Vol. B15 (1984) ACTA PHYSICA POLONICA No 6
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The growth of small linear gravitational instabilities in the Hoyle-Narlikar and the
Brans-Dicke theories of gravitation is discussed. It is shown that small linear adiabatic
density fluctuations can grow faster (or protogalaxies could form earlier) in the G-variable
cosmologies than in the general theory of relativity.
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1. Introduction

Canuto and Goldman [1] have shown that the variability of the gravitational parameter
G reflects a very serious problem, namely the question whether the Strong Equivalence
Principle is valid. Up to now no one can answer this question, since we do not know if the
rate of gravitational (two orbiting planets) and atomic (e.g. hydrogen atom) clocks has
remained the same for the whole history of the Universe. Therefore, one may and should
consider the G-variable theories of gravitation.

The evolution of linear density fluctuations in the Dirac cosmologies has been discussed
by Krempeé-Krygier [2, Paper I] and Davidson [3]. It has been shown that the density
fluctuations grow faster (or the protogalaxies become gravitationally bound systems earlier)
in the Dirac additive creation theory than in the standard general relativity theory. The
fate of the density fluctuations in the Dirac multiplicative creation theory depends upon
a free parameter y° = Gogo/H2. Therefore, for the acceptable present values of the gravita-
tional parameter G, of the density g, and of the Hubble parameter H,, the density perturba-
tions seem to grow slower in the multiplicative creation version than in the additive one.
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In the present paper we shall discuss the evolution of the linear adiabatic density fluctuations
in the Hoyle-Narlikar and the Brans-Dicke cosmologies. We shall restrict our considera-
tions to the Newtonian approximation and flat cosmological models only. A brief descrip-
tion of the Hoyle-Narlikar theory of gravitation and the discussion of the fate of the
density fluctuations in this theory will be given in Section 2. Section 3 deals with the evolu-
tion of linear density perturbations in the Brans-Dicke theory of gravitation. The conclud-
ing remarks are given in Section 4. '

2. The Hoyle-Narlikar theory of gravitation

Generally, the field equations of the general relativity equate the tensors describing
the geometrical properties of the space-time to the physical quantities known as the
energy-momentum tensor. In 1964, Hoyle and Narlikar {4] formulated the theory of
gravitation, in which they have introduced into the energy-momentum tensor the
C-field — the scalar function of position. The C-field can be considered either as a pure
field or as a field coupled to the particles.

The Hoyle-Narlikar theory of gravitation is based upon the Mach principle which
states that the properties of local matter (e.g. its mass, inertia etc.) are determined by the
properties of the rest of the Universe. Hence, for example the mass-energy of a particle
m(x) is given by the mass-energy of the rest matter of the Universe M(x), i..
m(x) = AM(x) (where 4 is a coupling constant of a given particle and it can be 20). The
field equations calculated from the action principle [5-7] have the general form, as follows:

Ry—1 guR = —8nG[(TL +J )+ T

Here T is the usual energy-momentum tensor, J; stands for the inertial terms in the
energy-momentum tensor, R, is the Ricci tensor, g, — the metric tensor, R— the
scale factor or the curvature scalar, G — the gravitational parameter, (m) and (rad) refer
to matter and radiation respectively.

We shall limit our considerations to matter-dominated epochs of the homogeneous
and isotropic cosmological models of the Universe (dust-filled models with p, = 0).
Hence, the conservation equation of the energy-momentum is:

[G(T,+I™]; = 0.

The semicolon stands for the covariant derivative.
Solutions of the field equations and of the conservation laws given in the atomic
units for flat dust-filled cosmological models of the Universe are (see [7]):

R(t) = QHot)'?, o oc (R*G)7L
(m)

Here t is the atomic time, H is the Hubble parameter and subscripts “0” refer to the present
values.

Therefore, the line element in the atomic coordinate frame for the flat dust-filled
cosmological models of the Universe is as follows:

ds? = c2dt? =2Htldr? + r3(d6? +sin® 0 dg?)].
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¢ is the light velocity and r, 8, @ are the spherical coordinates. Since, in the Hoyle-Narlikar
theory of gravitation the gravitational parameter changes with the atomic time in the way
G = y/t, one has:

=T R 2" o t ’
R to\'?
(1+z)=§9=(7°) , Goc(142)% 6))

Here y and ¢ are constants.

