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THE TOTAL ACTION OF THE ELECTROMAGNETIC FIELD
CONTAINING THE INFRARED PART
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We obtain the leading asymptotic components of the Maxwell field at null infinity.
Using these asymptotic expressions we derive the formula for the total action of the electro-
magnetic field in terms of the residue of the Fourier amplitude of the field at zero frequency.

PACS numbers: 11.10.Jj

1. Introduction

Several authors have emphasized the difficulties connected with the variational for-
malism in the whole space-time for fields having the infrared part [1-3]. The probiem is
that the surface integrals which occur in the variational procedure cannot be neglected
when the fields fall off too slowly at infinity. When the equations of motion hold, these
surface terms are just the total action integral, if we take for variations of fields at infinity
the fields themselves. For this reason it might be interesting to find the total action for
fields with the infrared part.

The formula for the total action of the free electromagnetic field was obtained by
Staruszkiewicz [4], whose proof is rather formal. The aim of this paper is to give the rigor-
ous proof of Staruszkiewicz’s result.

We want to avoid mathematically awkward, particularly in the infrared sector, pro-
cedure of taking limits “at infinity”. For this reason we shall use Penrose’s conformal
transformations technique [5], which is a powerful and very elegant tool for investigating
asymptotic phenomena.

2. Asymptotic behaviour of free massless fields at null infinity

For simplicity we shall perform our analysis for a real scalar field satisfying the equation
O¢ =0. 4}

For our purpose it is convenient to introduce the null spherical coordinates (i, r, 3, @),
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where u = t—r is the retarded time coordinate. We are interested in the asymptotic behav-
iour of the field ¢ along null geodesics labelled by (u, 3, ¢) = const.
Any solution of equation (1) may be written in the form!

3
$(x) = 517-;- j ‘%k a(on)e” * +-c.c., )

k

where 1 = —, o = |k| and kx = wx°—Fk - x.

We shall confine ourselves to the study of fields satisfying the condition
at(n) = a*(n), (3)
where we have defined after Zwanziger [6]

a%(n) = lim wa(wn).

w—0

It is easy to see that if the condition (3) does not hold then, in general, the angular mo-
mentum of the field is infinite.
Let the z axis in momentum space coincide with the

L. + X
direction of ¢ = — . Then

r
3 2r i
1 - .
o(u, r, @) = 5 J dow j de f dza(wn)e "D 4 e ¢,
n
o 0 -1

where z = & - n. After integrating by parts with respect to z we get

¢, r,6) = L+ L +1,

where
1 i —-iou s
I, = — | dwe™ "™ a(wo)+c.c.,
ir
(4]
1 —ia{u+2r) -
I,=——|dwe a(—wo)+c.c.,
r
0
w 2® 1
1 —iafu+r(l-z)] 0 e
Iyn=——|do | dp | dze — a(wn)+c.c..
ir oz
0 0 -1

! Asweinvestigate the infrared sector, the behaviour of Fourier amplitudes a(k) for large w is irrelevant

for us. We shall assume throughout the paper that the amplitudes a(k) fall off sufficiently fast for large o to
justify our calculations.
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Using the Riemann-Lebesgue lemma we obtain for large r

T g - 1

1, = —a(—a)+0|=),

r—ow r r
(u,9,0)=const

T - - 1
L = —[f@-d(-9]+0 (;—)
(u,s,:p):)const
Therefore
- LU | —iou g 1
¢(u, r, 6) = Ta o)+ o do(e”a(wg)—c.c)+0| 5 ). “
r-o r
(u,9,0)=const 0

. 1
It follows from (4) that when the field has the infrared part then the leading (——) component
r

does not vanish at spacelike infinity (# — —c0). As we shall see in Section 4 this fact is
responsible for non-vanishing of the total action integral for fields having a(n) # 0.

The asymptotic behaviour of ¢ at past null infinity, that is along (v = t+7, 3, ¢)
= const geodesics, may be obtained in the similar way.

In order to write the analogue of the formula (4) for the Maxwell field we have to
choose a basis since O(r) statements for tensors make sense only with respect to the specified
frame. We shall use the conventional null tetrad (/, n, m, i) adapted to the null spherical
coordinate system [7]. Namely

! 1 /o + i 0
= 4 =T T 24 m= ——=\_- ? ’
a’ " o J2r\88 " sin 8 dg

where the only non-vanishing scalar products are In = 1 and mim = —1. In terms of
this tetrad the Maxwell field is described by three independent complex components [7]

$o = Fablamb’ ¢, = %Fab(la"b"'mamb),
¢2 = Fabmanb.
We also denote

Aoo = Aala, All = Aana, A01 = Aa_m—a.

