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SUM RULES AND EXCLUSIVE PROCESSES IN QCD*

By A. V. RADYUSHKIN
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna**
{ Received November 10, 1983)

A brief review is given of a new approach to exclusive form factors of the hadrons
at moderately large momentum transfers. The basic idea is to fix the parameters of the soft
wave functions of the hadrons by QCD sum rules and to incorporate the local quark-hadron
duality to calculate the form factors. After comparing the results obtained with experimental
data we conclude that the observed power-law behaviour of the hadronic form factors has
nothing to do with short distances and scale invariance.

PACS numbers: 12.35.Cn, 12.35.Eq

1. Introduction

The quark counting rules (QCR) [1, 2] are now a part of the high energy physics
“folklore”. These rules predict, in particular, that a spin-averaged form factor of a hadron
constituted by n quarks should behave asymptotically like ' ™" (where ¢ = Q* = —g?
and g is the momentum transfer). According to Brodsky and Farrar [2] the specific dynam-
ical mechanism responsible for the QCR is the hard rescattering of quarks that consti-
tute the hadrons participating in the high momentum transfer precess. The simple parton-
-like picture proposed in Ref. [2] was justified later within the framework of the perturba-
tive QCD [3, 4]. It was demonstrated, in particular, that in the asymptotic ¢t — co region
the QCD-effects produce only a logarithmic violation of the QCR power-law behaviour
of the meson and nucleon clectromagnetic form factors [3-8].

A very important question, however, is how large should be the momentum transfer
to be considered as an asymptotic one? There are attempts to extract the answer to this
question from available experimental data. In particular, for the pion the product Q?F,(Q?)
is practically constant starting from Q? = 1 GeV?2, while for the nucleons the products
Q*GE m(Q?) are almost constant for Q? in the region Q® 2 2—3 GeV>. This fact is
usually interpreted (see, e.g., Refs. {4, 6}) that for Q2 as low as 1 GeV? (for the plon)
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or 2—3 GeV? (for the nucleons) one observes the asymptotic scaling law corresponding
to dominance of the hard rescattering diagrams shown in Fig. 1. However, it is not an
easy task to justify such an interpretation within the QCD framework.

For the nucleon, for example, the contribution due to diagrams of the type of Fig. 1b
is, in a sense, only the third term of the QCD expansion resulting from applying to GN(Q?)
the standard procedure of separating long- and short-distance contributions (sece Fig. 2).

3 ;

a) b}

Fig. 1. Diagrams responsible for the large-Q? asymptotics of a) pion and b) nucleon form factors

b} c)
Fig. 2. Structure of factorization for the nucleon form factors. The generalized quark-hadron vertices
(including the quark lines adjoint to them) correspond to long distances (small off-shelinesses) while the
remaining quark and gluon lines — to short ones, i.e. to the off-shelinesses larger than typical hadronic
scale A2 = O(1 GeV?)

To estimate the relative contributions of Figs. 2a—c one should take into account that for
Q? = 0 the main contribution to GN(Q?) is given by the simplest diagram 2a. Furthermore,
according to the usual “loop counting” the higher order diagrams 2b, ¢ are damped by
a(my)ft ~ 0.1 and (x,(my)/n)* ~ 0.01 factors, respectively (my is the nucleon mass).
This means that there should exist a region Q> < Q2. where the simplest diagram 2a
dominates in spite of the fact that in the asymptotic region its contribution vanishes faster
than that of Fig. 2¢c. According to the perturbative estimates (to be justified below) the
contribution of Fig. 2a vanishes only like 1/Q%, and one should expect that Q2. is as
large as O((x,/m)"2) - 1 GeV2.

