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1. Introduction

These lectures present a new proof of the Atiyah—Singer (A-S) Index theorem using
simple and elegan: ideas developed in the context of supersymmetric (SUSY) field theory.
The A-S theorem [1] demonstrates the equality of analytical indices (related to the solutions
of partial differential equations on compact manifold) to purely topological invariants,
The strategy that will be followed to prove this theorem is extremely simple. First the analy-
tical index of an elliptic operator (in the most general case it will be the Dirac operator
on a compact manifold without boundary coupled to an external Yang-Mills field) is
identified with the index Tr(—)F introduced recently by Witten [2] to characterize the ground
state of SUSY field theories (Section 2). Second, a path integral representation of this
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index is built — supersymmetric by construction (Section 3). The explicit evaluation of
this functional expression will yield the corresponding topological index (Section 4).
Self-contained, this presentation does not require knowledge of the usually needed compli-
cated mathematical apparatus.

2. Ind (D) as Tr(-)F

This section reviews some general facts about Witten’s index [2] of supersymmetric
theory and draws the parallel between this index and the analytical index of an elliptic
operator. The similarities between the two cases should clarify the strategy foliowed in the
rest of these lectures.

Consider a theory in a finite volume with only one SUSY charge since it contains all
the structure needed in what follows. Let Q be the generator of SUSY and H the Hamilto-
nian. Then

Q*=H. (D

The content of (1) is twofold: 1) SUSY states, i.e. those annihilated by @, have zero
energy — the lowest possible level of the spectrum. The converse being equally obvious.
2) Every non-zero eigenvalue 2 is associated with a pair of eigenstates related to each other
by the action of Q since [H, 9] =0,

Qib, iy = JAIF, Ay, QF, 2 = 1ib, 1) (2
and
Q%b, Ay = Ajb, 2, Q*|F, 1> = A|F, 1), 3)

Q has fermionic quantum number and transforms a fermionic state into a bosonic one
and vice versa. From this it follows that under a change of parameters (coupling constant,
volume, ...) the number of bosonic zero energy states ng minus the number of zero energy
fermionic states ng is invariant since by 2) they will reach and leave the zero level by pair.
This is the very observation which led Witten to introduce the relation

-BH L - Ba s .
Te(=)e = Y e Y e =pny(h, = 0)—ng(i; = 0), 4)
bosonic fermiomc)
states b { states f

where the second equality derives from 2). Here Fis the fermion number and {(- )%, 0} = 0
The right-hand side of (4) has precisely the form of what is called an index in the mathe-
matical literature [1] as will be seen now in the case of the Dirac operator. Let

o)™

be the Dirac operator on some compact manifold with

DL:SL - SR’ DR:SR hnd SL’
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where S g are left- and right-handed spinors respectively. By definition
Ind (D) = ng—nj, (6
where ng'" is the number of solutions with zero eigenvalue of Dy
> Ind (D) = dim ker (D) —dim ker (Dy) (D
with
ker D g = {y, D gy = 0}. 8)

The similarity between (4) and (6) rests on the fact that as for Tr(—)" one can prove that
Ind (D) is an invariant. The proof goes as follows.
Define the two self-adjoint operators

AL =D{D. and Ay =DiDg 9)
1) ker A, = ker D;. 10)
Indeed
Dy =0=D{Dy =0
and 4,y = 0 implies
(p, ALp) = (9. D{DLy) = DLy, Dy) =0=Dyy =0 [cf.(D)]

The same holds for ker Az = ker Dyg.
2) The eigenstates of A; and Ay are paired. Indeed

ALy = Ay = AgDy = iDy (1)
since
AgDpy = (D; Dp)Dpy = (DLDI:L Dy = D (A)y = DAy
and
(v, ALy) = My, ¥) = (Dry, Dry)
SO

Dy #0  [cf. (2)].

L Dy D.\ _ (A
(o) (M) @

and ys = (7',) results

From the definition

Tr yse #¥ = dim ker A, —dim ker A
= dim ker D, —dim ker Dy
= Ind (D) (13)

by definition where the first equality follows from (11) and the second from (10). Notice
that {ys, D} = 0. Then ys plays in (13) the same role as (—)’ in (4) and D the role of Q.
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3. Supersymmetric path integral and Tr(—) e !

