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TOPONIUM PROPERTIES IN THE COULOMB-LINEAR
POTENTIAL MODEL

By P. ARTYMOWICZ
Warsaw University Observatory*
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The fit to charmonium and bottomium mass spectra by the same Coulomb-linear
potential of quark-antiquark interactions is presented. The predictions of mass spectrum
and leptonic half-widths of the hypothetical toponium system are given for a wide range
of the top quark mass.

PACS numbers: 12.40.~-y, 14.80.Dg

1. Introduction

Many potential models of quarkonia have been constructed (see e.g. [1-5]), and they
turned out to be very successful in the fitting of the mass spectium, decay half-widths,
transition rates etc. of charmonium (y) and bottomium (Y) families. It was achieved with
the help of solutions of Schroedinger equation for various types of potentials. The use of
the non-relativistic Schroedinger equation not only for heavy, and hence only slightly
relativistic quarkonia, but also for the lighter ones is justified by the fact that relativistic
corrections are taken automatically into account by regarding the effective masses of quarks
as free, phenomenological parameters (wich is consistent with the confinement, i.e.non-
-observability of free quarks, [6]). It was also shown that relativistic corrections cancel
each other appreciably if the potential contains a negative constant part [7].

The most popular forms of the potential of interquark gluon interaction are:

(i) the Coulomb-linear potential [1, 2]

V() = — —':- +Br+C, (1)

the first part describing short-distance, one-gluon exchange and the second part describing
quark confinement at large distances,
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(ii) the logarithmic potential {3]

r
V(r)=Cln—, )]
To
less singular at r = 0, predicting the independence of the mass spectrum of the quark mass;
(iii) the power-law potential [4]

V(r) = Ar'+ B, 3)

where v = 0.1, unmotivated theoretically but offering a very good agreement with the
observed spectra [5];

(iv) more complicated forms of the potential, inspired by QCD, including the logarithmic
correction to the short-distance Coulomb term [8].

The possible refinement of various models, as well as taking into account the spin-
-orbit, hyperfine splittings etc., may lead to a small improvement in the case of charmo-
nium and bottomium medelling. However, it is not necessary in the case of toponium
({) — hypothetical, very heavy quarkonium with hidden “top” quantum number, because
we are interested in the approximate positions of energy levels in the spectrum and estimates
of the decay widths which in turn are sensitive to the shape of the leading short-distance
term of the potential. The potentials (i)-(iv) give for the mass of the top quark m, 2 20 GeV
very different predictions. This offers a possibility of deciding between the models after
the anticipated discovery of the toponium,.

In the present paper we consider the Coulomb-linear potential (i). This kind of po-
tential is supported by the newest results in SU(2) lattice gauge theory [9]. The experimental
data rule out the possibility that mg, < 38.54 GeV [10], and therefore we restrict ourselves
to the interval m, e (21 GeV, 30 GeV) and construct a grid of models (see Chapter 3)
with the values of parameters obtained from the fit to w and Y quarkonia (see Chapter 2).

2. Fitting of ¢ and Y families

In our approach we attempt a simultaneous fit to the data, i.e. we assume the flavour
independence of the gluon interactions and subsequently check the consistency of this
assumption. The method of solution of the radial Schroedinger equation is analogous to
that presented in [1]. The eigenvalues of binding energy computed by both methods coincide
to within 0.19%, which is a fairly good test of the numerical procedure. For a given set
of parameters: A4, B, C, m,, we obtain the binding energy E for both radially and non-
-radially excited states of quarkonium as well as the shape of the wave function and wave
function squared at r = 0 for radial excitations (S-states). The binding energy gives the
mass of the particular n-th state

M, = 2m +E, 4)

and the wave function squared gives the leptonic width of S-states through the Van Royen-
-Weisskopf formula
2.2

16
TuS) = = 2= Iy, O, ®)



507

where e, = 1/3 or 2/3 is the quark electric charge. It is known that the above non-relativ-
istic formula is not generally applicable [2] and in the case of potential (1) gives the
answer wrong by a constant factor of roughly 3. This is the reason for taking I',, for char-
monium ground state as an input quantity in our model.