To get a more reliable estimate of the contributions of Figs. 2a—c, one should know
the soft nucleon wave function. This task cannot, of course, be solved by using the ordinary
perturbation theory, since the very existence of hadrons in QCD is largely due to non-
perturbative effects.
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Among the existing approaches to the analysis of the nonperturbative effects techni-
cally most close to the perturbative QCD is the QCD sum rule approach [9, 10]. It was
successfully applied earlier to the computation of some essentially nonperturbative hadron
characteristics such as masses, leptonic widths, and more recently, electromagnetic form
factors of the hadrons at moderate momentum transfers [11-15). In the present paper
a short review of the results [11-12, 14~15] obtained by the author in collaboration with
V. A. Nesterenko will be given.

Our main conclusion from thesc studies is that to describe the existing experimental
data on the EM form factors of the pion, proton and neutron it is sufficient to take into
account only the simplest (nonperturbative) diagrams that, like Fig. 2a, do not contain
any gluon exchanges. This means that, contrary to a widespread belief, the experimental
verification of the power law based on the QCR does not imply that the main contri-
bution in a given Q?-region comes from the diagrams involving a short-distance sub-
process.

2. QCD sum rule analysis of the pion EM form factor [11-13]

The QCD sum rule approach is based on the quark-hadron duality concept, i.e. on
the observation that the characteristics of the hadronic spectrum are integrally (i.e., after
averaging over an appropriate energy region) close to analogous characteristics computed
in perturbation theory for free or not very strong interacting quarks. The nonperturbative
effects (that determine, in particular, the widths of the averaging interval) are taken into
account by iatroducing into the theory nonvanishing vacuum averages (condensates)
of quark and gluon fields [9].

To analyse the pion form factor within the QCD sum rule approach one should
consider the 3-point function

Th(py, p2) = i* [ d*xd*ye™ P> PROT{ (1) (0)j7 (x)}10> (1)

where J* = Zuy*u—%dy*d is the electromagnetic current and j, = dysy,u is the axial
current (our notation corresponds to Fig. 3a). The latter, as it is well-known, has a nonzero
projection onto the pion state {P):

0Uj(0).P) = ifoPy

where f, = 132 MeV is the pion decay constant.

The amplitude Tiy(p,, p,) is the sum of various structures: P*P*P?, P*pP*qf, p'q2g™,
etc., where P = p, +p,, ¢ = p,—p,. The corresponding invariant amplitudes 7T, depend
on three variables: p2, pZ and g2. To compare the contributions of these different structures
to T;s one should specify, of course, the reference frame. In our case (just as in many
others) very convenient is the infinite momentum frame (IMF) where P = Pjj —» ©
while ¢* = ¢! is fixed. The leading IMF structure is clearly P*P*P? since it does not contain
the “small” parameter ¢q. Furthermore, this structure is most close to the structure P*P?
present in the 2-point function 7,,(P) related to the correlator of two axial currents.
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Owing to the asymptotic freedom, one may calculate the amplitude T(p?, p3, Q%)
in the deep Euclidean region p?, p2 < —1 GeV2 To extract information about the form
factors of physical states, we use the double dispersion relation

o o

1 » 825
T(pi, p3, Q*) = T?fdsl jdsz( Q(%,M)%szg_)p;) +(subtraction terms). 2

o 0

The subtraction terms are polynomials in p} and/or p3. They disappear after one applies
to Eq. (2) the SVZ-transformation [9]:

B(p* » M?) = lim (= ' 3)
wee (1= 1) pim —n2
in p and p3. As a result, one obtains from (2):
L(ds, [ds, -3, -2
2 2 1 2 .
PMT, M3, Q%) = ) j M2 f —/\:l? e M Mio(s,, s Q%) “4)
0 0

where ¢ = B,B,T.

The perturbative contribution to T(p?, p3, Q%) (corresponding to diagrams of Fig. 3)
can also be written in the form of Eq. (2), and &*" = B,B,T™" in the form of Eq. (4).
A straightforward calculation gives in the lowest (i.e., zero) order in o, the following

expression for ¢P*™:
X 2
—X) exp { —iQ—— } x. (5

1

0P (M3, M3 Q%) =

3
'{2(1»7§+M§j_[ (1=x) (M2 +M32)
0

A A

Fig. 3. Diagrams contributing to the perturbative spectral density oP¢''(s,, sz, Q%)

B

4

Note that we neglected in Eq. (5) masses of light quarks u, d (m, 4 < 10 MeV). The
variable x in Eq. (5) may be interpreted as the fraction of the total pion momentum carried
in the IMF by the passive quark.

