Vol. B15 (1984) ACTA PHYSICA POLONICA No §

THE QUADRUPOLE DEFORMATION PARAMETERS
OF CHARGE DISTRIBUTIONS IN NUCLET*

By E. WEsSOLOWSKI**

Nuclear Structure Research Laboratory, University of Rochester, Rochester, New York 14627, USA
( Received July 24, 1983)

A semi-empirical formula for calculating quadrupole deformation parameters of
charge distributions in the nuclei with Z, N > 6 is presenied. The formula is applied for
calculating the reduced E2 transition probabilities — B(E21) between ground- and first
2+ excited states in even-even nuclei, An atterapt is made to explain this formula in a two-
-liquid-drop and a microscopic model.

PACS numbers: 21.10.Ft

1. Introduction

The picture of a nucleus as a system in which proton and neutron spatial distributions
have the same geometrical form, with a constant ratio of densities and the same deformation
parameters, is one of the basic assumptions of the classical nuclear collective models [1].
Although there is no direct experimental evidence, some qualitative arguments are usually
used to support this assumption. The observation of M1 transitions between collective
states in nuclei and the fact that measured g, factors are smalier .han expected Z/A4 values
[2] are significant experimental evidence against the above assumption. The most direct
evidence for different proton and neutron distributions comes from a disparity between
the measured root mean square (rms) radii of proton and neutron distributions [3]. This
difference can not be explained as being due to the different numbers of protons and
neutrons in nuclei; different geometrical parameters have to be used. We would like to
mention two models dealing with that problem from which can follow that neutron matter
and proton matter in nuclei behave independently, having different deformation parame-
ters, only as a whole influencing each other.

In order to explain magnetic nuclear properties Greiner [4] introduced the idea that
there is the difference between proton and neutron deformation parameters, due to the
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different strength of the pairing forces for protons and neutron. Such a generalized col-
lective model (GCM) has been used several times [5, 6] giving considerable evidence for
different proton and neutron deformations. In that model the deformation parameters
for protons and neutrons represent independent degrees of freedom; proton and neutron
fluids are coupled strongly via symmetry energy which suppresses large differences in the
spatial distributions of protons and neutrons.

In the Droplet Model (DM) introduced by Meyers and Swiatecki [7] the proton and
neutron densities in the nucleus are treated independently; in the total nuclear energy
formula those densities are taken to be parameters. The mass formula derived consists
of two parts: a smooth macroscopic part and an oscillating microscopic part. One of the
components of the microscopic part is a shell correction calculated by a method developed
by Swiatecki {8]. In this methcd one assumes that protons and neutrons in a nucleus (in
its ground state) behave independently and that the shell correction, due to the deviation
of the nucleon level distribution from uniformity, is a sum of such corrections calculated
separately for the proton and neutron components, each being a function of the number
of nucleons of one kind and shell-model magic numbers. The Fermi gas model was applied
for calculating the shell corrections.

A simple relation between the density of states near the Fermi surface of the Fermi
gas system and a deformation parameter of that system [9] allows us to think about the
shell correction in the DM as an additional energy connected with the deformations of
proton and neutron liquids (the shell correction is unaffected by closed shells). Accordingly
we expect that deformation parameters for protons and neutrons can be written as a func-
tion of the number of nucleons of one kind and their shell-mcdel magic numbers, as can
the shell-correction term in the DM. These functions have values zero at magic numbers
of particles and positive bumps in belween. The strong coupling between proton and neutron
degrees of freedom and the expected increased deformability of the system with increasing
deformation parameter imply that the deformation parameter of the nucleus can be written
as a product of unperturbed deformation parameters of proton and neutron distributions.

This qualitative picture we applied in calculating the reduced E2 transition probabil-
ities — B(E21) for even-even nuclei.

2. The formula for calculating B(E2) values

The reduced E2 transition probabilities for even-even nuclei were taken from the liter-
ature [10). Values of experimental errors have been taken from the same sources, but
we have assumed that those errors are not lower than 5 percent [11}.

To make the calculations as simple as possible the B(E2) values were calculated accord-
ing to the formula for axially symmetric deformed nuclei [12].

B(E2?1) = 55;2202)2(0.945[)‘)2 [efm*], ¢))

where f is a deformation parameter of proton distribution. The rms radii of proton dis-
tributions {r2>/? were calculated using the empirical formula developed earlier [13].
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We assume that the square of the deformation parameters for protons can be written
simple as a product of two fully separable functions of protons and neutrons variables:

52 ~ fp(p’ Pa) .f;x(n’ ni)' (2)

The formula introduced for calculating the deformation parameters of the proton distribu-
tion has the form:

g = (16, 2% ) (1-6, 2 ) ®
with
Ay = exp {—a(Z—Z,)*/AZ}, (32)
Ay = exp {~BZ~ZV/AZ+1(Z~2Z)}, (3b)
7, = exp { —o(N~Np)?*/AN+y.(N—~Np)}, (3¢)
7, = exp {—Bu(N—N,)*/AN}, (3d)

where Z, N are proton and neutron numbers in a nucleus, Z;, Z,, Ny, N, are proton and
neutron shell-model magic numbers closest to the Z and N numbers (Z; < Z < Z, and
Ny, < N<{N,) and 4Z, AN are shell sizes (4Z = Z,—Z, and AN = N,—N,).