A path integral supersymmetric by construction will be associated with Tr yse ™ #H. This
constructicn will be done first for a free Dirac operator in four dimensions using a discrete
proper time formulation. What is lost in elegance, compared to the canonical formalism [4],
will hopefully be gained in understanding the subtle way Grassman variables do their job.
The emphasis will be on fermicnic degrees of freedom since the treatment of the bosonic
ones is completely standard. More details about this construction can be found in
Faddeev [3].

Define creation and annihilation operators

S TtV 2 P Pl v
=0 ‘° E. =
¢y 3 2 3
s Y1+ iy, s Y3—iy4
o ML Eo= 2 E 14
S1 5 ¢z 5 (14)

ol = {6} =0, % =12 (15)

Aty

{

Note that in this representation

Vs = P1V2V374 = —(1'22151"252224'451525182) (16)

plays the role of (—)" since it anticommutes with any odd number of fermionic operators.
The vectors in Fock space are, as usual, represented by polynomials in the creation
operators.

To these vectors, we associate the following representative:

Vg = V4V + V&, +VE, &, (17)

where &, and &, are anticommuting generators of a Grassmann algebra. Defining as usual

ja& =1
and
fdE =0
we have an inner product
4 2 _ - .:221 éu{z
V., W)y =Y VW, = [ [] df.dée V¥OW () (18)
n=1 a=1

with
VHE) = VI + VFE +VIFE+ VEEE,, (&, = Grassmann). (19
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The elements (1, £,, &,, &, &;) form an orthonormal basis in the state space and to each

matrix operator M is associated a kernel:
K(E &) = Noo+No1¢1+No2&a + Nos& Lo+ E (N o+ Ny & + N8, + N 38 &)
(20)

+E&(Nyo+ Nyl 4+ Npply+ Npslal )+ & E(Nag+ Nayéy + Njply + Naséy &),
where the N, are the matrix elements of M in this basis. To the action of an operator M on
the space of spinors
Ve = MW, (21)
(22)

corresponds in this formulation
- Zt:ﬁa'lu
V(&) = | dijdn.e K&, mw(@.

Alternatively to the normal ordered form of an operator
(23)

M = Moo +Mq; &+ Mo+ M &,
is associated an element of the Grassmann algebra called the normal symbol and defined as
(24)

N, &) = Moo+ Mg &, +M &+ M, &L

The 1elation between the kernel and the normal symbol being
2
¢§1 :ﬂgﬂ _
Ko =e N(, ). (25)
We will suppress summation symbols and indices when there is no ambiguity. Now consider
the simplest case where H = (p,y*)®. We have:
—-BH . N ﬂ
Tre = lim (1—-¢H)", N = —. (26)
€

N—+x

Every matrix multiplication in (26) gives a factor
j‘ C%'f;df,-e_é":i

[see (22)} while the ith factor in the product gives
e'*‘ét{i—-x(l _SPZ)-

The factors of (1 —ep?) will be treated as usual to produce the path integral over bosonic
27

2
MMy
b

degrees of freedom. Then
] "' lét(éi"{l-l)
§ BOSONS

_ N N-1
Tr e P = [ dEydEse ¥t -1 [ dEdée
i=1
where the first two exponentials come from the trace and the last factor in (1 —eH)" respec-
tively. Anti-periodic boundary conditions are then required for the fermion field
$o = —&n
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For the case of interest, i.e. Tr yse ¥ it is sufficient to change the boundary conditions
of the fermions to periodic ones since as we have seen ys corresponds to (~)*. This can be
seen explicitly by inserting the kernel e~ % corresponding to ys. Notice that SUSY requires
invariance under translation in time which impose PBCs. Taking the limit ¢ — 0:

L .
TI’ ySe—ﬁH = I _@E“(I)géa(t)@x”(l) exp [—17 (_! (-"(#)2 + Eaéa‘PBC's]

p=14, a=12 (28)

or in a more convenient form

8
Tryse ™ = Tr (=) e = [ ax"()Dy" () exp [~ 5 [ () + 9" 9 ippcs] (29)
4]

with
g oY +ip? o pi+iy?
. \/i ] 2 = \/E
1 . 2 3 .. 4
Y —iy Y -y
él = TTETT 62 = = . (30)
V2 V2

