— Fs(x)q + Gp(x)ivsq (4.1)
where the new fields
s(x) = s°()1+s(x)s  p(x) = p°()1+ pi(x)7 (4.2)

are Hermitean colour neutral matrices in flavour space. The full QCD Lagrangian, including
the quark mass term, is obtained by setting v, = a, = p = 0 and identifying the external
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field s(x) with the mass matrix of the v and d quarks:

s(x) = ("’“ 0 ) (4.3)

0 my

The expansion of the generating functional Z(v, a, s, p) in powers of the external fields
around the point v = a = p = 0, s = .# generates all Green’s functions associated with
the vector, axial vector, scalar and pseudoscalar currents. If we instead expand the generat-
ing functional around the point ¢ = a = s = p = 0, we obtain the Green’s functions
in the chiral limit; in particular, the quantity Z(r, a, 0, 0) coincides with the object Z(r, a)
studied in the preceding two sections.

If the vacuum expectation values of the scalar operators it and dd do not vanish
in the chiral limit, then the Taylor expansion of Z(v, a, s, p) around s = 0 contains a term
linear in s(x):

Z= - jdx{s“(x) <0lTui0> 4 +55,(x) <OlddI0>o} + ..., 4.4)

where the index 0 indicates that we are considering the chiral limit m, = m,; = 0. Since
in the chiral limit the vacuum is assumed to be invariant under SU(2) we must have

<0jaul0>, = <0}dd|0), 4.5
and the term linear in s(x) may therefore be written in the form
Z = —{0liiul0), { dx tr s(x)+ ... (4.6)

A chiral transformation of the quark fields only leaves the Lagrangian (4.1) invariant
if one transforms the external scalar and pseudoscalar fields accordingly. The Ward identi-
ties among the Green’s functions associated with the vector, axial vector, scalar and
pseudoscalar currents are equivalent to the statement that the generating functional
Z(v, a, 5, p) is invariant under local SU(2) x SU(2) transformations of the external fields:

Z@', d', s, p) = Z(v, a, s, p). 4.7

The transformation law for ¢,(x) and a,(x) is given in (2.6), the transformation law for
s(x) and p(x) reads

SR +ip'(x) = Va(x) {s(x) +ip(x)}V{(x). (4.8)
The contribution (4.6) clearly fails to satisfy this condition. The generating functional
must therefore contain further contributions which, together with (4.6) are gauge invariant.
In more familiar terms this amounts to the observation that a nonzero vacuum expecta-
tion value of #@u is only consistent with the Ward identities if the two-point function

<0|TAﬁﬁiy su{0) contains a pole at p? = 0. The presence of this pole in turn requires specific
low energy singularities in the three-point functions etc.

5. Low energy expansion for m,, my # 0

In order to determine the structure of the low energy singularities required by a non-
vanishing vacuum expectation value of iiv and dd we merely have to extend the effective
Lagrangian by coupling the g-model to the external scalar and pseudoscalar fields. The
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crucial point in the effective Lagrangian methed is that the nonlocal structure of the
generating functional produced by the pion poles is converted into a local Lagrangian
at the expense of introducing the additional field U#(x). (The nonlocal structures arise
if one eliminates the field U* by solving the relevant classical equations of motion.) To
first order in the fields s(x) and p(x) the extended Lagrangian we are looking for is of the
form

2
Z, = F2—" de{VuU VAU +5°(0) f° +5'(0)f '+ p(0)e° + pi(x)g’}, (5.1

where the functions f'and g may depend on the fields v,, a,, U and their derivatives. The
leading contribution in the low energy expansion arises from the terms with the least
number of derivatives. (Note that V,,UTV" U is the term of lowest dimension which can be
constructed out of v, a,, U and their derivatives in a gauge invarian. manner; since U'U = 1
there is no nontrivial invariant of dimension zero.) If the functions fand g do not contain
derivatives of v,, a,, or U then gauge invariance implies that they areindependent of v, and
a,. Furthermore, the transformation law (4.8) shows that the vectors (s°, p') and (p°, —s)
transform in the same manner as the four-vector U#. There are therefore only two gauge
invariants that can be formed out of 5, p and U: s°U°+ p'U’ and p°U°—s'U’. Since
the second invariant carries negative parity, the general effective Lagrangian of lowest

dimension reads:
F2
z,= - f dx{V,U™V*U +4B(s°U° + p'U")}, (5.2)

where B is a real constant. The leading low energy representation of the generating func-
tional is obtained from this expression by eliminating the field U“(x) through the classical
equations of motion which follow from 6Z, = 0:

