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Problems of renormalization and dynamic mass formation in a four-fermion model
with scalar-scalar, pseudoscalai-pseudoscalar and vector-vector interactions are investigated
by the method of functional integration in collective variables. Ward-Takahashi identities
and Schwinger-Dyson equations have been obtained for fermion and boson Green’s functions.
1t is shown that all infinities are absorbed by the finite number of renormalization constants.
The matrix elements of the processes of interaction between fermions and their bound states
are independent of renormalization constants.

PACS numbers: 11.15.-q, 11.15.Bt

1. Introduction

Four-fermion models are known to be non-renormalized when expanded by the
dimensional coupling constant. Yet, as shown in {1-3], such theories can be renormalized
by using mean-field expansion, the requirement that the theory be self-congruent leading
to a condition similar to that for the energy gap in the superconductivity theory {4, 5].
Non-trivial solutions of this equation determine the limits of applicability of mean-field
expansions and give dynamic fermion masses, provided that the bare masses are zero.
Sach non-trivial solutions do exist [4, 5] (and correspond to the superconductive state)
and are non-analytical by the dimensional coupling constant. Hence, it becomes clear
why the expansion by the dimensional coupling constant leads to the existence of unavoid-
able infinities and non-renormalizability of the model.

In [6], problems of renormalization of the four-fermion theory with (Fy)? interaction
in the Lagrangian are studied in detail with the use of mean-field expansion. In the present
paper we investigate a model with four-fermion scalar-scalar, pseudoscalar-pseudoscalar
and vector-vector interactions, thus actually taking into consideration the pseudovector-
-pseudovector ((yy,ysy)*) and tensor-tensor ((Pyy.,¥)?) interactions as well, since they
can be excluded from the Lagrangian with the aid of the Fierz trasformation. This only
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leads to redetermination of the original interaction constants. Thus, we shall consider the
general Heisenberg model which contains however no internal spaces, i.e. multiplets of
spinor fields.

In Section 2 we formulate the perturbation theory, find the fermion and the collective
excitation propagators. In Section 3 we conduct the procedure of renormalization in lowest
order of the perturbation theory and find the spectrum of collective excitations. In Section
4 two Ward-Takahashi identities are derived which are associated with symmetry with
respect to conventional phase transformations and ys-transformations. In Section 5
Schwinger-Dyson equations are obtained in the form containing functional derivatives
and in the integral form. Also discussed are problems of renormalization in the general
case which is not connected with the perturbation theory. In Section 6 we summarize
our conclusions.

2. Model

Let us study a Lagrangian-based model
_ K o5 @ _ 5 A _ :
= —Pyoup+ E(WP) - 5(14)?,‘1/)) - 5(#’)’5'/’) . (1)

Using the functional integration method [7] and adding the constant
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the generating functional for Green’s functions is written in the form

Zla, n, j} = leD¢D¢DA“D¢Dw I | 8(0,4,) exp {ifdx
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where collective scalar ¢, pseudoscalar ¢ and vector 4, neutral fields have been introduced,
K= gofud, A= ging, o= e3lM2; g, 8o, €0 are non-dimensional constants and the
constants uo, po and M, have the mass dimensionalities m; #, n; j,, j;, j, are external
sources, Do = [] dg.

X

Lagrangian (1) is invariant with respect to the global phase transformations
v’ = exp (ip)y leading to the law of conservation of current I, = iyy,, i.e., to the current
4-vector transversality: 6,1, = 0.
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Let us decompose the current I, into the transverse (I}) and longitudinal (I ,,) parts
according to the relations

3,(0,1, 8,01,
I, =0L+I, I,=1,~ —“—(—E—l—), I, = —i(D—). 3)

Simiiar relations can be written for the field 4,. The validity of equalities

AJ, = AL+AL, A, =Al, A, =AI =0 )

utps

can be easily checked.

1t follows from (4) that instead of taking into account the current transversality it is
possible to use the field A4, transversality and vice versa.