Using the fact that Eq. (4) has a form of the double Laplace transformation in 1/M7 ,,
one can extract from Eq. (5) the free-quark (perturbative) spectral density

d 2 Q2 d 3 ' - _
e*"(s1, 52, Q%) = 3 @* {(dQ) + ?(W) }[(51+52+Q) —ds;5,]7Y5 (6)
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The physical (or hadron) spectral density o(s,, s,, Q) differs, of course, from
0™"(5,, 52, 0%). In particular, o(s,, s;, Q%) contains the pion dd-term:

Qa8 15 525 Q%) = TFF (Q%)3(s, —m3)d(s, —my) N

and vanishes everywhere (except the point s, = 5, = m?) below the 3n-threshold. Only
in the region where both s,, s, are sufficiently large, and the resonances are very broad
(and overlapping) one may expect that ¢ ~ ™. This means that &(MZ, M3, Q?) differs
also from Eq. (5) calculated for the free quarks. As emphasized in Ref. [9], the difference
is largely due to nonperturbative power corrections (1/M 2)¥ generated by quark (Fg)
and gluon (GG> condensates. Taking into account the lowest power corrections (typical
diagrams are presented in Fig. 4) we find for M, = M, = M
a a 2
D(M?, M2, Q%) = ™ (M, M2, Q2)+ #( GGy | 20872, ( Q ) (8)

+ I+ —5
12nM® 81M® 29> YR

N
<\\ > \ g /
~ T
(N 1
a) b) c)
Fig. 4. Typical diagrams describing the nonperturbative effects proportional to a) <G%,G§,> and b, ¢)
xs<{qq>?

Now, representing the hadronic spectral density o(s,, s>, Q%) as
Q(Sh S2, Qz) = Qx(sl, 52, Q2)+ Qpc"(sh 52, QZ) {l ‘e(sl < 30)0(82 < SO)} (9)

(i.e., assuming that everywhere outside the square defined by sy, s, < 5o the hadronic
density coincides with the quark one), equating Egs. (4) and (8) and taking into account
Egs. (6), (7), (9), we obtain the sum rule that relates the characteristics of the hadronic
spectrum (in our case these are f2F,(Q?) and s, — the effective threshold for higher states
production; while the pion mass is assumed to have its chiral limit value m? = 0) with
the quantities calculated theoretically

so So

1 _si1ts2
x(Q ) J‘bx Jvdszme(Slw 52, 0% M

4] 0

1(GoGhY s <497

- — nz_ -
12nM* ST M

I+ %}+0(~1§) + 0(2,). (10)
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For the condensates we use the standard values:
o
— {G4,Ga,> = 0.012 GeV*, (11)
i

a,{Gq>> = 1.8-107* GeV*® (12)
obtained in Ref. [9] from the analysis of 2-point functions.

An apparent discrepancy is that the Lh.s. of Eq. (10) has no dependence on M? while
the r.h.s. of Eq. (10) is a nontrivial function of this parameter. However, if one takes into
account all the nonperturbative corrections and uses for o(s;, s, %) an exact rather
than model expression, then the r.h.s. of the sum rule (10) also becomes independent of
M2, Tt is easy to establish that for sufficiently large M2 our theoretical “prediction” for
{2F(Q?) has a very weak dependence on the “unphysical” parameter M2, but the onset
of the asymptotic regime strongly depends on s, (Fig. 5).

c)
,—02 |- v
= b)
(&)
(TI' al
Ngm "
&
0 L L L
0 2 L 6 M¥GeVd

Fig. 5. Typical dependence of the r.hss. of Eq. (10) on the so-parameter. a) s, = 0.6 GeV?;
b) 5o = 0.7 GeV?; ¢) 50 = 0.8 GeV?; Q2 = 2 GeV?