V'V, U=y = UHUTV'V, U~ Uy}
2(x) = 2B{s°(x), p'(x)}. (5.3)

To expand the generating functional in powers of the external fields we first need
to determine the ground state, i.e. determine the field U#(x) in the absence of external
perturbations (v = a = p = 0, s = .#). The ground state realizes the minimum of the
Euclidean action:

B-(m,+m,) - U® = maximum. (5.4)

If the product B:(m,+m,) is positive, the ground state is described by U°® = L
If B - (m,+m,) is negative, the minimum of the action occurs at U® = —1; in this case
it is convenient to define a new pion field by U4 = — U4, This operation leaves the Lagran-
gian (5.2) invariant, except for a change of sign of the constant B. Without loss of generality
we may therefore assume B - (m,+m,) to be positive and the ground state to be described
by U° =1:

B-(m,+my) > 0. (5.5)
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Computing the Taylor coefficient of the term linear in s at the point e =a=s5=p =0
one finds that the constant B determines the vacuum expectation values of #iv and dd:

<0iiiuj0yo = €0idd|0>; = —F1B. (5.6)

Recall that we have chosen the quark field basis such that m,, m, and m, have the same
sign (see Section 1). If m, and m, are positive, the convention (5.5) requires the constant
B to be positive and we thus get negative expectation values {0|uu|0),, (0|dd|0),. If the
masses m, and m, are negative, the expectation values are positive.

The constani B also determines by how much m, and m, shift the pion mass away
from M, = 0. The position of the poles is determined by the equation of motion for the
field U'(x). To lowest order in the external fields this equation becomes

(U'+B - (m,+m)U' = ¢*a’,+2Bp". €X))
The pion mass is therefore given by
M} = B (m,+m,). (5.8)

Comparison of the relations (5.6) and (5.8) leads to the familiar Gell-Mann-Oakes-Renner
formula [13]

FIM? = —(m,+m,) <0iiu|0),. (5.9)

It is remarkable that the effective low energy Lagrangian does not take note of the mass
difference between u and d: Z, is independent of the field s3(x) which contains the mass
difference m,—my. At leading order in the low energy expansion the Green’s functions
of QCD do therefore hot show any sign of isospin breaking: tne symmetry properties
of the vacuum protect isospin symmetry. (This is due to the fact that the matrix element
{n|iiu—dd|n)y vanishes in the chiral limit.)

In the low energy singularities of the Green’s functions the quark masses m, and m,
compete with the momenta: the pion pole factors ~ (M2 —p?)-? vary rapidly in a region
where the square of the momentum is of order M2 ~ (m,+m,). To duscribe these singulari-
ties coherently we should theretore not consider a low energy expansion in powers of the
momenta at fixed m, and m,, but rather consider a simultaneous expansion in p and in m,
and m, at fixed ratios m,/p?, my/p* [12]. The quark masses are contained in the external
field s(x); we must therefore treat this field as a small quantity of order p2. In this manner of
counting low energy dimensions the two contributions to the generating functional Z, given
in (5.2) are both of order p?. It is a simple matter to determine the leading low energy
representation say of the axial vector two-point function or of the mr scattering amplitude.
One merely has to solve the classical equations of motion of the nonlinear s-model coupled
to external fields to the required accuracy. I recommend it as a very instructive exercise
to show that tne leading low energy contributions aie given by

i § dxe =0T AL(x)A5)I0) = S*F2p,p (M2 —p?)™" +0(p?),

A(s, f,u) = };15 (s— M2+ 0(p*). (5.10)

x
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6. Terms of higher order in the low energy expansion

In the preceding sections we have argued that the leading terms in the low energy
expansion of the Green’s functions associated with the vector, axial vector, scalar and
pseudoscalar quark currents are determined by two constants F, and B. To order p? the
generating functional is given by the action of the classical non-linear ¢-model coupled
to external fields (tree graphs of the corresponding quantum theory). What are tiae higher
order contributions? Consider, e.g., the nn scattering amplitude A(s, ¢, u). The leading
contribution at low energies is given by (s—M2)/F2. Clearly this function cannot represent
the full scattering amplitude. Unitarity implies that in the elastic 1egion 4M? < 5 < 16M?
the scattering amplitude must obey a relation of the type