The right-hand side of (29) is supersymmetric by construction since it was built with
H = @2 and SUSY boundary conditions. The generalization to more complicated cases
is relatively straightforward. For a Dirac operator on a d-dimensional Riemanian manifold,
the action reads

B
S = [ di[7 g (x)%"%" +F g (x)¥ (1) (Dfy)’, (31)
(1]
where
(D9, = 0,0, +xT*, pv=1,d (32)

ev?

g,(x) being the metric tensor and Iy, the Christoffel connection. For fermion fields coupled
to an external gauge field AZ”, the Dirac operator is

P(0,+4,) = A
with
A’ = (g, +4,) +0,F,, (33)

acting on spin ® isospin space. Treating the isospin degrees of freedom in a way analogous
to the spin degrees of freedom gives in the most general case:

B

4 v - a —aa V. 3 a = a
S = fdt [% g X"+ 5 g, W (DIYY +i'Din — L I F ey y'n’ +i n ' ] (34)

(]
with
D = 6,+ X" A4,(x) (35)
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and
F& = 0,48 —0,A% +[A,, A,]" (36)

whose coupling to the vy, is readily understood from (33). The “mass” term for the 5 field
has been added for later convenience (j drin is the isospin number). The general form
of the analytical index expressed as a functional integral is

Tr (=) e ™ = Trys(=)Ye PPN = | gx*@y"Dii*dnle” 5, 37
PBCs

where H is given by the square of the Dirac operator ensuring the supersymmetry algebra.
The explicit transformations of the fields are

oxt = ey’
oy* = —ex¥,
o' = —ey A",
O = —eif" Ay, (38)
which yields using the Bianchi identities for F,, and Ry, (Rieman tensor):
8S = 3 {dto(y*%,) = 0. (39)

One sees clearly how the periodic boundary conditions ensure SUSY in (39). It is possible to
give a superfield formulation of what precedes [4].

4. Proof of the Atiyah-Singer index theorem

In this Section we will compute Tr(—)fe ¥ explicitly using its supersymmetric path

integral representation ard in this way obtain the general expression for the topological
indices.

The outline of the proof is as follows:
1) The path integral being invariant under gauge and coordinate transformations it is

possible to work without loss of generality in a special gauge and coordinate system.
A simple choice is

Ax) = =1 xF

- (40a)
Pl 50" = 3 Ry 9% (40b)

2) The result being independent of 8, one can get rid of all the terms with an explicit § de-
pendence.

If we use the standard heat kernel result for the free Lagrangian we know that

1 xu)2
[ ox*(e” ﬁj( . fdx' ... dxip~e
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Then, scaling the y field zero mode ¢ — 7Y% and t — f1, together with x — v Bx
one obtains:
I(®) = Tr(—)Fe —BH-laN _ Tt (= )Ny e PH-iaN

B
= [ 2y 9" D" exp [~ [ dil; g+ g, (DY)
DY~ AFL Py + i n “n}]

1
= ﬂ dx*dy* j x*exp [—3 | duxx,+ x,#" %]
Q

zero modes =1

x I Dy* exp [——é—g dif"p,]]

x [ 2i°an°exp [— jdtl'n“n“+ =1 F +ia)™y"], (41)

where 50 = integral without the zero modes and
R, =1 R“ml,y)"‘wﬂ, and F = F, 'y,
(" being the zero modes). (42)

The detailed computation of the path integrals obtained in (41) is given in Appendix A.
Using (A.13) with T = —%/2+ix and (A.16), we readily derive the following general
formula

d

o) = N2 % h #*,2 ‘
I(a) del dxd.[dwl dzpd <__> (—i)? det™1/2 (5111 uv/z/ > det (1 — gr/z~m)
(43)

where #,, and F are given by (42). Notice that for any tensor A4,

d
fdx'odx [dy' odyiA, et = (2)F Ay, dxt L dx (44)

space

Equations (44) permits the rewriting of Eq. (43) in terms of differential forms

n d
‘ ‘ i\2z sinh #*,/2 s
I — _©k —lakI =1 _ d t-l/Z AR d t(l— F2-iw , 45
() E (=)e ™I, <2R> f e ( E D) ) et(l—e ), (45)
= space
where now
R, = § R* pdx"dx* and F = F,dx"dx". (46)

