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It is shown that the discrepancies between experimental data and current algebra
calculations of Ke4, n — 37 and S-wave I = 0 pion-pion scattering length done by Weinberg
and others, are due to the neglect of the unitarity and analyticity in the S-wave I = 0 pion-
-pion channel (final state interaction).

PACS numbers: 12.40.-y

1

If we lived in a world where the pions (and more generally the pseudpscalar mesonsn, K)
have zero masses, i.e. the chiral world, there would be no difficulty in confronting the chiral
low energy theorems derived from current algebra or the effective lagrangian and exper-
imental results. This is so because the low energy theorems are strictly valid in the limit
of the 4-momentum g, of the pion tend to zero which cannot be reacked in the physical
world, where the pion has a finite mass. In the real world, the pion mass is small, one
could hope that the limit of g, — 0, could be approximated at zero pion kinetic energy.
This is essentially the basis assumption of all the current algebra results obtained in the
late 60’s. Spectacular agreements with experimental results were obtained [I]. Recent
experiments show, however, that there are substantial disagreements between the more
precise experimental data and the theory for the following processes:

(i) Ke, decay: Current Algebra calculations for the emission of two pions in S and
P waves are respectively too low compared with experimental data by 459 and 20%;
12, 31;

(i) n — 3w decay: Using Dashen’s theorem to extract the n-=° tadpole mixing, the
calculated 1 — 37 rate is too low by a factor of 3 compared with experimental data;

(iij) =n - wre: The S-wave I = 0 nw scattering length derived by Weinberg [4] is too
low by 409 compared with experimental data obtained from Ke, decay [3]. The order
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of magnitude of the disagreement between theory and experiment is well above the preci-
sion of 5~ 109 expected from the SU(2) x SU(2) chiral symmetry.

In this lecture, we should like to show the abcve mentioned discrepancies are due
to the usual incorrect assumption that the unitarity in the 2w or 37 channel can be neglected.
In fact, they all can universally be explained by including unmitarity i.c. the pion-pion final
state interaction in an essentially model independent way [5-7]. The solution presented
here leaves unmodified the well known correct results of current algebra such as the Adler~
Weissberger relation, the =N scattering lengths and the K — 2n and K — 3= relation
etc. [1]. This is so because the low energy S-wave f = 0 pion pion interaction is stronger
than the corresponding one for =N scattering.

To understand what is meant by the unitarity correction, let us consider the standard
one soft pion emission [1] formula in terms of the matrix element {(B{O(0){4):

. f;tmi’ 4, 1gx x
iR, . fd xe'**3(xo) <Bl[4a(x), 0(0)]14>
+ig, § d*xe™*(B|T(45(x)0(0))4), (1.1

where g is the pion 4-momentum and A,, is the axial current. The standard current algebra
assumption is that the continuum contribution in the 2™ term on the RHS of Eq. (1) can
be neglected in the physical region. We shall show later that this assumption is not neces-
sarily correct in general; in fact, it leads to incorrect results for problems listed above. To
take into account of this term (and in general terms involved higher pion momenta) we
can use its analytic property and unitarity condition which can be demonstrated to be
valid. The reduction formula involving two pions or more are more complicated than
Eq. (1.1) and can be straightforwardly written down. The resulting formulas are more
involved but the basic ideas remain unchanged. We rely on the general principle such
as unitarity and analyticity of the S-matrix and time reversal invariance to carry out our
analysis. For problems involving more than one pion in the final state, we must take into
account the two-body final state pion-pion interactions (for nrw — nw and K, decay)
and also 3 body final state interaction (for n — 3= decay).

The use of the analyticity and unitarity in combination with chiral theorems 1s neither
really new, nor completely model independent. For a review of the literature up to 1974,
see the review article of H. Pagels {8]. We wish to point out that the method presented
here differs from the so-called “Chiral Perturbation Theory” {8, 9] discussed in the litera-
ture due to a more correct treatment of the strong interaction effect, in particular its
threshold behaviour. Our approach is simila: to the linear o model, but is more general.
As it will become clear later, our approximation can be checked using experimental
data of the low energy pion-pion phase shifts,

Our method consists in constructing an S-matrix which satisfies the analyticity and
unitarity and at the same time the chiral theorems. It is not a perturbative approach. More
explicitly, if the chiral theorem gives a scale to the calculated matrix element in the limit
of the pion momenta g, — 0 and g, — 0, then because of the unitarity in the two pion
channel, this matrix element would not have the same value in the physical region (i.e. for
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s = (g1 +¢2)* > 4m?). The correction factor at the dispersion energy squared s is given by