ImA = |42 6.1

Since the leading contribution to A4 is a real function of order p? this relation requires
a contribution of order p* with a non-vanishing absorptive part. In fact, Lehmann [14] has
shown that in the chiral limit unitarity fixes the contribution of order p* up to two constants
(mu =m;= Mu = 0)

As, 1, 1) = — Lo e (™) fe—wyin [ 22) +uu—1)1 “’) (6.2
S, U) = —5 + ——>—7 338 — —u ) +uu—tn{-—=}:. (6.
R Ry 72 Rl —1 T )

The two new constants which are needed, in addition to F,, to specify the scattering ampli-
tude at order p* are the scales g, and a, of the logarithms occurring in this expression.

More generally, the leading contributions to the Green’s functions at low energies
are given by the tree graphs of the non-linear o-model. The tree graphs of a field theory
are, however, not unitary. Unitarity requires that the theory must be quantized, that
one includes graphs with loops. In the non-linear o-model the couplings of the pion field
contain derivatives. This property insures that graphs involving one loop are suppressed
in comparison to the tree graphs by two powers of the external momenta, graphs containing
two loops are suppressed by four powers of p, etc. [12]. The leading low energy behaviour
is therefore given by the tree graphs [O(p?)]; one loop graphs contribute at first non-leading
order [O(p*)], graphs with more than one loop only contribute if one extends the low
energy expansion beyond first non-leading order. This feature is closely related to chiral
symmetry which requires the Goldstone boson couplings to vanish at zero momentum
(for processes that exclusively involve pions which furthermore all have small momenta
of order p, the T-matrix is of order p?). At low energies the interaction is therefore weak —
it is this property which allows one to solve the constraints of unitarity, clustering and chiral
symmetry in a perturbative manner by expanding the Green’s functions in powers of the
momenta.

The non-linear o-model is however not renormalizable in four dimensions. Graphs
involving loops require counter terms which are not present in the Lagrangian of this
model. The model does therefore not specify the perturbative expansion in terms of the
constants F, and B which characteiize the lowest order Lagrangian. Instead new, undeter-
mined constants appear at every order of the perturbative expansion. In the present context
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this is not a disease of the non-linear o-model which one ought to t1y to cure, it is a characte-
ristic feature of the low energy expansion. The point is that the Ward identities of chiral
symmetry only relate the low energy expansion coefficients of various Green’s functions —
they do not determine them completely. At leading order the general solution of the Ward
identities contains two independent low energy constants (F,, B). At first non-leading
order the general solution of the Ward identities involves seven new low energy constants
(see below). Even if the non-linear g-model could be elevated to a mathematicaliy consistent
framework involving only a few parameters (one may, e.g., consider the renormalizable
g-model which apart from F, and B contains a single new parameter, the mass of the
o-particle) there is no reason for this framework to produce the correct low energy expansion
of the Green’s functions to all orders in the momenta. (The only reason the o-model is of
interest in our context is that chiral symmetry fixes the leading low energy behaviour of the
Green’s functions in terms of two constants; the o-model does contain two constants and
does satisfy cniral symmetry in the tree graph approximation).

7. Effective Lagrangian to order p*

To determine the general solution of the Ward identities at next-to-leading order,
we need the effective Lagrangian to order p*. The most general expression consistent with
Lorentz invariance, parity and gauge invariance reads [8, 9]

Z, = [ ax{1(V,U'V*U)* +1,(V,U'V,U) (V*U"V'U)
+ LU + L,V V U+ L UTFRF U +1gV*UF VU
+1LGTUY + by g+ hy tr F F* + a7 3, (7.1)
where y* and y* contain the external scalar and pseudoscalar fields:
x* =28 ph); ¥t =2B(p° ). (71.2)

The field strength tensor F,, which contains the external vector and axial vector fields and
their derivatives is defined by

(V,V,—V,V,)UA = FABQP, (1.3)
B u H

The constants h;, h, and h; are irrelevant contact terms; 4,, e.g., contributes a momentum
independent constant to the two-point-function of the scalar density gg. The time-ordered
product which occurs in this two-point-function is not unambiguous — the value of A,
merely specifies the conventions used to define the time-ordered product. For this reason
hy, h; and A3 do not occur in quantities of physical interest.