The approximate, guiding fit can be obtained with the help of WKB approximation
which in our case reduces to the search for values of E satisfying the Bohr-Sommerfeld
quantization rule

WW(E— VidP)) dr = 2nh(n+1), n=0,1,2,... (6)

where the integral is over classically allowed region of motion (E = V), and ¥V, includes
the centrifugal barrier [11]. Surprising is the high accuracy of the WKB approximation:
it reproduces the energy levels in Coulomb-linear potential with an error less than 5 MeV
for the ground state and less than 2 MeV for all the other states, to be compared with the
characteristic energy spacing of the order of 1 GeV.

The values of parameters of potential (1) and effective quark masses which give the
best fit to the observed ¢ and Y spectroscopy of triplet states ([12]) are as follows:

m = 1.65GeV, = 5.04 GeV
A =0470, B =0.185GeV? = —0.542 GeV. G

The value of B = 0.937 GeV/fm is very close to that obtained by other investigators
(e.g. B = 0.93 in [2]), and to the predictions of lattice formulation of QCD in which
B ~ 1 GeV/fmis the string tension [13]. The value of A4 is in agreement with other published
models. The coupling constant of strong interactions a,, related to 4 through the relation
A = 4/3 a,, turns out o, = 0.35,

TABLE 1

The comparison of the experimental data and the best theoretical fit to these data. Underlined are the input
quantities. The asterisks denote the broad states above the charm (bottom) threshold. In the case of 2P triplet
the C.0.G. energy is quoted

Experiment Theory
Mguy—M
State Design. ..My O
Bl | M@GeV) | TeclkeV) | Min(GeV) | Teo(heV) P
1S v 3.0969 4.80 3.0969 4.80 —_
28 v 3.6860 1.96 3.6856 233 —0.011
38* v (4160) 4.1590 0.78 4.1195 1.63 —0.95
2P Xos X1s X2 3.5219 3.5189 ~0.086
3D v 3.7700 3.7990 +0.77
18 T 9.4560 1.30 9.4560 1.30 —
2s b 10.016 0.51 10.012 0.52 —0.041
3s Do 10.347 0.43 10.351 0.37 +0.042
48* Y 10.569 0.28 10.627 0.31 +0.55
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Table I presents the results of the simultaneous fit. It should be noted that for the
masses of all the observed ¢ and Y states the agreement with che theory is better than 1%
and for the states well below the thresnold, i.e. the energy allowing the decay into mescns
with open flavour, the agreement is better than 0.1%, which is a satisfying result.

As a conclusion we see that a unique potential (1) explains the features of both quar-
konia, so the approximate flavour independence of the quark-antiquark potential, estab-
lished in several ways [14], has been tested again.

3. Properties of toponium

The well known feature of the Coulomb-linear potential is that the excitation energy
first decreases and then increases with the increasing m,. Tne minimum for each (radial
or non-radial) particular state is placed in the region from 3 to 10 GeV ([2]), so that in the
region of our interest m, > 21 GeV the energy levels rise up almost linearly with increasing
m, and quadratic corrections are negligible. The immediate reason for the linear behaviour
of both masses and leptonic decay widths is that such behaviour is characteristic for the
dominating Coulomb-part of potential, as can be shown by means of WKB approxima-
tion ([15)

M, = 2m,+const (n, Hm, ~ m,, (8)
lpa(0)12 = const (n, hm} ®
and hence
0 2
I..(nS) = const - “’”}‘\(4 - (10)

n

Thus, it is not necessary to present the results of all the calculated models but only
two of them, with top quark mass of 21 and 25 GeV (see Table II). The energy levels and
half-widths for 21 GeV < m, < 30 GeV can easily be obtained by interpolation. We have ad-
ded to these models additional two with the changed value of the coupling constant, namely
with 4 = 0.44, to account for the possibility of the “running coupling constant”, which
according to QCD should decrease with the growing energy scale. It has been proved
that for 0.44 < 4 < 0.47 the linear interpolation of the data contained in Table II offers
a sufficient accuracy in determination of toponium properties.