-]

1 _ N : 5I(S£)d—sr_
D)~ O (¥ J s'(s'—s—ief))’ (2

4mg?

where &, is the isospin I pion-pion phase shift and we normalize the correction factor to
unity in the two soft pion limit. Eq. (1.2) is not the only correction factor; other corrections
being far away singularities are expected to be much less important. Using experimental
data on 8,, we have Dg' (s = 4m?) = 1.40 which yields a substantial correction for the
two soft pion S wave emission formula of current algebra. This is the basic idea of the
enhancement factor needed to account for the experimental data of the I = 0 S-wave
nm scattering length, the Ke, S-wave I = 0 dipion matrix element. There is more enhance-
ment in the 1 — 37 matrix clement due to the 3-body nature of the problem.

2. K - nrev and related processes

Let us first consider the Ke,, decay [S]. The axial current matrix element for this process
can be written as

My = <" (@)n7(42) 14, (OIK* (p)>
1

=— [F(s,t,u) (g, +92),+G(s, t,u) (91— q2),
K

+H(Sa t’ u) (p—ql —qZ)u]a
where 5 = (g, 4+q.)% u = (p—aq), t = (p—q,)%, k* = (p—q,—¢,)*. Using the standard

current algebra, neglecting terms of higher order than g} and g5, it is straightforward,
aithough somewhat invelved, to show:

Jx

1
Fos,t,u) = T [3f+(u))*!-3f+(t)+f—(u)+f—(t)]““%172~ ;

1
Fi(s, t,u) = r [3f+ ()= 3/ (D +/-) —f-(D],

1 .
Gi(s, t,u) = i [f+(u)+f+(t)—f,(u)—f_(t)]+%}f52- ,
i
Gs, t,u) = yrs Lf+ @) —f- () ~f. (D) +/-(1)], @.1)

where F = F°+ F! and G = G*+G°, f,, f- are the Kl; form factors. It can be shown that
Eq. (2.1), and a similar expression for H, satisfies all the boundary conditions imposed
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by the low energy theorems in the limit ¢, = 0, g, — 0 or both ¢,, ¢, = 0. F’s and G’s,
as given by Eq. (2.1), are all real because we neglect the unitarity conditions in the two
pion channel which are contained in the terms of higher momenta gig;M,,. In the physical
region of Ke, decay, because f. and f_have high mass singularities (K* and k resonances),
F'~0,G% = 0, FO(s, t, u) = f(5), G*(s, t, ) ~ g(s) are real and almost independent of 5. The
values of fand g are given in Table L. 1t is clear that there are large discrepancies between
Eq. (2.1) and experiments:

(i) The calculated value of f is too low by 45Y%,

(ii) The calculated value of g is too low by only 209,

(iiify The s dependence of f is correct in magnitude but has the wrong sign.

The original Ke, calculation by Weinberg can be obtained by setting ¢ = u = M2
which is outside of the physical region of the Ke, decay. Numerical results of Eq. (2.1)
agree with previous calculations by Cronin [11] (effective Lagrangian approach without
introducing scalar and meson vector mesons), Chounet et al. [11], and others (in all these
calculations the pion-pion final state interactions are neglected).

TABLE 1
. . . s—4m?
Theory vs experiment Ke, matrix elements [ A is defined by f(s) = f(s = 4u?) | 1+4 A
n
Experiment C'alm.zlation with C'alctxlation wit'h
unitarity neglected unitarity correction

fls = 4u?)sin 6, 1.234£0.03 0.83+0.02 1.15
g(s = 4u?)sin 0, 1.04+£0.06 0.83+0.02 0.98
A 0.08+0.02 ~0.057 0.08

Our task is to remove simultaneously the discrepancies (i)~(iii) without introducing
extra parameters. This is achieved by incorporating the unitarity condition and analyticity.
As a consequence of the unitarity and time reversal invariance, f must have the phase
of the S-wave I = 0 r interaction, g the P-wave I = 1 wr interaction. Analyticity requires
that the correction factor to be of the form given by Eq. (1.1), where we have used the fact
that fand g are almost point-like. The corrected values of fand g and the energy dependence
of fare given in Table I. It is seen that the agreement between experimental data and the
current algebra calculation with the unitarity and analyticity correction is excellent.