The Lagrangian (7.1) contains all counter terms necessary to give meaning to the one-
-loop graphs of the non-linear g-model. The explicit expression for the generating function-
al, accurate to order. p*, reads

% = eilz I du[U]eiz‘, (74)

one loop
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where the functional integral over the field U“(x) is to be evaluated in the one loop approxi-
mation. To obtain the first two terms in the low energy expansion of the Green’s functions
one thus needs to evaluate (i) tree and one loop graphs of the nonlinear o-model coupled
to external fields (Z,) and (i) tree graphs which contain one vertex of Z, together with
any number of g-model vertices. The sum of these contributions is finite, provided tne loop
integrals are cut off in a chirally symmetric fashion and provided the constants /;, /, ..., A3
are properly renormalized (since dimensional regularization preserves chiral symmetry,
this method is suitable in the present context).

The occurrence of counter terms which are not linear in the external field y* (or
contain derivacives thereof) is related to the problems one encounters it one calculates
the Green’s functions of the pion field in the standard manner {15]. The external field tech-
nology we are using here avoids these problems as it retains the full symmetry of the theory
at every stage of the calculation. Note also that an effective Lagrangian which only allows
one to deal with on-shell matrix elements [12] does not determine the manner in which
the low energy parameters depend on the quark masses. In our framework all low energy
constants refer to the massless theory; the quark masses enter as explicit symmetry breaking
parameters contained in the external fields:

x° = 2Bs® = B(m,+my)+ ...,
= —2Bs® = B(m;—mp)+ ... (7.5)

8. Results

With the recipe given in the last section it is in principle straightforward to calculate
the low energy expansion or the Green’s functions to first nonleading order (see Ref. [9]
for details). From the resulting expression for the two-point-function -(0{T4,4,(0) e.g.
one finds that the corrections of order p* shift the mass of the charged pion from

M? = B (m,+m,) 8.1
to
°r2
M2, = M? {1— 'IE]%F In :73 +O(A'/I,‘f)}, (8.2)
where 5 is the renormalization group invariant scale of the constant /5. This expression
shows that the expansion of the pion mass in powers of the quark masses m,, m, involves
nonanalytic contributions [16]. The logarithmic term is proportional to (m,+m,)*
log (m,+m,); the second derivative of M? with respect to the quark masses is infinite in
the chiral limit. If one attempts to calculate M2 directly by treating the quark mass term
in the Lagrangian as a perturbation, one runs into an infrared divergence at second order.
This divergence is due to the presence of massless particles (pions) in the unperturbed
system and is by no means specific to the quark mass expansion of the pion mass. Similar
logarithms show up in the quark mass expansion of the pion decay constant or of the
scattering lengths (see below).
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The (mass)? of the neutral pion differs from M2, by a contribution of order (m,—m,)?,
measured by the low energy constant /;:

B 3

2
M2, = M2, — m,—m
Mzo n ( d) F“

The quark mass expansion of the pion decay constant reads [16]
M2
2 4
F,=F, {1+ z}}z ln 17 +0(M )} 8.4)

In this expression u, stands for the renormalization group invariant scale of the low energy
constant /,. In some observables the chiral logarithms occur even in bare form, without
a protecting factor of M2, The electromagnetic charge radius, e.g., is given by

1 2
e, = Ty {lﬂ ﬁG —%} +0(M2), (8.5)

where ye is the renormalization group invariant scale of I. In the limit m,, m; — O the
charge radius tends to infinity [17]! It is not difficult to understand why this is so: in the
chiral limit the pion cloud which surrounds any particle — in particular the cloud sur-
rounding the pion — becomes long range, because there is no Yukawa factor exp (— M,r)
to cut it off. The charge distribution only falls off like a power of the distance, the mean
square radius of the distribution diverges. The effect is even more dramatic in the scalar
form factor

(n'lau+ddin) = Fyt). (8.6)
The scalar radius which measures the slope of Fy(¢):
Fy(t) = Fs(0) {1 +4 &3t + ..} ®.7)

contains a chiral logarithm with a coefficient that happens to be six times larger than the
coefficient in the electromagnetic radius:

6
AT = o {ml—‘é‘i 13} +O(M2). (8.8)

This implies that the scalar radius is rather sensitive to the value of the pion mass. One
therefore expects the slope of the analogous form factor {nliis|K) to be quite different,
roughly

My

6
O 2 D (8.9)

The radius (r2>s* is measured in the decay K — muv:

(¥ = 64, = 0.2340.05 fm?. (8.10)
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The estimate (8.9) then implies (2> = 0.6-0.7 fm?2. A more systematic analysis of the
problem within SU(3) x SU(3) leads to [18]

rHE = 0.6+0.15 fm>. (8.11)

We thus predict very strong deviations from SU(3) in the scalar radii. Note that the value
of the scalar radius determines the deviation of F, from its value in the chiral limit (compare
(8.4) and (8.8)):

F,=F {1-&-’ M2GD5+ 13 My +0(M“)} (8.12)
R I G T Y o '

With the value (8.11) we conclude that F, must be larger than 13,, by about 6.