The true value of s, is evidently that for which the region of weak sensitivity to varia-
tions of M2 is the largest one. For Q% = 1, 2, 3 GeV? this criterion gives for s, values close
to 0.7 GeV2. It should be noted that this is just the value extracted from the analysis of
the 2-point function related to (Tjsj,»>. For s, = 0.7 GeV? the combination f’ 2F (0%
is practically constant in the whole region M2 2 1 GeV?, and as a final theoretical prediction
on f2F,(Q?%) we take its asymptotic value for M? = co.

An important observation is that for M? = co the power corrections vanish, and one
arrives at the finite energy sum rule (cf. [16]):

so so
1
ZF Q) = — j ds, j ds,0%"(s15 82, @), 13)
T
0 0

which is just the local duality relation between the resonance (pion) and free-quark contri-
butions. A similar sum rule for the 2-point function gives a simple relation between s,
and f,:

so = 4n?fl. (14)
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This relation is in a good agreement (for s, = 0.7 GeV?) with the experimental value
f = 132 MeV,
Using the explicit form (6) of o""(s,, 52, Q%) one can reduce Eq. (13) to

2y _ So _ »_EM‘“
F,((Q ) — 47,:21'3 {1 (1 +4SO/Q2)3/2} . (15)

Note that Eq. (14) provides the correct normalization of F(Q?) for Q2 = 0.

Another formula for F,(Q?) can be obtained if one substitutes integration over the
square (0 < 5, << 50; 0 <5, < 54) in Eg. (13) by integration over the triangle (0 < s,
+35, =" Sp) of equivalent area. This gives

F("TR)(‘QZ) —

4]
8221 +0°/250)° (16
where S, = /25, =~ 1 GeV2. For Q? 2 1 GeV? Eq. (16) reproduces Eq. (15) with an
accuracy better than 109,

Eq. (16) corresponds to a dipole behaviour of the pion form factor, in an apparent
contradiction with the general prejudice about the behaviour of F(Q?). In fact, however,
the theoretical curve based on Eq. (15) for s, = 0.7 GeV? is in a good agreement with
the experimental data (see Fig. 6). Moreover, for Q* > 1 GeV? it coincides with the best
fit [17] to the existing data [18].

In other words, Eq. (15) in the region C.5 < Q2 <C 5 GeV? imitates the 1/Q? behaviour
suggested by the quark counting rules.

10

08

00 10 20 30 &0
Q*iGev?)
Fig. 6. Comparison of theoretical predictions based on the QCD sum rule (10) with experimental data
[18]. Solid line: M? = oo, dashed line: M2 = 1.8 GeV?

3. Local quark-hadron duality and the soft pion wave function

Incorporating the local duality ansatz (13) is equivalent to fixing the soft pion wave
function (s.w.f.). Indeed, taking into account that oP"(s,, 5, Q%) is the double disconti-
nuity (in p? and p3) of the amplitude Ty(p3, p3, Q3), it is easy to realize that the prescription
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of Eq. (13) reduces, for Fig. 2, to the substitution s.w.f. - I', where I' is a local vertex
corresponding to transition of the j-current into free, almost massless quarks, with sub-
sequent averaging of the invariant mass s of the 2-quark system over the region 0 < 5 < s,,.
In other words, the pion is treated as a system composed of 2 on-shell (k7 = m?) quarks
localized inside a sphere (k; + k;)* < s, in'the momentum space. This picture, in particular,
has a merit of being both relativistically and gauge invariant.