As another application of the current algebra technique which is similar to Eq. (2.1),
the following process is of great interest: ¢*e~ — = w; = =™, It was shown a long time
ago that in the limit ¢, — 0, and q, — 0, this process is related to the pion form factor
which is dominated by the ¢ resonance [12]. Experimental data on ete~ — =*m—g near
threshold is larger than the theoretical prediction (obtained by taking simultaneously
g: = 0 and g, = 0) by a factor of 15-20. It was pointed out by Pham Roiesnel and Truong
[13] that the unitarity in the =g channel i.e. the wg final state interaction in the form of A,
resonance, as observed in 7 — wv decay, must be taken into account. The technique used
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is the same as the one which leads to Eq. (2.1). Corresponding to f4 and f_in Eq. (2.1), we
now have matrix element {mg|4,|0> which is dominated by A, resonance and provides an
enhancement factor of 7 ~ 10. The remaining discrepancy of a factor of two is due
presumably to the neglect of the unitarity condition in the 27 channel (unlike the Ke,
calculation, here the u and ¢ variables approach the mass of A, resonance which makes it
very difficult to take into account of the pion-pion final state interaction).

3. n > 3n decay

A long standing problem for current algebra and approximate chiral symmetry has
been the calculation of the three pion decay ofn. If this decay proceeds through the 2*® order
electromagnetic interaction, using current algebra and assuming that the n — 37 matrix
element depends linearly on the “odd” pion energy, Sutherland [14] showed that this
matrix element vanishes which is in contradiction with experimental facts.

A standard remedy for this situation is to allow for a “tadpole” isospin breaking
mechanism which, in the language of the quark model, is associated with the up and down
quark mass difference m,—my [15]. A deeper understanding of the connection between
the tadpole and the short distance behaviour was provided by Wilson {16]. From the U-spin
argument of the SU(3) symmetry the n—=° mass mixing is related to the mass differences
of K+*—K? and n*—n°. Dashen showed that in the SU(3) chiral limit, only tadpole contri-
butes [17]. Using this theorem, Cabibbo and Maiani [18] calculated in 1969 the 1 — 3%
decay rate and found I'(n - 3w) = 62 eV which was one order of magnitude smaller
than the experimental n — 3= width available at that time. Subsequently the experimental
value was changed to 204+29 eV which is still a factor of 3 larger than the theoretical
value. In 1975, Weinberg [19] recalculated this decay in the context of the U(1) problem
and, of course, found the same result. This led Weinberg to question the experimental
reliability of this quantity. Our viewpoint is that the experimental value of I'(n — 3)
is correct; the discrepancy between the theory and experiment is due to the neglect of the
unitarity condition in the 3w channel, i.e. final state interaction, just the same as in the
Ke, decay. (If Weinberg’s viewpoint was correct, one would have difficulties in explaining
the ratio I'(n » 37)/I(n - 2y).)

Using the same / = 0 S-wave pion-pion interaction as in Ke, decay [5], Roiesnel
and Truong [6] showed that the 1 — 3= rate and the odd pion spectrum agree well with
the experimental data. Their calculation of spectra and rate is rather involved because
of the nature of the three body final state interaction. In the following, we present a sim-
plified method which circumvents this problem. The price that we have to pay, is not
to be able to predict tne odd pion =° spectrum and instead have to use the experimental
data of the spectrum and extrapolate it to the unphysical point of the soft pion zn°. This
is similar to the method used long time ago to relate K — 2% and K - 3n rate. Here
we want to relate the matrix element {2x]o(0)|n) to thenn® mixing, where v is a pseudoscalar
density to be explained later.

Let us first review how the standard calculation with the effect of the final state interac-
tion neglected, can be carried out. We can analyze then — 37 in the framework of Quantum
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Chromodynamics language:
P = Lo+mis+myiu+mydd, 3.1

where .Z is SU(3) x SU(3) chiral invariant and the mass terms break the chiral invariance.
To the RHS of Eq. (5.1) we have to add a pure electromagnetic interaction which can be
neglected in the n — 3= decay [14]. The matrix element for n — 3w can be written as

M = c;3nluln),
hﬂ
where ¢; = L+ (my,—my), and u, = § - g, q is the quark column matrix; let us define also