It follows immediately from Eq. (45) (which is our main result) that
d

iNZ _,(sinh %" 2 5
I, = J (2_”) det (49?’2/2 Tr (¢%12). (47)

space
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Equation {47) gives trivially
— the winding number [5] (2 dimension, Abeiian gauge group)

i P
I, = j (a--m)%F,,vdx“dx” = d2xe""F (48)

P /14
v

space
— the Pontryagin number [5] (4 dimension, non-Abclian gauge group)

i
32:°

» i 2 l . . . u v a B
I = ' —) o Te(3 P, 3 Fopdxtds’dx®dx? = —

2] 2! 2

' d*xe™ ™ Ty (F Fp).  (49)

Similarly, one can derive expressions for the Euler number and the Hirzebruch signature.
We will devote the next section to the analysis of these two cases.

5. Euler munber and Hirzebruch signature

We will firsi review ihe classical defirition of the index of an elliptic complex in the
special cascs of the Euler number and Hirzebiuch signature [6]. We will then sketch the
steps which link them to the index of the Dirac operator. This amounts to a simple redef-
initicn of the isospin space introduced in Section 2. Let AP (p = 0. . ... d) be the space
of p forms on the tangent space of a given d-dimensional manifcld. One defines as uiual
the operator d, (here the index p is kept for clarity)

dosA? 5 4P Y ex:ote Al d O = L(C,0,—C.o)dx* A dx® (50)
{ 2 Fakad [Ty

and their adjoints
di A" - APex:d e AN didt = — ") (51)

This defines the de Rham elliptic complex

0- A28 0SS s (52)
The Laplacian operators arc
Ap = dYd,+d,_,dy_ A, > A, (53)
By definition the Euler index is
d—1 d=1
7= 3 (=) dimkerd, = (—)"dim H, (54)
p=0 p=0

where ker 4, is the space of harmonic p forms (dd = d*® = 0) and is identified with
the cohomology class H, (the space of closed p-forms dw, = 0 mcdulo the exact ones
B, = dd,_,.

It is now easy to recast the Euler index for a complex of elliptic operators in a form
similar to the one defined in Section 2. One first splits the space of forms in two: the even
and the odd forms. Then define the two step complex

D = d+d*: A% —» AP*! (55)
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with
D(ao, @2, ...) = (dowo‘*"d,r@z, d2@2+d§@4, ...)
(®eA*®) since d*=0,d*=0
and
D*:A2p+1:A2p+i - Alp
with

D*(By, B3, ...) = (d§®,, d,®, +d3Ds, ...). (56)
It follows that
D*D = @4, A*P — A%
DD* = @;45;-, (57)
where the 4; are the Laplacians defined above. Then
ker D = @, ker 4,;

ker D* = @; ker 4,;_,, (58)
since if ¢ e ker 4, then di¢ = 0 and d* ¢ = 0 and ker D = ker D*D. Then
Ind D = dim ker D—dim ker D*

=Y (-) dimker 4; = 1. (59)

However, to preserve the supersymmetric structure built in the previous sections, it is
necessary to work with the Dirac operator D and not D. Let us see how this operator acts
on the space of forms. For that, we have to choose the isospin space of Sections 1 and 2in
an appropriate way. Take for it (isospin) = (spin)* so acts on S®S*.

Since S®S* ~ y matrices, then w € S®S* is of the form:

1
Y wu,...u,,ym “I’“p’ (60)

1
o= +oy+ —o, Y .+ o

2!
with o, . skew-symmetric. Tr @ corresponds to a form & e A* through the obvious

substitutions y* — dx"

1
- o +odf+ .+ —'wm_”hdx’“ coadx. (61)
p-

The identification of the Euler index will be done in two steps:
1) Dw = (d—d*)w and ker DD = harmonic forms
2) separate

S®S* in C, = S®S% = {w:wys = 0}, (62)
C_. =S®S* = {00y, = —w} (63)
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and show that on
Ciiyso = (—)o,