The last important prediction concerning toponium is the number of narrow, obser-
vable resonances below the top threshold, decaying only through the 2 or 3 gluon annihi-
lation. The energy threshold for the production of mesons with nonvanishing top quantum
number with respect to the ground-state energy is given by

Epe.= 2Mg—M,;, (11)

where the subscripts denote the quark content of each meson. The problem in calculating
masses of light mesons (the reduced mass is close to the mass of u or d quark) is that these
systems are highly relativistic. It can be shown that one can properly reconstruct both
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TABLE 1I

The mass spectra and leptonic half-widths of toponium for 4 parameter sets. B = 0.184 GeV?,
C = —0.542 GeV. The masses of mesons are in GeV, and the half-widths in keV

m = 21 GeV m = 25 GeV m = 2] GeV = 25 GeV
A =047 A = 047 A=044 A= 044
State
M Tee M Tee M Tee M Iee
!
1S 40.352 13.23 48.126 1548 | 40.500 10.91 48.298 12.85
28 41.372 2.31 49.288 2.51 51414 1.99 49.337 2.12
3s 41.701 1.26 49.637 1.26 41.732 1.13 49.667 1.13
48 41.924 0.91 49.861 0.90 41.948 0.87 49.882 0.82
58 42.108 0.75 50.037 0.74 42.126 0.72 50.055 0.68
6S 42.269 0.67 50.189 0.64 42.280 0.63 50.205 0.59
7S 42.407 0.62 50.326 0.58 42.421 0.57 50.341 0.54
2P 41.331 49.258 41.375 49.305
3P 41.669 49.606 41.695 49.635
4P 41.894 49.832 41.913 49.852
5P 42,075 50.009 42.092 50.027
6P 42.233 50.161 42.248 50.177
7P 42,376 50.300 42.389 50.314
iD 41.615 49.601 41.641 49.587
4D 41.846 49.786 41.864 49.808
5D 42.029 49.967 42.044 49.984
6D 42.188 50.122 42.204 50.138
7D 42.335 50.261 42.347 50.275

the masses of light mesons with quark content uu, dd, ss, etc., and the experimental values
of E in charmonium and bottomium, if in the case of relativistic systems the potential (1)

contains an additional piece ¥V, = —0.55 GeV. Within this approach, for values of m,,
my, B, C, listed in (7) we obtain
E,, =~ 0.793+(0.234—0.0506)m,, (12)

where masses and energies are in GeV.

In particular, in our standard model, 4 = 0.47 and from the Table II we can infer
that in the whole range m, € (21 GeV, 30 GeV) below the top threshold there are 6 P-states,
5 D-states, and 6 (7) S-states, for m, smaller (grcater) than about 22.5 GeV.

4. Conclusions

We have presented the model of quarkonia based on the Coulomb-linear confin-
ing potential and non-relativistic Schroedinger equation. The single potential re-
produces the spectroscopy of charmonium and bottomium systems with an accuracy
of 1%. The values of model parameters obtained from the fit are consistent with those
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of other Coulomb-linear models (see e.g. [2]). They are used to predict the mass
spectrum and the leptonic haif-widths of the hypothetical toponium system for a wide
range of the top quark mass. 5 D-states, 6 P-states, and 6 or 7 S-states of toponium are
expected to exist below the top threshold.

The discovery of toponium is crucial for the determination of the short distance part
of the potential of quark-antiquark interaction and for the question of the validity of the
Van Royen-Weisskopf formula.

All tne computations were done on the PDP 11/45 computer at N. Copernicus Astro-
nomical Center in Warsaw.

Note added in proof. The recently discovered (K. Han et al., Phys. Rer. Lett. 49, 1612 (1982),
C. Kiopfenstein et al., ibid. 51, 160 (1983)) non-radial excitations of bottomium are reproduced
very satisfactorily by our model with parameters given by (7). For the 2P triplet the predicted C.0.G.
mass is 9918 GeV (experimental value of 10256 GeV). This gives the relative errors +0.2% and +0.1%
respectively, comparable to the fit quality for other charmonium and bottomium states.
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