Finally, I come to the predictions for the nr scattering lengths which motivated our
analysis. To leading order in the low energy expansion [O(p?)] only the S and P wave
phase shifts are different from zero [6]. At order p* all partial waves receive a contribution.
For those threshold parameters which are nonzero in leading order the low energy theorems
of current algebra receive coriections of relative order MZ, for the remaining (infinite set
of) threshold parameters we obtain new low energy theorems. Unfortunately, these predic-
tions involve four new low energy constants: the renormalization group invariant scales
My, Moy Ha, Mg Of 1y, ..., 14 The scales py and p, are related to the constants a, and a,
which appear in Lehmann’s low energy representation of the chiral amplitude, cf. (6.2).
These constants are measured in the D-wave scattering lengths:

a® = (7207°FH"! {m —’[5;‘ +41n %} —{—g} +O(M?),
2 34y -1 My Hz 03 2
a = (20°F)™ din T +In TE — 40 +0(M]). (8.13)

As mentioned above, the constant p, is related to the scalar radius of the pion. Since the
fourth low energy constant p, only appears in the S-wave scattering lengths, we may
express the corrections to the current algebra theorems for a;, b3 and bZ in terms of the
D-wave scattering lengths and of the scalar radius. The improved low energy theorem
for a; e.g. reads

1 I 1 2 2\ % 19 M:
a; = 2AnF? 1+3 MZ(ro)s+ 5% 2FL

+12 M (aS—% a2)+ O(M?). (8.14)

The corrections of order M2 inciease the value of a} from the current algebra prediction
0.030 to 0.037, to be compared with the experimental value 0.03840.002. The predictions
for the parameteis b, b and for the combination 2a3— 543, which is also independent
of uj, contain similar corrcetions — the predictions agree remarkably well with the data.
In fact, the data allow one to turn it around and to use the observed threshold parameters
to measure the scalar radius of the pion. We rewrite the improved low energy theorems
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for a!, b3, b3 and 2a3—5aj in the form
. M?
L4 MI?S = 24nFi{ai =4 Mi(a3 -3 aD)} =75 —5

MZ
141 M2G2YE = 4nF2{b— 10M2(ad+5a3)} -3 —=

n2F%’
2
L+1 M2(PPE = —8nF2{b3—10MX(ad+4 ad)} ++5% _—_nZI:Z ,
4n F? M;
1+ ML = 3 {2a0—5a5} — 155 prrl (8.15)

Inserting the values of the ihreshold parameters given by Petersen [9] one obtains the results
quoted in the Table. For comparison I also give the corresponding lowest order predictions
of current algebra — if there were no corrzctions of order M 2 the entries in the last column
of the table should all be equal to one. Note that the value found for 1+5 M2{(r2)g is
indeed somewhat larger than one in all four cases. The mean value of this quantity, 1.12+
+0.04, implies {r?>5 = 0.7+£0.2 fm® in good agreement with the SU(3) x SU(3) estimate
(r3ys = 0.6 +£0.15fm? given above.

TABLE
Scattering lengths interpreted as measurements of the scalar radius of the pion
Leading contribution 1+4 Mir®e Soft pions
al 1.12£0.11 1.28+0.07
b9 ! 1.13+0:19 1.40+0.17
b} ] 1.18£0.10 0.92+0.09
2a3~ 5a} | 1.10£0.05 1.15£0.05
Mean value i 1.124+0.04
Prediction 1.1040.02 1
The improved low energy theorem for the S-wave scattering length ay:
7 M? 5 M}
W= r iy T pamE _ap B
32n Fy 427n° F; M, M, M,
21 Ha 21 o(M* 816
+T‘61“K/}—+ﬁ + ( x) (1)
k4

contains the renormalization group invariant scales py, 2, i3, fg of all four low energy
constants /,, ..., /,. To evaluate the corrections of order M 2 we therefore need additional
information to pin down u;. A crude estimate may be obtained [9] on the basis of
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SU(3) x SU(3); although this estimate does not lead to a very precise value for u, the
uncertainty affects the prediction for ag by less than 1%. The corrections of order M2
increases the lowest order prediction (ad = 0.16) to

ag = 0.20 (8.17)

to be compared with the experimental value aJ = 0.26+0.05.