In the Lorentz gauge we may write the electromagnetic potential in the form analogous
to (2)

1 (ko s
A,(x) = > ?au(wn)e +c.c..
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Now, following the same procedure as for the scalar field we obtain?

- n 1 - 1
A(u, 1, 0) r:o - a,,(a)n“ + — jdw(e i a,,(wa)n"-—c.c.)+0 (~r—2) » (5a)
(#,9,¢) =const )]
- T gy, 1 —iou -
Ao (u, 1, 0) = - a, (o) + — | dw(e”*“a (wo)m*
- ir
(u,9,0) : const
- 1
—a (wa)m*)+ 0 (—ﬁ> , (5b)
i@ foon— 1
¢.(u, r, 0) = —jdwco(e “a (wa)m - (wa)m")+0( ) (5¢c)

(4,9,@) =const
The detailed structure of other components is irrelevant for our purpose since they fall
1
off like —- or faster. However, we note for completeness that their leading asymptotic
r

behaviour may be determined from (5) via the asymptotic Maxwell equations.

3. The conformal compactification of Minkowski space-time

In this section, included mainly in order to fix the notation, we shall give a short
summary of the conformal transformations techniques proposed by Penrose [5].

The key idea is to replace Minkowski space-time M with g,, metric by a new, “un-
physical” space-time M with a rescaled metric g, = Q2g,, in such a way that M is a com-
pact manifold with a boundary representing “infinity” in M. The boundary & = oM
of M, given by the equation 2 = 0, consists of two disconnected parts & = F+u &~
each having the topology R x S2. &+ and & are null surfaces and are called future and

past null infinity respectively. For the standard choice of the conformal factor 2 = —

the metric on { = const} N %+ induced by g,, is (minus) that of a unit sphere.

Now, consider the free Maxwell field F,, in (M, g,,). Because of the conformal in-
variance of the Maxwell equations, F,, = F,, satisfies the source-free equations on
(M, g.). From the rescaling conventions for the tetrad vectors®

"=, np*=n" m=Q'm
it follows that
‘50 = Q-3¢0a ‘:51 == 9—24’1, ‘ﬁz = 9—1452

2 ‘The result equivalent to (Sc) was obtained by Szczekowski [8].
3 Hatted quantities refer to (M, g,5) and are defined analogically to their counterparts in (M, gab).
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and
Iioo = Q-ono’ jm = Q-Ions 211 = A;,.
The fields at &+ are defined to be
$r = Plyps (k=0,1,2), (6a)
R = 4,)e+ (k= 00,01, 11). (6b)

4. The total action of the Maxwell field
The total action of the Maxwell field

1
= — —— | F F¥dV 7
167 _[ "v M
M
takes the same form in terms of the rescaled quantities
1 PN
S=—— | F,FdV 8
1675_[ Wk ®)
#

because the invariant volume element on M transforms under conformal rescaling accord-
ing to

dv = Q*dv.

Since the Lagrangian density is a divergence when the Maxwell equations hold, we may
write (8) as the surface integral

1 PPN

S=—— | F,A%d". 9
8 J * ©
oM

We shall calculate (9) over &+ It is easy to show that the contribution from & is the
same. We rewrite (9) in terms of (6)

1 . 20 7
Soe = ¢ j (243, — 1L Re $345,)du do. (10

Here we have used the surface element on &+
ds* = n*dudo.
When the Maxwell field fulfills the gauge condition 49, =0, as (5a) does, then

- J .
952 = % Ag, and (10) takes the simple form
u

1 " _
S0 = - f do| A2 2 im e, an
8n
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It follows from (5b) that
lim 43, =0
and
lim 43, = 2nay(d)m".

Therefore the total action S = Sg++Sg- = 254+ equals

S = n | dealy(3)a"*(3), (12)
where we have used the identity

Buv = 2(l(unv)_m(umv))a
and the transversality condition

a, () = 0.

The formula (12) is gauge invariant and Lorentz invariant, the first fact being obvious,
the second following from Lorentz transformation properties of the measure do and the
residue of the amplitude aﬁ(&). Namely, when the null vector k* undergoes the transfor-
mation

k'* = ARk
then
, do
S @y
and

ay (@) = (A%0M)A",a5(3),
where we have introduced the four-index quantity
¢ = ko = (1, 3).

I am indebted to Professor A. Staruszkiewicz for suggesting the problem and dis-
cussion.
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