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It is shown that pure Yang-Mills mechanics is exponentially unstable even if an arbi-
trary, stable 43 component of the potential is included. However, stabilization of the theory
is possible for the generalized Matinyan-Savvidi Ansatz on potentials when Higgs fields
with sufficiently large vacuum expectation value are present.
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1. Introduction

The classical Yang-Mills mechanics (YMM) and its stochastic properties have been
investigated recently [1, 2]. Using numerical methods it has been proven that, at least for
a special Ansatz, YMM exhibits chaotic behaviour [2]. However, introducing extra Higgs
scalars with sufficiently large vacuum expectation value deterministic behaviour (“ordered
phase”) can be reached [3].

This paper deals with the linearized (L-) stability of YMM. Exponential L-instability
is an important indication of stochasticity. A useful constructive criterion for the onset
of chaos in dynamical systems was proposed by Brumer and Duff and Toda [4]. They
have used much more tractable L-stability instead of the global one. This method has been
tested in several models. Moreover, it does need neither the explicit knowledge of solutions
to the equations of motion nor any numerical calculations. In the following a similar
method will be used to analyze YMM and to extend previous results.

Now, let us comment on the relation between chaos and exponential L-instability
in dynamical systems. Usually a system is called chaotic (stochastic, random) when its
metric entropy is positive: # > 0. The metric entropy is defined as & = ) 1%, A%} being

a positive Lyapunov exponents!. Here, Lyapunov exponents are defined by
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where 0? = 642+ 842 and 84 is a perturbation of the trajectory, dot means differentiation
with respect to the time variable.

The model of YMM is extracted from the full Yang-Mills equations imposing the
following Ansatz on the potentials?

0 dy = 0, a.n

i.c. all gradient terms are assumed to vanish, fields are space-homogeneous. Let us recall
that gradients of the potentials are not included in the most nonlinear (cubic) terms of the
YM equations.

Whereas in the weak coupling (field) limit YM equations become almost linear,
with small nonlinear perturbation only, we have, for homogeneous fields (1.1), highly
nonlinear equations and strong self-coupling of potentials. This is just the case of YMM.
Intuitively, this region can be defined as: g%¢A% > 1, where ¢ is the “‘gluon” density and
A is the wavelength. Hence, Ansaiz (1.1) can also be associated with the infrared limit
of the theory (6, «* p, = 0).

Ansatz (1.1) reduces the YM equations to a set of ordinary differential equations
of the form

Ii'ai'l"gs.bc[/iboAci'l‘zAbo/ici]+gzeabcsc"e[AboAderi_AbkAdkAei] = giai, (1.2)
GabcAbkA.ck—geabCGCdeAbkAdgAeo = jao, (1.3)

where ¢ is the totally antisymmetric symbol.

2. Onset of chaos in YMM

It has been shown that the equations of motion (1.2) exhibit stochastic behaviour
when an extra restrictions on the potentials are imposed. They are of the form

A% =0, 2.1)
and
A% = 0% f9), .2)

where 0% is an orthogonal constant matrix and there is no summation over the index
a. Ansatz (2.2) may be viewed as a 3-dimensional section of the 9-dimensional space of
solutions to equation (1.2). We shall show that for another 3-dimensional section of the
form

Aak = 5k3Aa, (2.3)

equations (1.3) are also unstable, even though 4% can be nonzero, i.e. (2.1) is relaxed?®.
This means that the potentials 4%, are not able to stabilize YMM, even if they are treated

2 Here Latin indices a, b, ¢, ... are group indices, i, j, k, ... are space indices and g, »,«, ... are Min-
kowski indices. The metric tensor signature is (+ — — —) and the gauge group is SU(2).

3 Note that (2.1) cannot be obtained by a gauge transformation since the condition (2.3) is rather
restrictive and no gauge freedom remains.