It is instructive to observe that in the infinite momentum frame (IMF) such a wave

function is proportional to #(x* < s,), x? being the usual IMF combination (cf. Ref. [6])
2

D (17
i=1

where x; is the IMF fraction of the pion longitudinal momentum carried by the i-th quark,
and k,,; is its transverse momentum. It is also worth comparing the wave function
¢ ~ O(n? < s,), suggested by the local quark-hadron duality, with the Gaussian
'Ok, x) ~ exp (— R*k?) and power-law vk, x) ~ (x?+ 1*)~* model wave functions
considered by Brodsky and Lepdge [19]. All the wave functions have a common property:
the cut-off for large x? values. Of course, the sharp cut-off k? < s, dictated by ¢™"?(k,, x)
is unrealistic: the exact nucleon s.w.f. should be a smooth function of &, like p'9(k,, x)
or p®™(k,, x).

Thus, ¢'*®(k,, x) can reproduce only the most general (i.c., integral) properties
of the exact pion soft wave function. Correspondingly, one should not expect that F,(Q?)
calculated according to Eq. (10) must coincide with the exact contribution or the triangle
diagram (Fig. 2a) in the whole region 0 < Q? < cc.

In particular, one should not trust Eq. (10) in the Q? regions wheie its contribution
has an essential dependence on the specific behaviour of the s.w.f. at the edges of the kine-
matically allowed region, when x; = 0 or 1 for some i. As it follows from Eq. (5), the behav-
iour of @P*"* (and, hence, of @°*™) for small Q2 has an essential dependence on the behav-
iour of the integrand in the region x ~ 1 where a bulk part of the longitudinal IMF
momentum of the pion is cartied by the passive quark; while for large Q? values the dom-
inant contribution to g(s,, s,, Q2) is due to integration over the region x*) ~ 1 where
the pion momentum is carried mainly by the active quark. Thus, one should rely on Eq.
(10) neither for very small nor for asymptotically large Q2 values.

A more quantitative estimate of the applicability region of Eq. (10) may be obtained
in the following way. Note, first, that the perturbative calculations for the original amplitude
T(p3, p2, Q) are reliable only within the asymptotic freedom region 02 2 m] ~ 0.6 GeV2.
On the other hand, for large Q2 one should not trust Eq. (10) in the Q2 region where the
asymptotic regime F{"™ ~ 1/Q* sets in, because in this case the largest contribution comes
from the integration over the region where the off-shellness of the passive quark is < p*/Q?,
i.e. also beyond the asymptotic freedom domain. 1t is easy to establish that Eq. (15) agrees
(within 50%) with the asymptotic formula F{P#9(Q2?) ~ 6s5/Q* only starting from
Q% = 7GeV?, and just for Q* 2 7 GeV? the product 02F"P((0?) becomes a decreasing
function of Q2 (this is also a signal of the onset of the asymptotic regime).
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Thus, there exists the intermediate region 0.5 < 0% < 5 GeV? where the contribution
of the triangle diagram is determined just by the integral properties of the s.w.f., mainly
by the width of the quark distribution in the transverse momentum (i.e. eventually, by
the pion size). The dependence on the specific form of such a distribution in this region
is rather weak.

The dimensional parameter that characterizes the width of the k-distribution for
¢k, x) is clearly s, (in fact, (k3> = 50/10 ~ (300 MeV)?), i.e. the same parameter
that sets the scale of the meson mass spectrum in the axial channel. Such a connection
seems to be quite reasonable fiom a physical standpoint.

4. Local quark-hadron duality and nucleon form factors in QCD [15]

The technique described above can be used also to calculate the nucleon EM form
factors. Of course, the axial current in Eq. (1) should be substituted by a current having
the nucleon quantum numbers, e.g., for the proton one may take [10]:

fle = (UC™ ") (757 d)eEapes (18)

where C is the charge conjugation matrix, and g, is the antisymmetric tensor (g, b, ¢
= 1,2, 3). For the neutron one should interchange u <« d in Eq. (18).