The magic numbers used in calculations are: 2, 8, 20, 28, 40, 50, 82, 114 for protons
and 2, 8, 20, 28, 38, 50, 82, 126, 184 for neutrons. All the above magic numbers are the
commonly accepted ones except the number 38 for neutrons. This number was assumed
on a basis of a minimum-y? criterion.

The free parameters: two sets of six, for protons and neutrons (o, B, 7x, 0. &xs
n/v) and one common (n) were found by a best-fit procedure. In fact the parameters of
the formuia are functions of the shell (see Table I). The parameter n found from the fit

TABLE 1
The formula parameters

« 8 Y & é n
Z = 620 0.4127 0.6027 ~-0.3346 0.8917 0.3636 1.219
22-40 0.8953 0.2813 ~0.0316 1.425 0.0829 1.219
42-50 0.3643 0.4634 -0.0795 1.546 0.1319 —2.057
52— 0.3453 0.1657 +0.0046 1.651 0.1319 —2.057

k4
N= 620 0.2024 0.0154 -1.151 1.241 (0.3636) —2.217
22-50 1.457 0.1281 -~ 0.0671 1.375 (0.0829) —2.217
52-82 0.1553 0.2873 -0.0717 1.562 (0.1319) 0.9031
84> 1.018 0.3175 +0.1034 1.572 (0.1319) 0.9031

7 = 11.696
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in Z > 40, N > 50 region was used for all regions of fitting. The parameters é, and J,
are zero for all but closed-shell nuclei (in the fitted A-regions we always assumed 8, = J,).
Because of the discontinuities of the values of the 7 parameter at Z = 40 and v parameter
at N = 50 only one zirconium isotope (*°Zr) has been included in our calculation. Never-
theless, the A-dependence of the B(E2) values and the values of the moment of inertia
for nuclei in this A-region indicate a subshell closure at N = 56 (or 58).
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Fig. 1. Fit of the B(E21)/Z?2 values, calculated according to formulas (1) and (3), to the experimental data

The calculated B(E21) values together with the experimental data are shown in figure 1.
The quality of the fit can be seen from figures 2 and 3, where the distributions of the
differences between experimental an calculated B(E2]) values are shown. The error
of the formula, defined as an additional error which has to be added quadraticalily to the
experimental errors to get the value of x* per number of experimental points equal 1,
is 8.5 percent, thus slightly less than the mean experimental error (8.8 9%)).
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Fig. 2. Distribution of the standard deviations of the calculated values, according to (1) and (3), from
the experimental data
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Fig. 3. Distribution of the percentage deviations of the calculated values, according to (1) and (3), from
the experimental data
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3. Discussion

It has been shown that the 4-dependence of the reduced E2-transition probabilities
can be explained with reference to the shell model. The electric quadrupole moment can
be written as a product of two functions as the separated contributions of proton and
neutron nuclear components.

This fact could be explained in the framework of a two-liquid drop nuclear model
resembling the Greiner [4] and Bertsch-Janecke [14] models.

3.1. Two-liquid-drop model

Let us ussume that the protons and neutrons in a nucleus form two independent drops.
In the absence of any interaction between these two liquids each of them shows its own
shell-model N-behavior being of spherical form, when the number of particles (N) equals
a magic number and being deformed in between magic numbers. If symmetry forces are
switched on, these two liquid drops tend to assume the same shapes — the same deforma-
tions. (The finite range of the symmetry forces allows for slightly different deformation
parameters). The deformation obtained for this two-liquid system can be calculated from the
relation: A4S, + Fy = A4S, « F, where AS;, are surface area differences (before and after
switching on the symmetry forces) for proton and neutron drops and 17"1,2 are the mean
values of a deformation-conserving forces. Assuming that effective radii R, , remain
constant and that the shape-conserving forces are inversely proportional to the square
of a deformation parameter (F = C/f*) [15] we can write down

RYF* - P —— = RAB3~F) 41
BB ﬂﬁz
where B, , are deformation parameters of the non-interacting distributions and g is a de-
formation parameter of the equilibrium neutron-proton system (nucleus).
The above equation can be rewritten in the form

B=s"Br B2 ®

with the prefactor s sightly and slowly varying, comparing with the variation of g8, * B,
term, along the A-axis.

It follows from the above that the functions f, and f, in the formula developed can
be treated in first order as deformation parameters of non-interacting proton- and neutron
distributions in nuclei. The A-dependence of these parameters along fS-stability valley is
shown in figure 4.