The factor Hé(auAu) in the functional integral (2) takes into account the field 4,

transversality [3].
Let us now present the d-function in the form

Hé(ﬁ A,) = lim exp {— ~Jd‘c(c 4,) } (5)
=0

X

Substituting (5) into (2) and integrating over the Fermi-fields v, v, we obtain

Z[if, n,j] = lim N | D¢ exp (iW,),
a=0

ﬂo ~2

Wo =fdxdy {n(x)S(x yn(y)—o(x— y)[ P’ + — 5 ¢

LM

5 A2+ o (C’ A“) jA(le:!} —itrin(l +GOgA¢A7A)9

¢A = (A;v P, (15)’ Ja = (ju’j(p’j(;)’ g4 = (€95 Zo» g(’))’
Va = (0w 1, iys),  8abava = TeoA,y,+8o@+igodys. (6)

If in (6) o is not allowed to approach zero we have arbitrary gauge and the field 4, bas
an arbitrary longitudinal part. In this case both quanta with spin 1 and quanta with spin
0 correspond to the field 4,. The Lorentz gauge corresponds to the case « — 0 and the
field A, transversality is restored. Then the field 4, describes the quanta with pure spin 1.

S(x, ) is the Green fermion function in the external collective fields, which satisfies
the equation

(740, — 84D 47 )S(x, ¥) = 6(x—y) a

and the function GO obeys the equation

1u0uGo(x, ¥) = —8(x—y). (8)
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As seen from (2) and (6), the dimensional constants p,, o, M, have entered into the
mass terms of the Lagrangian, and the non-dimensional constants g, g5, €, have entered
as constants of interaction between the collective fields @, @, 4, and the spinor field. In
a single-loop approximation when the collective fields ¢, ¢, 4, are constant (¢4 = const),
the solution of equation (4) in the momentum space will be the expression [8]

lp 8o® +igoPy
Sy =" = ©)

where p = py,. m’ = g’ +g5°¢".

In obtaining (9), the substitution of the variables p, —» p,— A, was made.

The equations of motion for the collective fields 6Wo/dp, = 0 at i = n = j, = j;
= j, = 0 will have the form

(10

oo — igs J‘ @dp N lgo q??dp

An*ul ) pPm?’ = T dntu? ) pram?

The collective vector field has a trivial solution 4, = 0. The possibility of the existence
0
of the nontrivial solution 4, # 0 in the case of current redistribution is discussed in [3].
0

Non-trivial non-analytic solutions, @, # 0, @, # 0, of equations (10) exist under
the conditions g, = g5, Ho = Hg, HoA? > 4n°, where A is the truncation momentum [4, 51
When the above conditions are met the fermion acquires the mass m} = g(¢*+ ¢?).

Expanding the fields ¢, in (6) near the statistical solutions ¢(x) = @+ @(x),
@(x) = @0+ @(x), A,(x) = A4,(x) where @,, @, are subject to equations (10) and expanding
expression (6) in terms of constants g,, we obtain a perturbation theory series [8]

Zlig,n,jl = li_{l; N J Do expi {J dxdy[7(x)S(¢o + PIn(y)
+(X=P)jaba—7 (bA(x)‘él;Bl(xa o]+ Z ’_ll tr (SogA(bA}'A)"} s (11)
n=3

where S, = S(¢,) is determined by expression (9) at ¢ = @, ¢ = @0, go = o and the
propagator for the collective fields in the momentum space is given by the expression

dk 1
2n)* 7 So(p+Ek)yaSe(k)yg+ - PupvéuAévB'*“sAsMA,

M, = (Mg, po, o). (n.s) (12)

(n.s.) denotes in this paper the absence of summation over the repeating index.
Substituting expression (9) into (12) and calculating the trace of matrices, we have

zg;s‘(pz) = ig.gp trj

- 1
éuvl(pz) = 1‘/1%5“‘,"}‘ ; pupv
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ieg [dald,,(a(a—p)+m3)+Pudy+ P4, —2d,4,
4r* [(g—p)* +m5] (a* +mp) ’