We shall consider the expanding homogeneous and isotropic medium (Universe)
described by the above relations as an unperturbed state. Then, we impose the radial
adiabatic density perturbations. The fate of the density fluctuations is described by the
hydrodynamic equations, which have the general form, as follows:

- the continuity equation

do -
— +V(e,V) = 0; (2
ot

— equations of motion, which in the case of no dissipation are the Euler equations

v, . . 1 -
5 TWVe= - —th,+g,; (3)
— the equations of the gravitational field
Vg = —4nGe,,
Vxg =0. '0))
Here g,, V,, p, are the total values of the mass-energy density, of velocity and of pressure,

- r
V is the Nabel operator, x stands for the vector multiplication and g, = —4nGg, 3 for

the Newtonian approximation considered in this paper. Our goal is to investigate the prop-
erties of the unperturbed expanding medium and the radial linear and adiabatic perturba-
tions (g4, V1, Py, £1):

o(r, 1) = on(+0,(r, 1),
Vi(r, 1) = FH(t)+ Vy(r, 1),
p(r, ) = po()+ps(r, 1),
g(r, 1) = g(+g(r, 0). (%)

Since we have assumed the radial motion and the spherical symmetry we take the Hubble
motion, i.e. ¥ = rH as unperturbed motion in the above equations. In fact, p(f) = 0
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and p,(r,1) = V20,(r,t) for the considered adiabatic density fluctuations in the dust-
-filled models (where ¥V, is the sound velocity).

Substituting (5) into (2-4) and neglecting all the second order terms we have in spherical
coordinates:

- ’ ’ 2V
01+ 0m+rHo +3Ho,+ 0,V +

12 +3He, = 0, ©6)
FH+V,+rH +7HV, + HV, = 3,—V? (E‘-) )
Cm

Here: - = /0t and ' = d/dr.
We have assumed that the Hubble parameter satisfies the following condition:

3H?>+3H = —4nGg,,. )
Hence, we have yo = 3/(167). Putting (8) and ¢, = —2Hy,, into (6), we have

7 2QmVI . - ’
onVi+ " = —¢,~Ho,—rHeg,—~3Hg,. ®

o, o, 2V,
Since 5—(r V) = r*{Vi+ —, (9) takes a form:
r r
a oL,
5 V) = - ?(el+rHel+3H91+Hem)~ (10)

m

Supplying V to (7) and using (8) we have

1o H V(.. 20
2 Grot v+ " b?("zVO = —4nGo,— - (Q: + _r—) 11
Here "’ = 9%/dr?. Putting (10) into (11) one derives the following equation for the evolution

of the density fluctuations:

01 +TH, +r*H?o\ + o' (rH + 8rH?) + 0,(6H + 15H?) +2rH ¢,
2 !’
= Vf(e'{+ —‘—‘}) (12)

Here: “ = 0%/0t*. Introducing the relative density fluctuations defined as o(r, )
= 0,(r, 1)/on(t) and putting ¢,, and g, as given by (1) we have calculated for the evolution
of the density perturbations the following equation:

. . . 21}
0+3H6+8(4H+5SHY) +58"(r*H>— V) +8' (rH+4rH2— ) +2rHS = 0. (13)
r
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Next, we separate the dependence upon the spatial (radial) coordinate and the time accord-
ing to the formula é(r, t) = w(¢) [exp (ikr/R(t)))/r, which represents the spherical wave.
In this way, we derive the following equation for the evolution of the density fluctuations
(for the compressional modes) or to potential velocity perturbations):

. K*VE
(}3+Hu’)+w(3H+3H2+ R;) = 0. 19
Here (k/R(t)) represents the wave number. Since we assume that the galaxies are formed
from the small density perturbations, which have survived up to the recombination from
the previous phase of the acoustic damped oscillations, we can neglect the pressure term
(VZk?*/R?), as small in comparison with the gravitational one, namely with (3H+3H?
= —4nGg,,) for the epoch after the recombination [8]. It corresponds to the case, when
the wave number (k/R) is much smaller than the Jeans number (or the mass of the density
fluctuations is much larger than the Jeans mass). Then, after substitution of H = 1/(21)

and H = —1/(2¢2) into (14), the evolution of the density fluctuations is described by the
equation

S

A+ :—Z;w-“?w=0. (15)

In this case, the growth of the density fluctuations with the atomic time is given by the
power law, ie. wy oc t""'* (where n, = 1.15 and n, = —0.65).