C_ys0 = (=)o (64)
if @ is of degree k.
3) 1t follows that
I, =Ind(D on C,) =) (-)dimH, (65)
k
and
I_=Ind(Don C_)= -3 (—)dim H], (66)
k

where H* and H- are the spaces of harmonic formse C. and C. respectively. Then
c=I_ =Y (=)dimH, = . (67)
k

For the clarity of the exposition. the details of steps 1) to 3) are given in Appendix B. The
proof that the index (67) is equal to the corresponding topolegical index is now merely
a specialization of the general formula (47) to the case wheie F,, = —1/4 R}, y.75
(isospin = s*). In order to compute 7, = Ind (D on C,), we need Tr [e”/2(1475)/2).
Using (A.1) with o} = 1/2 R.:

- 4d inh #/2 4
Tr (et %ys) = - det!/? (‘3———/> et L) R R (68)

.@/’2 B2 " Ha-14hd°

Combining (47) and (68) gives

i +d 1 +d 1
I, —~I_ =y = — — .l_)i‘d K1 Hdgp R
TS 2z 2i G (L d)! € sz Pugopa

space

d 1 +d 1
I T (©)
2 .

For example, for a 2-sphere one has
Ruvzﬂ = '21_ R(a“zg\’ﬁ_auﬂng 6‘“@#\! = 2Rd2X
(R is the scalar curvature) and finally
{ 2 K , R
X = — Rd*x = | — d*x, K = — = Gauss curvature j. (70)
4n J 2n 2
space

The Hirzebruch signature is given by

sign = [, +1_=Ind(D on C,)+Ind(D on C.) (71)
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which, using (47) and (A.12) is

;O\t H H ook
i sinh &% /2 , N
ien = o= N det ™' —— T )det'? | cosh ---°
sign = [, +1 [ (2) (2n) € ( 1 ) e cos A

v
space

i\’ ., (tanh #*,/2
:—.V((—:{-)det_“l(dghal;), (v=1%d. (72)

In the particular d = 4 case
I >
sigh = | ———; Tr(#£°). 73
sign fl92n2 (A7) (73)
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APPENDIX A

We give here the computation of the path integrals used to derive the results of Sections
4 and 5. They fall in four categories.

1
1)) Tr(yse 2™y = [ 2y exp [—4 | di(p" 9" +0,,9" )] (A.1)
PBCs 0
1
2) Tr(e * ") = [ gy exp[—§ [ di(y"y*+o,9"y")] (A.2)
APBCs o -
1
3) Tr((=)"e ™™™y = [ 2i°gn“exp [~ | dt(ii%"— 4 7°T“n%)]. (A.3)
PBCs 4]
1
4) § o@xtexp[—4 [ di((x")*+x,2" %)]. (A
PBCs 0

The detailed computation of (A.1) is given below. (The other three cases being very similar.)

27H Ty (pgeH ey = 727 det)/pac(d, + @*,) Jody' .. dyle Fomwm, (A.5)
Zzere
modes
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where Z* 1s a normalization factor to be determined and w,, = —w,, and @,, = 0, while
y* corresponds to 7"/\/2 Define g(z) = I, o(k+2) with g(0) = 1 and g'(0) = b; bisan

unknown constant.
g 1
= = E — A6
g k+2Z (A.6)

Except at Z = 0. g'/g has poles with residue 1 at evety Z = k, ke Z. Then

! T Cos L
g _rmeosnz (A7)
g sin nZ
sinnZ ,
gZ)y=-——¢" g0)=1, g(0)=b (A.8)
nZ
It follows that
o’ r
sin ;1 o
27Ty (yge POy = Zdet! 2 T e T dy' ... dyle”F Owv
wh
2i .
zero
modes
with ' = —o, Treo = 0, and the determinant is the one of a finite dx d matrix.
0)11
sin —~

27HITr (e Oy = Zdet' 2| - T | dyt L dyfeTEOMY (A9)

v

2 7

We can now determine the normalization constant Z by inserting ys into (A.1) and choos-
ing =20

4 d d
27T Te(l) = Zfdy' e dy'yt oyl (—)727, (A.10)
using
4 1
ys = (=127 . s ’r‘g =1, and @' "
J