AZHp?) = 1 igo [ dalga(ws—93)+(p—q)q]
oss p 0 4 [(q-p)2+mg] (qz_!_mg) s
s ,  igs [da[gd(@3—ed)+(p—a)q]

§66 P =u

O ant ) [g-pPemilidt+md)’

.2 0n - 2 -~
~ B igo dq2gopoPo
A58(p%) = A5 (p?) = — 2 ’
556 (r°) 65 (r) ant [(q_p)"—i-mg] (g% +md)

45507 = 4307 = A510Y) = 420 = 0. (13)

3. Renormalization in the lowest order of the theory

Calculating integrals in (13) and making use of equations (10), we find

2
L ., g
dss(p*) = (p* +4gdpd) (Z¢. t— 8:2 J 1(p)) ,

2
- N S
456(p%) = (P* +48595 (Z¢ '— g;:’zJ Kp)),

’ o2
- ~ - 50 .
%‘sal(l’z) = 48(2)‘770900 (th T g;i J1(P)) s

_ Az—m(z) eg 1
Zoluvl(pz) = (A’I%— 2 ' 4?) 5uv~f‘ &pnpv

,
2eg 2

- e;
+ 3;;2)— Z(p 1(6uvp2_p;1pv)— Hﬁ Juv(p)v

1
2 2 2
p -1 _ & A
J =ldxn{l14+ —x(1—- Z,)=—=|ln—5 —1},
1(p) f x n[ + s x( x)], » 87:2(“ o )
Q

1
2
) p
J;xv(p) = % pzéuv +1_18' Puby +(5uvp2 —pupv) J dJ&ZX(l "x) In [1 + 'mT x(l -—x)] . (14)
(V]
o

Let us introduce renormalized values

AP = 23 4u0D), S = 23

giiz = 24859 ZA = (Zw th’ Z(;)’ (n.s.) (15)
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where Z,, Z, = (3g3/2¢5)Z, are constants of renormalization of fields Po> Po and A,
It follows from (14) that

2

615751(_4809"3 =0, 4()'6_61(“4gg§50) =0, (16)
whence we find the masses of the collective fields ¢, ¢

my = 4gopg,  mZ = 4g5s. amn
We obtain from (17) the formula m%+m> = 4m% where mq is the fermion mass. Along
with the renormalization of the fields and coupling constants of (15), we define the renormal-
ized mass of the vector neutral collective field 4,

2 2 2
, eg A°—m
M? = <M§— — °> Z,

18
4n® 2 (18)
Using relations (15) and (17) we find from (14), to the accuracy of terms of the order
24/4n2, e3dn?, which determine radiation corrections, the Lagrangian which is bilinear
over the compound (collective) fields

Lo = =3 [0,9)° +(0,8)* +483(pop + $o$)*]
1
—% Fiv_% MzAizt - 2_61 (auAu)zﬂ (19)

where F,, = 8,4,—8,4,, a = aZ, '. Note that the most convenient is the gauge in which,
e.8. @0 = 0, @y # 0. As follows from (19), the field ¢ corresponds in this case to a massless
particle (Goldstone) and the field ¢ describes a particle with the mass 2m,. We used ambi-
guity in the Lagiangian selection to an accuracy of divergence-type terms. Note that
in [9-11] a model was investigated which was a particular case of (1) at x = A = 0 and
@ — 0. In this model equivalence with quantum electrodynamics was established. At the
same time a massless vector field appeared which was identified with the photon field.
In our notation this limiting case corresponds to M2 — 0. We shall return to this question
later when discussing the Ward identities.

From (19) (or (14)) we find the expression for the renormalized propagator in the
lowest order of the perturbation theory

1 a—1
{)l,iv(Pz) = i <5uv+pnpv m) . (20)
Hence, in the limit & — 0 (@ — 0), which must be observed according to (11), we obtain
a transverse propagator which behaves like O(1/p?).