The 3-point amplitude T%(p,, p,) in this case is the sum of structures like P“I‘,,
= VA(P), ¢"Ps, %74, i€""7°P1g, (100ap = Als(P, g) etc. The leading IMF structure is
V%(P). Note that for p} = p the V%-structure satisfies the transversality condition
9.V s(P) = 0. Another structure possessing this property is 454(P, q), linear in the “small”
parameter g. The corresponding invariant amplitudes will be denoted as T, and T',, respec-
tively. It should be emphasized that these two structures have the most direct connection
with the I;,,-component of the 2-point function IT,, related to (T#,fjs). The latter was
studied in detail in Ref. [20]. The value of the duality interval s, according to Ref. {20]
is 5o = 2.3 GeV2. This value will be used in our subsequent analysis. Note also that in the
local duality approximation s, can be related to the “proton decay constant” Ay

0ln,IP)> = Anvy(P) 19
(where v,(P) is the Dirac spinor) by the formula
Qn)*A% = s3/12 (20

analogous to Eq. (14).

Computing g% %(sy, 52, 02) for the diagram 2a and substituting the results into an

analog of Eq. (10) we obtained for the proton
So 20

D/ y2 i 2 o\’
Q) = G2 ds, | ds,Q (1* ";)
o

]

2e,—e4 QF o\’ e,+e, c
L P 2+ I\, 21
X{IG z(+z>+12 T3 1)
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S0 30
e 0? o\? o
FR0H= ——— | d ds, —{1— —) {24+ —], 2
@ (Zn)‘xﬁf f " 4( ) ( ’ ) 2
4] 0
where ¢ = 5, +5,+ Q% z = \/az—4s1s2, e, = 2/3, e = —1/3. To get the neutron form

factors one should interchange e, <> e, in Egs. (21), (22).

To compare Egs. (21), (22) with experimental data, one should substitute A3 by its
value dictatéd by Eq. (20) and take s, = 2.3 GeV2. One should also take into account
that &, (Q?) is a combination of the electric Gy and magnetic Gy Sachs form factors

4mRGE(Q%) +0’G(Q%)
Q*+4m}, '

FQ* = (23)

For small Q% the r.h.s. of Eq. (23) reduces to Gg(Q?) while for large Q? (in fact, for
0? 2z 10 GeV?) it may be treated as Gy(Q?). The second form factor F,(Q?) coincides
with Gu(Q?).

It is easy to derive that as Q% — oo the r.h.s. of Eq. (21) tends to that of Eq. (22),
and the two expressions give the same result

GH™(Q) ~ Lg‘?sg
for the asymptotic behaviour of the magnetic form factors. It should be emphasized,
however, that the asymptotic O(Q-°) regime for Eqgs. (21) and (22) sets in only fo1
02 = 20-30 GeV2, In fact, the products Q*%F (02 and G*G\(Q?) as predicted by Egs. (21)
and (22) are constant within 109 for Q2 varying from 5 to 15 GeV?2 In other words,
Eqgs. (21) and (22) imitate the power law behaviour Gy ~ 1/Q* dictated by the QCR [1, 2]
up to the Q?-values as large as 20 GeV2, In higher orders, however, one should take
into account also a possible modification of Eqgs. (21) and (22) for large Q2 by the Sudakov
form factor of the struck quark:

. Q2 s 1 Q2/A2 QZ
S(Qz, MZ) = exp{—ﬁ[ln- "-—2‘] In 'lngjw—z/:i‘f —n W}

(24)
where the scale M2 is proportional to s, the only dimensionful parameter in Egs. (21)
and (22). Note that the value of M? is rather large whereas the QCD A-parameter is pre-
sumably small (4 ~ 100 MeV) and, as a result, in the accessible region 0% < 20-30 GeV?
the Sudakov suppression of Egs. (21) and (22) is not very strong. Furthermore, such
a suppression may be partly compensated by coatributions of the diagrams 2b, ¢. Thus,
it seems quite reasonable to neglect the higher order corrections for 0% < 20 GeV?, and
expect in this region a good agreement between the local quark-hadron duality predictions
and experimental data.
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5. Numerical analysis of the local duality results for the nucleon form factors

Now we turn to the comparison of the predictions of Egs. (21) and (22) with the
existing experimental data.