1 _
> g.and v = —ﬁ (/200 + vg). Taking the =° soft, we need the equal time com-

mutation relation:

v, = ‘7)’5

~ 1
i[Q5, us] = (2 vo+vg) A=Y (3.2)
J2e

M (n — n°soft) 27) = ( 7

On the other hand in the limit of soft =+ or soft =, from the [QF, u;] = 0, the matrix
element vanishes. Assuming thc matrix element of § — == is a linear function of =°
energy E, (this assumption can be shown to be correct but the proof is somewhat tedious),
we can write

) AT (3.3)

2E 2¢
H -t = (1— —ﬁ) V26 ataT o). (3.4)
m,) fr
Contracting another pion and using the commutation relation [Q%, ] = —d;;t:, we
can write:
_ V2
{nta” o) 7(% [usln> (3-5)
and hence
26 2E
M - R0 = e <1— —") , (3.6)
f,, \/3 m,

5 2
where we have used the Dashen’s theorem to show c¢; = i_-with om?* = m*(K*)
N
—m*(K®%) —m?(nt) +m*(=°). Eq. (3.6) gives a correct value for the slope of the odd pion

spectrum but a wrong value for the partial width of I'(n » w*n—=°) = 65 eV, compared
with the experimental value of 204429 eV.

What goes wrong with this calculation [21]? Eq. (3.6) is obviously wrong because
it is real, whereas it is expected to be complex due to the final state interaction. As it is
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mentioned above, because the treatment of the 3-body final state interaction is complicated
we restrict ourselves to study the following ‘“‘unphysical” amplitude:

g(s = m}) = lim A - "7 7", 3.7
anp—0
where § = (g,++ g, )*>. The experimental value of the RHS of Eq. (3.7) can be obtained
from experimental data by a linear extrapolation of the observed spectrum to the unphysical
point:

lg(s = )1( 26m’ )1 1.6+0.1 (3.8
g(s = my NETA 0.1, 8)
while standard current algebra calculation, Eq. (3.6), yields unity.

Let us examine carefully Eq. (3.5). While it is exact in the chiral SU(3) limit, we have
to make correction for this relation for physical values of =’s and 1y’s. The most important
correction is the unitarity condition in the S-wave 27 channel, as it was shown in the Ke,
decay [5]. As a consequence of the unitarity and time reversal invariance, the matrix
element {m*r-|v]n)> must have the phase of the I = 0 S-wave pion-pion interaction [20].
This is so because v is isoscalar and carries no momentum. Imposing in addition the analyti-
city requirement, Eq. (3.5) is now modified to

w0
V2, ( s J‘ So(sds’ )
{r¥aloln) = — = <n’lusln) exp e L (3.9
Ja 5'(s"—s—i¢)
4mg?
where we normalize at s = O corresponding to the chiral SU(3) limit (m, = m,~ 0),
and have assumed the self-energy correction of the n propagation function can be neglected
(as it can be justified by the success of the anomaly formula for n — 2y). Because v carries
no momentum, the variable s denotes here also then mass). Evaluating the RHS of Eq. (3.9)
ats = mi corresponding to the | on its mass shell, and using Eqgs. (3.3) and (3.6) we have:

1
86 = )(2‘;"}) = 15064 (3.10)

which agrees well with Eq. (3.8). It should be noticed that the phase of g at s = m; is the
phase &, & 45°. Iis effect, therefore, cannot be neglecied, as it is done in the naive current
algebra calculation which, not surprisingly, leads to erroneous results. In a more realistic
calculation, we have to calculate the pion spectrum, the 1 — 3= phase and also have to
include the SU(3) breaking effect and the n and n’ mixing. Including also these effects,
the final result yields I'(n —» w*=—=°) which is about 20% too large, compared with the
experimental value [6].

In the above discussion, we have ignored the U(1) problem in Quantum Chromodynam-
ics which results in identifying the operator v with the divergence of a singlet current.
The remedy for this situation is well known [19]. The above calculation is unaffected by
the U(1) problem.
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It is obvious that the success of the current algebra for relating K — 2= and K - 3=
is unaffected by the above consideration, because K — 2r amplitude is directly measured
by experiment and is not calculated from K—m mixing, asin the n — 37w problem. Similarly
to the  — 3 calcalation, it is possible to show that the “odd” pion spectrum in K — 3%
is linear to a good accuracy, and the phase of K — 3w can be reliably calculated which
should be quite useful in the study of the violation of CP in K; and Ky system.