The neutron-proton deformation difference was calculated by Seiwert et al. [6] for
232Th and 23%236U jsotopes from the observed f- to ground-state band y-transitions.
The obtained value for §,/B,, 1.67+0.1, is comparable with the value 1.42 which can be
obtained from figure 4 (the lower value obtained in our calculations may speak in favor
of larger neutron centrifugal stretching pointed out by the authors).
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Fig. 4. A-dependence of the different factors of the formula (3) along the S-stability valley

3.2. Microscopic model

The mode! shown above suffers a serious problem: it can not be accepted by the
microscopic theory (a unified shell-model picture of nuclear deformation [17}). It is well
established [16-18] that nuclear deformation is produced by the isoscalar n-p interaction
between valence particles, while the pairing interaction between T = 1 pairs of valence
nucleons favors spherical shapes. Having these facts in the mind and making use from
interacting bosons model we will show, that our finding can be also explained in the frame
of the microscopic nuclear model.

Without the n-p attractive interaction, the neutron and proton matters are fully inde-
pendent, so their distributions. The spherical distribution of each component is expected,
due to the pairing forces. The energy of each component is equal to a sum of an energy
of the core and the energy of a pairing interaction between valence nucleons. By switching
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on the n-p interaction the distributions of protons and neutrons become dependent: the
out of core nucleons become spatially correlated and the nuclear deformation (f) develops.
The energy of nuclear deformation can be written as:

Edet' = Enp+5pair’ (6)
where E,, is an energy of n-p interaction and
6pair = (Ep pair+En pair)ﬁ""(Ep pair+En pair)o (7)

accounts for the dependence of the pairing energy E ) pir On the nuclear shape [19].
From the point of view of the macroscopic liquid drop model the deformation of the
nucleus changes only the surface and Coulomb energies [20], namely

3 Z%?
Eg = (2SR} — —— 2= cf?, 8
def ( °~ on R, )ﬁ cp )
where S is the surface tension parameter (3.76 MeV/fm?) and R, is the equilibrium radius
(1.20 AY/3 fm). Comparing Egs. (6) and (8) we find

1
ﬂz = 7(Enp+5pair)~ (9)

The energy of n-p interaction can be obtained employing the proton-neutron interact-
ing bosons model (IBA — 2) [21]. The neutron-proton interaction. in this model, is repre-
sented by a neutron boson—proton boson interaction of the form Q' - Q. Since the
quadrupole operator Q% (Q'?) depends on proton (neutron) variables only, and since
Opair 15 expected to be small, a product of the f, and f, functions in formula (2) can be
recognized as the energy of the neutron-proton quadrupole interaction.

The fully phenomenological calculations of 2 along an A-axis were performed in the
frame of the above sketched microscopic model. The quadiupole operator Q%% (¢ = =, v),
in the single-j approximation has the form [22]

® = K,o(Q,— N)2(d+ x5+ 5t x )P +1,0(Q,— 2N,) (d+ x ). (10)

The 2, is a maximum possible number of bosons in an active shell, ¥, is a total number
of bosons and N, is a number of particle-like bosons. The operator in the first term counts
the total number of bosons, while the operator in the second term counts d-bosons only
(the proportionality of a number of d-bosons to the total number of bosons was assumed
in further calculations).

The.square of the deformation parameters was written in the form:

| L
B = —;(G; * G{+P'+P), amn

where
G.x = Ki(Qi“Nn)llsz""xi(Qi—zN;)Nm (l}'a)

G = KN(Q' —N,)\2N,~ (@ - 2N)N,. (11b)
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In these formulas we assumed that the values of parameters K, x, and P are shell dependent
only. The opposite sign of y parameters for protons and neutrons (suggested by Egs.
(32)~(3d)) accounts only for neutron-proton difference in these calculations [23]. The
parameters K, y and P obtained from the fitting the experimental values of B(E2) by for-
mulas (6) and (11) are listed in Table II. The fit of the predicted to the experimental
values of f, is shown in Fig. 5. Having in mind all the simplifications we have made in
these calculations this fit is very satisfactory.

TABLE 11
The parameters of microscopic model calculations
Shell K 4 P
22— 28 0.993 0.067 2.321
30- 38 (40) 0.581 0.020 3.018
40- 50 0.898 —0.230 -0.901 neutrons
42- 50 0.898 0.230 1.674 protons
52- 82 0.197 0.014 1.058
84-126 0.236 0.007 —0.589
128-184 0.066 -0.028 -2.903
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Fig. 5. Fit of the deformation parameters calculated according to formula (11) to the values obtained
from the experimental B(E2) values using Eq. (1)
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4. Conclusion

It has been shown that for even-even stable nuclei or those close to the S-stability
valley, the B(E2) values can be calculated with reference to the shell model. The deforma-
tion of the proton matter distribution depends on the degree of filling of the neutron and
proton shells.

The macroscopic two-liquid-drop model and microscopic model of nuclear deforma-
tion used for explaining this effect are equally acceptable by a quality-of-fit criterion,
even though a basically different assumption about nuclear-deformation development
is made in these models. Although the microscopic model is superior as being a physically
based, the macroscopic model can serve successfully as the equivalent phenomenological
picture of nuclear deformation.
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