For d even we find

Z=(-D22 7, (A.11)
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The final result is:

1
v

g . % sinh 5
27 2 Tr(pse o) = (—;l> dy' ... dyfe T oV dett/2| T

w*,
/ 2
"
( .);;_ sinh —
—1 _ "
= —I: 27k, e @, det!? o | (A.12)
2) 2
where we have used
LV 1 "‘1_
dy' ... dyle o N (=)0, o 0 o | dyt o dyiyt Lyt
h
(5
1 4 4
= o (=)2 Oy oo Opy ()2 (A.13)
—!
(3)

The second case is treated in a similar way
_4 ! )
2 2 Te(e ¥y = | Dytexp[— [ diE vt +1 0,9 ). (A.14)
)]

APBCs

We have to compute

ear(@) =[] (k+4+2) = coshnZ, gO) =1, g(0)=0.

keZ

Then

4 o*
277 Tr (emHowr Yy 2 det!/? (cosh —-2—3>
In the isospin case we want

~ 1
Tr((=)"e™ ") = [ Di*dn°exp [~ [ di(i"" +7T*n")], (A.15)
0

PBCs

where T'is the matrix T s promoted to Grassmann algebra in a way completely similar to
what we did in the spinor case, and the trace is over the space of forms A*(n) (scalar,



449

vector, tensor, ...) over this algebra. The computation is very analogous to case 1) since now

Tr ((—)N"e_?) = Zdetyppc(0,+T) | difdn, ... dij,dy,e” T T
aero
modes

. T
sinh —

% HERIECE
= Z det e? |det(T) = Z det(e? /—e 2 ). (A.16)

2

The last factor ccmes from the iniegration over the zero modes while the first one durives
from the case 1) above. By taking n = 1 and T diagonal, b and Z are determined. In this
case, we have two representations, one trivial with N = 0 and another corresponding to
the 1-fermion state of the Hilbert space with N, = 1. We have

Tr((—)Ye ) = (1-¢7),

which compared to (A.16) gives b = —i and Z = 1. The final result

- 1
Tr(—)Ye = | 2i°2n"exp [~ [ dUf*®+7°Tn")] = det(1—e"T)  (A.17)
0

PBCs

{
) éc Dxtexp [~ [ di(3 ")V + 4 x #5")] = Z' detg pfd[(— 2+ R | dx' ... dx*
s o] zero

modes
A",
p sinh -
= Z detg pi2[(8,—R)",] | dx' .. dx? = (2n) % det™!/? — dx' ... dx%,
R 2
& skew symmetric. (A.18)

The determinant was already computed in case 1) and the normalization factor known
from the free field case (taking # = 0) is z = (2n)~ %2,

APPENDIX B
Define the space of (Clifford) forms

1
C= (S®S*):{w:w = 0 +w0,y" + T 0, Y+ o, LYY

Wy opa = skew} (B.1)
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on which one has the inner product

1
_ o+ — 1nS€i2 — —
(w,0) =Tro w="""+d,0,+ PR I

i

— @
21
Let
d
] Hd

("i)T}’s =Js =Y. = JSML..Ild‘yI“ Vi

Then
§5 = ()72, and (s, 75> = 1
One can check

where * is the Hodge star operator [6],
Tswy = (_)k(d_k)wk')js,
where w; is a k-form, and from (B.5) and (B.6)

* %k (1) = # (')}'Sw‘*’) = ?5((0?;‘) — (_)k(d—k)‘

For d even, one can consider the decomposition
C = C++ C_.

with
C, =(S®S%):{we C:oys = 0},
C_.=(S®S%):{weC:wys = —o}.
Then from (B.6) and (B.3), we find
750 = (Yo, if weC,
k+1 .

ysw = (=) "y, if w,eC..

To every w e C corresponds a differential form e A
& = w* dx* ! dxtdx’
=w +wux+§—!wmx X'+ .,

and to §5 corresponds

1

ys = ;'sm._.“dx“‘ odxPe = dxt L dx?

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)

Observe that if w* and @~ b:long to C+ and C- the decomposition in even and odd forms

introduced in Section 4 corresponds to

14ys ot + 1Fys o
2 2
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