a) Proton form factors. Note first that G,(Q?) obtained from Eq. (22) in the
region Q% = 2-10 GeV2isin 10% agreement with the empirical dipole fit GR(Q?) = u,D(Q?)
(where g, = 2,79 and D(Q?) = (1+ Q?/0.71)-2) (see the Table, first line). Furthermore,
using Egs. (21)-(23) one can obtain an explicit expression for Gg(Q?) and observe that
G(0? ~ D(@?) within 109 for Q? < 12 GeV?2. (The Table, third fine). As a result, the
scaling relation G{(0Q?)/GE(Q?) =~ u, holds within 159 for @ ranging from 3 to 15 GeV>.
On the other hand, assuming that GH(0?)/GE(Q?) = pu, for all 02, one can extract G(Q?)
from Eq. (21) which is presumably more precise for small Q2 values than Eq. (22)'. Indeed,

GE + TG Qz,
T+ 1
101
08|
06 PROTON
04l
02|
0 10 Q'(Gev?) 20

Fig. 7. Proton form factor Q*#y(Q?. Data from Ref. [21]

the results for GH4(Q?) obtained in this way are in a better agreement with the dipole fit
for Q% = 1-2 GeV? than those extracted from Eq. (22) (see the Table, second line and
Fig. 7).
b) Neutron magnetic form factor. The predictions of Egs. (21) and (22) for
m(Q?) agree with the data within the experimental uncertainties only for 0 2 6 GeV?
(Fig. 8). In the region 0% < 6 GeV? the agreement between the neutron version of Eq. (22)
and experiment is not so impressive as that for G},. In particular, the prediction of Eq. (22)
for the ratio Gy(Q)/D(Q%in the Q? = 3-6 GeV? region is by 30 % lower than that observed
experimentally (Table, 4-th line). The disagreement is even more drastic for 0% = 1-2 GeV2,
If one calculates Gy(Q?) from Eq. (21) assuming that GE(Q?) = 0, then the disagreement
between theory and experiment for Q? = 1-4 GeV? is reduced, but only to 209 (Table,
5-th line). The situation may be interpreted so that the difference between the exact nucleon

! Note that the structure V:g relevant to Eq. (21) has no damping for small ¢; hence, for small Q?
the original amplitude T;;g(p,, p2) is more sensitive to the contribution of Ty than to that of 74.
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w.f. and that suggested by the quark-hadron duality is more essential for Gy(Q?) than
for G}(Q?). It is worth emphasizing here that such a proton-neutron asymmetry does not
contradict the isotopic invariance. In particular, studying the power corrections in the
(exponential-weighted) QCD sum rules for Gyu(Q?), we have observed that for the proton
the most essential {§g>? corrections are proportional to e4, while the ground term according
to Eq. (22) is proportional to e,. As a result, the ratio of the (gg)? correction to the ground
term for the neutron is 4 times as large as that for the proton.

Ge+7Gy
05 1471

041 ¢
03] ¢

02 y

NEUTRON
01]

N N i 1 n

0 2 4 6 8 10
a¥iGeV?)
Fig. 8. Neutron form factor Q*#(0Q?)

¢) Neutron electric form factor and the nucleon mass estimate. Using
Eqs. (21)~(23) one can calculate Gg(Q?) and observe that the predicted Gg(Q?) values are
very close to zero for Q? = 2-20 GeV?2. (Table, 6-th line). It should be stressed here that
the smallness of GE(Q?) reflects a nontrivial correlation between the values of Fy(Q?),

u(Q?) predicted by Egs. (21) and (22) and the magnitude of the nucleon mass parameter
m% entering into Eq. (23). For instance, requiring Gg(Q?) to be exactly zero, one can
extract the nucleon mass from Eqgs. (21)(23). In the region Q? = 2-30 GeV? such a pro-
cedure gives for my the values very close to the experimental ones (Table, 7-th line).