However, we have also considered the case, when one¢ has to take the pressure term
into account. Then, the evolution of the density fluctuation is described by the following

equation:
0+ ! 0+ kv 3 0 (16)
JE— () ——— s e = .

OT 5 RE g

Here R = (2H,)'/? as given by (1).

The solution of this equation is expressed by the cylindrical functions Z, and it is:
@y = 1°%5Z 4, 3028k V(2t/ Ho)''?). Generally, the cylindrical functions of a given order
v: Z, are the linear combinations of the Bessel functions of the first J, and of the second
kinds Y,, namely: Z(x) = ¢;J{x)+¢,Y(x) (where ¢; and ¢, are constants). Since we
have put the adiabatic perturbations into the unperturbed medium we may take p = Kp™
(where y; = ¢,/c,) and V2 = (6p/00).s = Ky,0" ™! = K t' ™" (where K, is a constant
for a given y,). Introducing 42 = k*V2#"//R? we have derived for the evolution of the
density perturbations the equation

L 1 A 3
The solution of the above equation is given by cylindrical Bessel functions and has the
form: w4 oc 179257 (41%/x) (Where v = +(13)!/%/(4x) and x = (2—7,)/2). For the interest-
ing cases, i.e. ; = 4/3 and 5/3, we have x > 0 and for t < A~/* the density fluctuations
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could grow (w, oc {2-25£U3Y%%) while for ¢t3» A™'/* —there would be the damping
oscillations only. The condition for the growth of the density perturbations is equivalent
to the physical situation, when the influence of the gravitational forces upon the density
perturbations is larger than the pressure effect, namely A%/t"" < 3/4¢%.

3. The Brans-Dicke scalar-tensor theory of gravitation

Brans and Dicke [9] have formulated the scalar-tensor theory of gravitation. In this
theory, known as the Brans-Dicke theory of gravitation, besides the tensor gravitational
field, there is the scalar field ¢, whose density ¢; and pressure p, are given as follows:
Pa = 0,62 = 2Q+3)c*(1)?/(32nGA%) (where ¢ = log 4) [10]. Q is the coupling constant
between the scalar and tensor fields. In the scalar-tensor theory of gravitation the gravita-
tional parameter is determined as G = Gy(¢o/P). The field equations were derived by
putting G oc ¢! and inserting the term connected with the scalar field — T3 into the
energy-momentum tensor. For the isotropic and homogeneous cosmological models of
the ideal fluid with the energy-momentum tensor: Ty = —(¢+p)uu+pgy the field
equations have a general form as follows:

87'EGO

o — (Ta + T (18)

Ry—% guR = —

Here T and T are the energy-momentum tensors of matter and of the scalar field respec-
tively. The scalar field ¢ is determined from the wave equation:

8nG,

—{— o\ _ 1207 — _
D¢ —‘( g) /2[( g)l ¢ ],i (3+‘2‘2)C4 >

(19)

T is the trace of the energy-momentum and *,” stands for partial derivatives. These two
equations and the conservation equation of energy-momentum take the form (for
c= Gy = 1):

R ¢ R  6*°

(R)’ k 8me ¢R N A$)

3R
6= - ~E(9+p)- (20)

Here dot stands for d/dt and k is the curvature constant. When @, k, R,, Rq, ¢ and g, are
known, one can derive R(t), ¢(z) and g(t). For Q — oo, the scalar-tensor theory is equivalent
to the general relativity. We shall discuss the flat dust-filled cosmological models (k = 0,



461
p = 0) only. Hence, the solutions of (20) are [9, 11, 12]:

£ \ 2 HD/N4+30) £\ -6 +m/(a+3a)
R=Ro(“> s Q=Qo<‘) »
to tO

t 2(1 +,Q) t 2(1+2)/(4+30)
= ) (21)