4. The low energy pion pion scattering

Under the assumptions that the low energy pion-pion amplitude can be expanded
in a power series which is limited to linear terms of the variables s, ¢, u where s = (p,+pg)?,»
t = (p,—p,)?, u = (p,~—ps)*, where o, B, y, 5 are the isospin indices of the pions, and that
the o commutator is an isoscalar, Weinberg showed that the low energy pion-pion scattering
can be written as [4]:
T, = ?12 [80p0,5(5 — ME) + 8050 5 (1 — M2) + 6,8 55(1 — m2)] @.1

and hence the scattering lengths a; of isospin I are given by:

ay=+3L=0155m;", (4.2a)
L -1
a, = — = —0.045m", (4.2b)
L
ay=—= 0.03 m; " (4.2¢)

a, is accurately measured in Ke, experiment [3] and was found to be 0.26+0.5 m;!
which is much larger than Eq. (4.2a) [21]. Attempts were made to improve Weinberg
calculation by incorporating the unitarity correction as a perturbative effect and a high
energy S wave I = 0 ¢ resonance (or & resonance) lead to a negligible correction to the
Weinberg value [22].

We would like to point out here that the unitarity correction cannot be treated per-
turbatively and must be taken into account simultaneously with the effect of a high energy
o resonance. Because of the constraints of the current algebra and unitarity, this resonance
has a wide width (proportional to m2) which makes the low energy S-wave I = 0 phase
shift 8, large, and it leads to a substantial larger value of @, than that predicted by Weinberg.
In the following we study this subtle effect and want to show that the S-wave I = 0 partial

L
wave, instead of being given by Eq. (4.1), i.e. fo(s) = —E(2s—mf), is now given by

o, L ) (s—5) N do(s)ds’
fo(s) = —‘—1—(23 mg) exp( - I & =s0) (s'-—s)) , 4.3)

4mg 2
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where s, = 4 mZ2. The denominator function D is normalised to unity at s, instead of
s = 0. For s > 4m? they both differ by less than 5%, and hence the same correction factor
explains Ke,, 1 — 37 and a,.

To see how it is possible to arrive at Eq (4.3) let us consider the linear ¢ model; the
low energy mm scattering amplitude is now given by [22]:

- 2

T.(s, t,u) = 2%—2— I—éaaéy,,(s ,,) L rEe )+ (se u):l “4.4)

From Eq. (4.4) at 5 = 4m?, we obtain an enhancement factor of (m2—mZ)/mZ—4m?
_which could be substantial if m, was sufficiently small. There is, however, no such a low
energy resonance. This problem can be avoided by taking into account the self energy
correction to the propagator of the o which effectively pushes the ¢ mass to a much higher
energy and hence gives a satisfactory agreement with experimental data. A self energy
correction in the ¢ propagator does not lead to a completely unitarized mw amplitude.
It is simpler and more accurate to consider the partial wave amplitude 1. 3(s). We assume
that the Weinberg expansion:

0 __I_‘_ a2 -
Sol(s) = 2 (2s—my) (4.5)

is accurate in the neighbourhood of s = L m2. This is essentially Khuri’s result [24]. But
Khuri’s result is accurate only in this neighbourhood. Our task is to unitarize £3(s), taking
into account the boundary condition (4.5) and the existence of a high energy resonance
o (or &). This can be done using the well known N/D method, with a twice subtracted D
function. Let us set:

N(s) ~ _IZ (2s—m2), (4.6)

where we neglect the left-hand cut contribution to the N function. The D function, normal-
ized to unity at s = m2/2, in the elastic unitarity approximation, is given by:

mN b L (Z N (ho—n () - 4.7
(= 5)+ 5 (= 5) o (F) o). @

s—amg \!*, Vs+/s—am?
) (U
-function to ensure the convergence of the dispersion integral and to introduce a ¢
resonance in a simple manner.

With by = —0.04m2, 53 computed from Eq. (4.7) agrees well with the experimental
data up to s = 40m? and 3 remains below 90° for s < 1 GeV2. The scattering length
a3 computed from Eq. (4.6) and (4.7) is 0.21m, * instead of 0.155m, ! as given by Weinberg.
The reason for this enhancement is simple: the D-! function, instead of unity as given

D(s) =

2
where hi(s) = —( ) and we have subtracted twice the D-
k1
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by Weinberg expansion, becomes 1.4 because of the effect of the o resonance and also
of the effect of the square root threshold singularity [26, 23].