d) Ratio G%(Q3)/Gu(Q?). According to Eq. (22), the ratio GR(Q?)/Gu(Q?) equals
(=2) for all Q2. In its turn, Eq. (21) (combined with the assumption that Gg(Q?)/Gu(Q@?)
= Gg(0)/Gu(0)) predicts that |GH(Q?)/Gu(Q?)] is smaller than 2 for Q? < 4 GeV? (e.g. 1.6
for 02 = 1 GeV?), but in the region Q2 2 4 GeV? Eq. (21) also gives Gy(Q%)/Gu(Q?)
= —2. This prediction agrees well with the recent data [21] in the Q% X 6 GeV?
region.

e) Magnetic moments. As emphasized earlier, there are no grounds to expect
Eq. (22) to agree with the experimental data in the region 0 < 1 GeV2 However, the

values of magnetic moments p, = Gu(0) = 4e, = 8/3 and p, = Gy(0) = 4y = —4/3
predicted by Eq. (22) are in satisfactory agreement with the experimental ones
(u5® = 2.79; ui® = —1.91). Note that just as it was for Q% 2 1 GeV?, the model is more

successful for the proton than for the neutron. It is intriguing to observe also that
the ratio (Ju,|—4/3)/(pn,—8/3) is indeed close to 4.
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5. Conclusions

Thus, in a rather wide region Q2 = 2-15 GeV? the nucleon form factors calculated
according to the local quark-hadron duality prescription are in satisfactory (or even good)
agreement with the experimental data. One of the most nontrivial results here is that the
ratio Gj{(Q?)/Gu(Q?) for sufficiently large Q2 is predicted by Egs. (21) and (22) to take
just the value (—2) suggested by the recent experimental data [21]. For the pion form factor
we observed a good agreement between the theorctical calculations and the experimental
results in the region 0.5 < 0% < 5 GeV2. Both for the nucleons and for the pion the good
description of the data was obtained within the lowest (zero) order approximation in «,,
without including numerically suppressed by «/n ~ 0.1 and (a(m))?> ~ 0.01 contributions
due to the diagrams containing gluon exchanges. We observed also that the theoretically
calculated behaviour of the form factors in these Q?-regions has an essential dependence
on the parameters (of s, type) characterizing the size of the hadron considered. The formulas
obtained have a rather complicated dependence on O and s, which imitates for moderately
large Q? the simple power behaviour F(Q?%) ~ 1/0?, Gy g(Q?) ~ 1/Q* suggested by the
quark counting rules [1, 2].

It should be emphasized, however, that the main contribution to the form factors
in this Q2-region comes from integration over the virtual momenta k with |&?| smaller or
of an order of the scale s,. Evidently, in such a situation there is no justification to use
approximations (like scale invariance, say) based on smallness of the ratio s,/|k?|. Hence,
the experimentally observed power-law fall-off of the nucleon form factors reflects only
the finite size of the hadrons rather than the approximate short-distance scale invariance
of the underlying field theory. In other words, the observed dipole behaviour of the proton
magnetic form factor, e.g., has nothing to do with two-gluon-exchange diagrams of Fig. 1.
The latter come into play and dominate only for very large Q2, when the contributions
of the simplest O(x) diagrams will be sufficiently damped, say, by the Sudakov form
factor of the active quark. Only for very large Q2 (probably, far beyond all experimental
possibilities) the short-distance dynamics is responsible for the behaviour of the hadronic
form factors and only then it makes sense to use the asymptotic analysis developed in
Refs. [1-8].

All these remarks are true also for many other exclusive processes, ¢.g., for the wide-
-angle scattering of the hadrons, and for the behaviour of hadronic structure functions
for x ~ 1. In all cases, when the diagrams containing no gluon exchanges are not forbidden
(say, by conservation laws), just these diagrams should be taken into account in the first
place. There is no need, for instance, to waste efforts and time for calculating millions of
O(«]) diagrams responsible for (astronomically distant) asymptotics of the pp wide-angle
scattering amplitude.

I thank V. A. Nesterenko for help in calculations and many stimulating discussions,
I am most grateful to A. Bialas, K. Zalewski and M. Praszalowicz for kind hospitality
in Zakopane.
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