=2/(4+32) o
G =Gy~ , H=2"""21 (47 =(2
0 <to> (4+3Q)t (1+2) (t

It is possible that at the earlier epochs of the Universe, the density of the energy-momentum
of the scalar field g, was larger than the density of mass-energy of matter and could acceler-
ate the rate of cosmic expansion. The evolution of the density fluctuations in the Brans-
-Dicke theory of gravitation has already been considered by Bandyopadhyay [16] by
a different method. In his discussion Bandyopadhyay used the extended Raychaudhuri
equation derived by Banerji [17]. He obtained the power law for the evolution of the
density fluctuations with time n the flat dust-filled cosmological models of the Universe.
However, the values of this Q-parameter depend upon the values of b and 4. b and A are
as follows [11]: b = got§ TD/C2+D. 4 — [870,/(2Q+ 35 +NGATD (4 is the average
unperturbed density at the present time #,.) One obtains the damping density oscillations
only for the mentioned values of b and A using the formula given by Bandyopadhyay.

Hence, it is worth to discuss the evolution of the density fluctuations in the Brans-Dicke
theory of gravitation for the unperturbed state given by (21) using the same method as
in the previous Section. We have obtained that the evolution of the density perturbations,
in the case when the pressure term is small in comparison with the gravitational one, is
described by:

oo _ o (e ), @

(4+30) t? (4+30Q)°

Deriving the above equation we have assumed that the condition (3H2+3H = —4nGy)
is satisfied. It gives us, together with (21), that:

Gogotd = (3/21) (1+Q) 2+ Q)/(4+39Q)>.
The solution of equation (22) has the following power form:
®, < 2 o (1+Z)"[(4+39)/[2(1 T2 (23)

Here n, , = [-Q+[Q?+24(1+ Q) 2+ 2)]"/*)/[2(4+3Q)] and z is the redshift. In order
to obtain the growing modes of the density fluctuations, i.e. n,, 0, one should restrict
the discussion to the values of Q larger than —1 (2 > —1). For the example, n, , take
the following values:

(@) for @ = -09,n, = 1.06 and n, = —0.37;

@ii) for Q = 1.0,n, = 0.79 and n, = —0.93;
(iii) for Q = 30.0, n, = 0.68 and n, = —0.996.

On the other hand, observations of the solar gravitational deflection of the radio waves

[13] as well as modern lunar laser experiments [14, 15] have given the limitation for €,
i.e. 1] > 30. When one takes into account the pressure term, the evolution of the density
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perturbations takes the form

L1+ [k’Vf B 6(1+{2)(2+Q)] _

T T Phet R @+30)71 24

For the adiabatic density fluctuations with V2 = Ky, 0", the above equation takes
a form:

L A1+ A? 6(1+(2+%)
(4_*_39)“"'*' 2A-DEN-1D/E+30) - (B+30)%° 1=0, 25)
Here A2 = k::f (2(140) Bra= D4 +32)
For the special ly fo S +40 ST he ab ti
e, name ry,=——— 0 Q=—"
or the special case, namely i ) e ¢ above equation
reduces to the equation:
414+Q) ol , 6(1+2)2+9Q)
. L RN Ch A ACR ) I )
O G T P [ @+39) (26)

The solution of this equation is described by the power law, as follows: w, oc £'* (where
ny, = —Q[2(4+32)]+£0.5{[Q2+24(1 + Q) 2+ Q))/(4+3Q)* —442}/2, Therefore, one has:
Q+24(1+Q) 2+9Q)

)) the damping density oscillati only for 4* > ;
(i) the damping density oscillations only fo 24 130)

(ii) the decreasing density fluctuations for

692°+18Q+12 -4 < Q*4+24(1+ Q) (2+Q)
(4+3Q)? 4(4+3Q)° ’
, 6Q2+18Q+12
(ii}) the growingand decreasing modes of the density perturbations for 4% < ”"@%3_9_);““ .

The discussed special case corresponds to the following values of the coupling constant:

(i) for v, = 4/3 (the relativistic fluid}, we have 2 — co. It is known that for € — co the
Brans-Dicke theory of gravitation reduces to the general relativity. Hence, we have
for Q -» oo the damping density oscillations for 42 > 25/36, the decreasing density
fluctuations for 2/3 < 4% < 25/36 and the growing as well as decreasing modes of the
density perturbations for 42 < 2/3 in agreement with the general relativity (see [8]).