467

as being stable external fields, i.e. 4% will not be subjected to any perturbations:
514‘0 = 0- (2‘4)

Substituting (2.3) to (1.2) and disturbing the potential: A% — A%+04% with
3A°% ~ exp (A1), the following algebraic equation for the eigenvalues A (Lyapunov expo-
nents) is obtained

det [A2—2gAS—gS+g?S? = 0. (2.5)
Here, the 3x3 matrix S is defined as
S% = P45, 2.6)
Equation (2.5) has the explicit form

() = 25422 4,204 +4g¥ (A, - A2
+ 82(22 + ng—fo‘*)'{z - 84{202202 ‘(;fo : Zo)z] =0 2.7

Note that 4% potentials are not involved in (2.7), thanks to the Ansatz (2.3).
For non-Abelian A4, potentials, i.e. those satisfying the condition

Aox Ao # 0, (2.8)

the last term in (2.7) is negative. Then f(A = 0) < O and for large enough A€ R we have
f(2) > 0. Because of this there exists a positive real root of equation (2.7). Hence, the distur-
bance d4°%, is growing exponentially with time and all non-trivial solutions of the form
(2.3) are unstable.

In the special case, when the condition (2.8) is not satisfied, we have two zero solutions
to (2.5) and the remaining four roots have to obey the equation

A 4282 4,222 +4g% (A, - A)h+ g2 (A2 + 82 Ao*) = 0. 2.9)
This equation has no real solutions. Defining
A=a+ib, abeR, (2.10)
we have, instead of (2.9), two equations for real and imaginary parts of 4:
g(a) = a*+2¢7A,2a* — (Ao Aoya—1 [g2Ao> + 8% 40*] = 0, (2.11a)
b? = a+2g2A2. (2.11b)

Hence, g(a = 0) < 0 whereas, for large enough @, g(a) > 0, i.e. there exists a solution
for a such that

a=Rel>0. 2.12)

Thus we have proved that the solution (2.3) is always unstable, whatever the potential
A, is. In the following we investigate the cases in which YMM can be stabilized.
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3. Stabilization of YMM

It has been shown that YMM can be put in ordered phase when extra Higgs fields
with sufficiently large vacuum expectation value are introduced [3]. This has been done
numerically with the assumptions (2.1), (2.2) and additional Matinyan-Savvidi (MS)
Ansatz:

[ =0 (&R))
The equations of motion in the presence of Higgs fields result from the Hamiltonian
4 2 2
, g B G
H=Hyy+1B24+6)+ > (A4 | = +|—=
YM+2( a +0 )+ 4( i t) 2 + \/2 +'1
2 2 o o

+A2 | LB+ —= +n) -], 32
[z ( 7 n) n J (B2

where the Higgs field ¢ is defined as

_ (%1 _ 1 (iBi+B,
0= ()= (inre-in): ¢

and Hy, is the pure YM part of the Hamiltonian.
The constraint equations, analogous to (1.3), are

£ 4P A% — \/ii B,+L[0B,~B,6—e"B,B] = 0. (3.4)

Here, it will be shown that YMM becomes L-stable for sufficiently large vacuum
expectation value 5 of the Higgs field for generalized MS Ansatz, i.e. when the restriction
(3.1) is relaxed.

Using the notation f = x, f® = y, f® = z and imposing on the Higgs field the
condition

B, =0 =0, (3.5)

we have the field equations in the form

i+ gix(? +z)+1 g'n’x = 0,

J+g Y +yH)+1 g’y =0,

F+gz(x*+yH)+1 gin’z = 0, (3.6)
and the Hamiltonian

H — %(22_*_)-}2_*_2«2)_*_%g2(x2y2+x222+y222)+21: anZ(x2+y2+22). (3.7)

It can be seen easily that after appropriate rescalling we have in the theory only one dimen-

sionless parameter
2 7.\
r=2 (i) , (3.8)
4\u

where u* is defined as the Hamiltonian.
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The linearized equations for perturbations are

2
5%+ g* (y +z%+ )5x+2g xydy +2gixz6z =
2
5y +2g*xydx+g* (x +22+ 2)6y+2g y26z = 0,

2
85 +2g%xz0x+2g%yz0y +¢° (x +y*+ )52 =0, 3.9

This implies the following algebraic equation for the eigenvalues A:
A5/g8+2(x2 + Y2 + 22 + 3 )24 g* + [3 1+ 2(x2 + y2 + 220
+ XY 2t — (22 4 X222+ Y2 2) AR g 4 [+ (xR 4y 42t
+4 (e yt+ 24— x2Y? — X222 — y22 02 + 18x2y222 - 3x4(y? + 22)
=3y (x2 4 22)=3z4(x2+yH)] = 0. (3.10)
The condition for L-stability is that all solutions to (3.10) should satisfy [5]
Re 1 < 0. 3.119)