As mentioned above, the information contained in the representation of the scattering
amplitude to order p* is not restricted to-the S- and P-wave threshold parameters. The
low energy representation fixes the scattering lengths of all partial waves to leading order
in an expansion in powers of the quark masses. For the isospin one channel, e.g. one obtains
[8] the following sequence of low energy theorems (I = 3,5, ...).

AN ()]
T 5127°F [QRI+ DN

[}

(1312+51-22) {1 + O(M})}. (8.18)

In contrast to the predictions for the S- and P-waves these low energy theorems only provide
us with the leading terms in the quark mass expansion. As we have seen the corrections
of relative order M? to the S- and P-wave threshold parameters are substantial and one
should therefore expect sizeable corrections also to the above lowest order predictions
for the higher partial waves.

Why are the corrections of order M? so large? A substantial part of these corrections
is due to the fact that the low energy theorems of current algebra involve the value fn of
the pion decay constant in the chiral limit rather than the physical value F,. The difference
is determined by the scalar radius {r*)g (see (8.12)). The lowest order predictions are pro-
portional to F, ? and hence systematically underestimate the result by (F,,/lg,,)2 ~ 1.13.
The reason why this effect amounts to a correction of order 13% (instead of one or two
percent as suggested by the rule of thumb given in the first section) is that the scalar radius
contains a chiral logarithm with a large coefficient — the correction is of order M2 log M2
rather than of order M2, In fact, the threshold parameters contain further chiral logarithms
which do not come from {r?)s. To estimate the effect of these logarithmic contributions
one simply replaces the four renormalization group invariant scales y, ..., 4, by a common
scale of order 1 GeV. One finds that these logarithmic contributions are indeed responsible
for the bulk of the corrections: with the exception of the P-wave parameters aj, b} the
simple recipe u, = p, = pu; = py = 1 GeV reproduces the improved low energy theorems
rather well [8]. The bulk of the corrections therefore comes from the threshold region of
the two pion cuts which is at the origin of these logarithmic contributions. In the case of
the P-wave parameters a}, b} the corrections are sizeable for a different reason: in this
channel the vicinity of the g-meson pole produces a sizeable enhancement (for details
see [9]). The deviations from the lowest order predictions are much larger than indicated
by the rule of thumb because the perturbation produced by the quark mass term is enhanced
by small energy denominators: both the crossed channel thresholds and the g-pole are close
enough to produce substantial enhancements of this perturbation.

I conclude that the analysis reported here confirms the standard picture of spontane-
ously broken chiral symmetry. The low energy theorems associated with the hidden sym-
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metry are borne out by experiment. In particular, the data on nn scattering show clear
evidence for the presence of the nonanalytic contributions required by chiral symmetry.
Indeed the data allow one to measure the scalar radius of the pion, which (together with
the D-wave scattering lengths) determines the deviations from the low energy theorems
of current algebra.

Similar chiral symmetry breaking effects due to the long range nature of the meson
clouds are present in all hadronic low energy parameters. To compare the relevant low
energy theorems (y-decay, o-term, ...) with data it is important to first check whether the
lowest order predictions are stable with respect to higher order corrections. In particular,
one needs to work out the nonanalytic contributions whose form is unambiguously deter-
mined by chiral symmetry.

In order for a lattice calculation to achieve the accuracy of the low energy expansion
discussed in this paper, it must include the fermion determinant on a lattice whose size
is large compared to M, ! (the nonanalytic contributions are due to ¢g pairs which walk
away rather far from the source which creates them). In particular, one should not
be worried if Monte Carlo calculations carried out in the quenched approximation tend
to produce too high a value for the mass of the proton: the long range part of the meson
cloud lowers the proton mass by about 140 MeV [2].

It is a pleasure to thank the organizers of the meetings at Kazimierz and at Zako-
pane for their warm hospitality. Also, I am indebted to Prof. Joffe for very interesting
discussions concerning flavcur asymmetries in the fetmion condensate.
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