(if) for y, = 5/3 (the non-relativistic fluid), we obtain Q = 0 and the initial density per-
turbations can grow for 42 < 3/4. The general solution of equation (25) is:
W, = t7HEEIM 7 415~ k) (where v = [Q2+24(1 + Q) 2+ Q)]?/[2(4+32)] and
k = [3y,(1+Q)~(5+4D]/(44+3Q). For x >0, ie. for y;, > (5+4Q)/[3(1+ )], the
density perturbations can grow for t> AV, namely w, oc ¢~ /I2(4¥3ME(A2+240142)
@+a)I24+3M)  while for t < AY* — the Z,, functions oscillate.

The condition for the growth of the density fluctuations is equivalent to the Jeans condition

and corresponds to the case, when the influence of the pressure upon the density fluctua-

tions is overcome by the gravitational forces.
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4. Concluding remarks

It is known that in general relativity the initial random density fluctuations could not
grow into the protogalaxies, when one accepts the power law for their growth [18, 19].
In fact, the small density perturbations may grow during the matter era only. Therefore,
the initial adiabatic density fluctuations should be of the order of ~ (105 = 10-¢) to pro-
duce the protogalaxies at times about ~ (10% = 10%) yrs [20, 21]. On the other hand, the
initial thermal density fluctuations could be: w, ~ N-1/6 &~ 10-!! for the evolution through
the critical point (where N is the number of particles contained in the density perturbations).
Hence, the formation of protogalaxies or protoclusters of galaxies is still an open question.
Nevertheless, one tries to avoid this difficulty assuming that the non-linear effects giving
the faster growth of the density perturbations appear after the growth of the linear adiabatic
density fluctuations to the order of 1 [22, 23].

However, the discussion of the G-variable cosmologies (see Paper I and the present
paper) indicates that the linear adiabatic density fluctuations can grow faster in these
cosmologies. Hence, smaller initial density fluctuations are required for the formation of
protogalaxies at the same time as in general relativity or protogalaxies appear as the gra-
vitationally bound systems earlier in the G-variable cosmologies than in general relativity
for the same initial density fluctuations. If one assumes that the protogalaxies were formed
at z = 4, we have derived the times: 3.6x 108, 4.8 x 107 (see also [3]), 6.2x 108 yrs (for
Q= 10) and 7.9x 10*yrs (for @ = —0.9) for their formation in the Hoyle-Narlikar,
the Dirac additive creation and the Brans-Dicke theories of gravitation respectively com-
pared to 1.1x10% yrs for the flat Friedman cosmological models.

Generally, the ratio of the growth rate of the density fluctuations in the G-variable
cosmologies (GV)to that of general relativity (GR) is described by : 0, (G V)/w,(GR) o (1%)/
YY" o (1§™"A +2)/[(eSV)"(1 +2)™]. The values of the power indices for the discussed

flat dust-filled cosmological models are as follows: i) n = 2/3,n;, = —1 for GR; #)
m = 1.15, m; = —2.30 for the Hoyle-Narlikar theory (H-N); iii) m = 1.81, m; = —5.43
for the additive creation version of the Dirac cosmology (DAC); iv) m = 1.06, m; = —6.89

and m = 0.79, m; = —1.38 for the Brans-Dicke cosmology- (B~D) with = —0.9 and
1.0 respectively. In order to climinate the constant factors in the above formula, we have
estimated the relative ratios of the growth rate of the density fluctuations in the G-variable
cosmologies, e.g. at z = 20 and 4: 0,%Y (z = 4)/w,®Y (z = 20) to compare them with
those of GR. We have obtained the values of these ratios for the (H~N) theory and the
(B-D) cosmology with = 1.0 comparable with that of GR. On the other hand, the
density perturbations at z = 20 might be 4.7 x 10* and 5.8 x 10? times smaller in the (B-D)
cosmology with @ = —0.9 and the (DAC) theory respectively than in GR in order to
obtain the same density fluctuations at z = 4. Hence, it scems that the G-variable cosmolo-
gies can help in the problem of the galaxies formation from the linear adiabatic density
perturbations.
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