In actual calculation, it is necessary to justify the neglect of the left-hand cut. To
do this, a more sophisticated approach is needed by using Roy’s equation, where crossing
symmetry is exact [25]. It can be shown [7] that for s < 25m2, the assumption of neglecting
of the left-hand cut is reasonably accurate. This is so because these singularities are represen-
ted by subtraction constants which are accurate for a low energy theory. As a related
subject, we would like to point out that the effect of the variation of D—(s) function is not
only limited to Ke,,m — 37 and aJ, but is also important in the process =p — mwtnn,
where the original hope was to study the nature of the ¢ commutator [27]. It is clear from
our calculation that this cross section cannot simply be computed from the effective lagran-
gian in the tree approximation. It is important to do the unitarity correction in the 7 = 0
S-wave 2w channel, which can approximately be achieved by multiplying the effective
lagrangian matrix element by Dg'(s) normalized to unity at s = m?2 or s = 0. This
would enhance the matrix element by roughly a factor of 1.4 at the threshold of
7p — mwrrn process. It is only after this correction taken into account that one can
study the effect of the 6 commutator.

5.9 »>nnn

Another topic related to PCAC is the process n'(p’) — n(p) n*(g,)n(q,), which is
apparently in contradiction with PCAC and some ideas of the current algebra [28].

() From PCAC, it is expected this matrix element has a zero in the limit ¢, — 0
or g, — 0. The experimental dipion spectrum for this decay as a function of s = (g, +¢,)?
does not exhibit this behavior. The dipion spectrum in %’ — ynw shows, however, clearly
the Adler zero.

(i) Taking the limit of ¢, and ¢, — O simultanecusly, the 1’ = nnn matrix element
is proportional to the sum of the “up’ and “down” quark masses which are small. Estimate
of the partial width for this process indicates that it is a factor of 50 too small compared
with its experimental value.

What is wrong with PCAC and current algebra ? We want to show that it is an accident
in nature, that the term proportional to g, in Eq. (1.1) dominates. To see this, let us define
u={(p —q)% t=(p' —q,)° Let us assume the nm states are dominated by the scalar
meson 6(980) which is almost degenerate in mass with the 1(960). In the limit ¢, — 0,
u=(p'—q,)* = (p+q,)* = m’, the matrix element vanishes by the virtue of the Adler
theorem, but its coefficient is large due to the § propagator. In the physical region, where
u is fairly different from m,fr and m?, the product of the Alder zero and pole of & gives
rise to a constant matrix element.

Using a nonet scheme of scalar mesons &, ¢ etc., and the derivative couplings for the
pseudoscalar mesons to satisfy the Adler’s theorem, the predicted width for i’ is in
agreement with the subsequent experimental measurements. The dipion, n= spectra are
in very good agreement with the experimental data [28].
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6. Proton decay

We end this lecture by discussing a much more fashionable subject, namely, the proton
decay, within the framework of the Grand Unification Theory SU(5). It was first shown
by Tomozawa [30] that it is more reliable to use current algebra to calculate the amplitude
p(p) — mo(g)+e*(k), in the limit g, — 0. This limit is a poor approximation for this decay,
because the energy 70 is large. We must therefore make corrections, using the same technique
discussed above.

Consider the matrix element (n°].Z,(0)|p) as an analytic function of k2 with a cut
starting at k* = (m,+m,)?. Current algebra low energy theorem is given at k? = mZ,
while the matrix element for the physical process is evaluated at k? = m2 ~ 0. This is
a long extrapolation, so corrections must be made, using analyticity and unitarity, in the
form of the resonance approximation for the =N system (S;; and P,y).

The final result for the rate p — =%+ changes little, while there is a strong suppression
for the mode p — ne* due to some accidental cancellations. The proton lifetime is found
to be 102° years, which is more than two orders of magnitude faster than the experimental
limit.

7. Conclusion

We have presented here the resolution of some old-fashioned but fundamental problems
which were left unsolved or forgotten in the fast moving field of the particle physics. It is
useful to ask whether these problems can be solved by the more fashionable Monte Carlo
method of the lattice gauge theory of QCD. The answer is definitely no, at least in the
foreseeable future, because of the euclidean nature of the method vsed for the lattice gauge
theory.

Editorial note. This article was proofread by the editors only, not by the author.
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