For equation (3.10) condition (3.11") is satisfied if and only if
Rei=0 G.11)
ie.
Re A2 < 0. 3.12)
Equation (3.10) can be written as

ao AP+ a, A%+ a,A+a; =0, (3.13)

where A = A% and @, are the coefficients defined by (3.10). It is easy to check that the
coefficients a,, a,, a, are positive. To investigate the real part of 1 (i.e. to check the con-
dition (3.12)) we use the Hurwitz criterion [6). According to this criterion all solutions
to (3.13) have negative real parts if and only if

a, >0, a >0, (3.14a)
and
4, =1 %<0, ad,>0. (3.14b)
as a,

Hence we have to examine the conditions (3.14b). To satisfy them there should be:

A, = n0+4riy* +(5r2 =362+ 2r8 —3r26* - 27x2y%22 > 0, (3.152)
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and
8a; = n®+4r2n* +4(r*—35%m2 + 8[— 3r26* +27x2y%22] > 0, (3.15b)
where r and § are defined by |
r2 = x2+y*+22, (3.16a)
0% = x2y?+ x2z2 + y?z2, (3.16b)

Inequalities (3.15) are third order algebraic inequalities with respect to 52 e R (5> > 0).
Due to the obvious relation

r4—38* >0 (3.17)

all coefficients in (3.15), except the free terms, are positive. Hence, the sufficient conditions
to satisfy (3.14) are

4'.2,’4 4275 — 37254 — 27x2y2z2 > ()’ (3. 18a)
and
4r2g* 3125 > 0. (3.18b)

Now, we have to use the inequalities implied by the form of the Hamiltonian p*.
From (3.7) we have the condition on J:

2 2
5 < %(—) i, (3.19)
g
Using (3.19) we can see that (3.18) is surely satisfied if
2 2
4r’n*—9r? § (E) ut =0, (3.20a)
and
2 2
4r’n*-3r* % (?) p* =0 (3.20b)

Taking into account (3.8) we have the following condition on the dimensionless parameter
7, to obey (3.14),

n=3 (3.219)
and, in effect,

Terie < 3. (3.21)
Hence for large enough values of the parameter , the YMM can be stabilized by the Higgs
fields. The same inequalities (3.20) can also be used in the special case when Ansatz (3.1)

is imposed (z = 0). In this case transition to the ordered phase was established in the
computer experiment for the critical value of the parameter = [3]:

Tope & 0.2 (3.22)



471

This value is consistent with our result (3.21). The inequality (3.21) is rather crude because
of the rough estimations (3.18) and (3.19). However, our analysis is independent of the
form of solutions to the equations of motion (3.6).

Let us mention that for dynamical (i.e. time-dependent) Higgs fields and one-com-
ponent YM potential qualitatively similar numerical results were obtained®.

4. Conclusions

In this paper L-stability of YMM has been analyzed. It has been shown that pure
YMM is exponentially L-unstable. Even arbitrary temporal component of the potential,
A%, treated as a stable external field, is not able to stabilize the space components of the
potential. However, YMM can become stable if extra Higgs fields are introduced, with
sufficiently large vacuum expectation valaes. The transition to the stable phase has been
shown to occure at 7 = 7n.,;, < 3. This is consistent with, and extends, the results obtained
recently by several authors [2, 3], where transition from stochastic to deterministic phase
was observed in computer experiments.

These results suggest that Higgs fields are necessary to have ordered (stable) phase
in the theory. On the other hand, beyond the Higgs phase gauge fields, and in particular
their vacuum field configuration, behave stochastically. This seems to be encouraging
conclusion, especially with regard to the recent results, where randomness of the field has
been suggested to be relevant to the confinement phenomenon [7].

I am greatly indebted to Prof. Predrag Cvitanovi¢ for his kind hospitality during
my stay in Copenhagen, where a part of this work was done.
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