Thus, we have renoimalized single-particle Green’s functions in the lowest order
of the perturbation theory. Consider now the question of divergence of the highest (multi-
particle) Green’s functions. Taking into account that 4 ,x(p?) ~ O(1/p?), So(p) ~ O(1/p)

(4]
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at p> — o0, it is possible to derive in the conventional way [12] a formula for the degree
of the diagram divergence

D =4-3F—B,—B;-B,, @1

where B,. B3, B, are the numbers of external lines of the boson fields ¢, @, 4, respectively
and Fis the number of external fermion lines of the diagram. At D < O the integrals con-
verge. As the value D is independent of the order of the perturbation theory, the initial
model is of the renormalizable type [13]. The number of types of diverging diagrams is
finite and independent of the order of the perturbation theory. In (15), we have provided
the renormalization of a single-particle Green’s function. According to (21), the diagrams
in Fig. la, 1b will also be divergent

i AN ot
¥ \\ ‘l
Fig. la Fig. 1b
where the set of fields ¢, corresponds to the line — — —. We find from (11) the vertex
function in the lowest order of the perturbation theory, which corresponds to Fig. la.
W,
Fggc(X, ¥, Z) = M_H’O‘ s
3¢ A(x)0P(y)0¢c(2)
[ isc(x, v, 2) = ig48s8c tr {So(z, X)7.4S0(X, Y)78So(¥s 2)7c
+5S0(z, Y)y8So(y> ¥)74So(X, 2vcj-  (ns) (22)
Going into the momentum space
dpd . .
Placts, 2) = | oo Flaclp, )"0 ™0™ 23)
n

we find from (22)

dk
rch(Pa q) = igcgagptr {J‘ Ez_ﬂ:‘)z [Solk+p— @) 4So(k)y5So(k+p)

+So(k—p)yeSo(k)y4Solk +q— P)]Yc} . (ns) (24)

Taking into account linear divergence of integrals (24), it is possible to regularize
the vertex function of (24) in the following way

rgBC(p’ q) = ;'ABCZ;HZZI;I‘QZEI/Z']’ ig48p8c reg FSBC(P, q), (n.s.) (25)



732

where
Z, A=y,

T35c(0,0) = AapcZ3'°Z5 725" (ns),  Zy = {Z(p A = 5,6.

The renormalized vertex function is determined by the relations
Tise = TuncZi*Z5°2%.  (ns) (26)

Using (24), it is easy to calculate the values A,z in (25). The four-point Green function
described by the diagram given in Fig. 1b is regularized in a similar fashion [6]. Note
that for the field 4, Furry’s theorem is fulfilled: the total matrix element corresponding to
diagrams with closed fermion loops having an odd number of external vector lines is equal
to zero.

4. Ward-Takahashi’s identities

Let us introduce, in the conventional way [14, 15], the generating functional of Green’s
connection functions

To uniquely define the Green function, it is necessary to go into Euclidean space and return
into Minkovski space on completing the functional integration [16]. We shall formally work
in Minkovski space assuming the necessity of the above procedure. The generating function-

al (27), (2) (at go = g5, o = Ho) is invariant with respect to ys-transformations of the
SOUrces
nr — e—ioysn, '-1-: — ﬁe-—ieys’

js = js cos 20+, sin 20,

Jje = —Jjssin20+j,cos20, (js= Jor  Je =3) (28)
which can be easily checked by substituting the variables
. ’lp’ — ei075w’ u—)l — @ei())’s,

¢’ = @ cos 20+ @ sin 20,
¢’ = — @ sin 20+ @ cos 26. (29)

Taking this into account, we find from the condition of the generating functional inde-

pendence with regard to the parameter 0 of the transformations under consideration, i.e.
dw|do = 0

i SWIJ] éq'(x) oOW[J] 67’ (x)
j x{én'(ﬁ o0 oi'(x) 40

SWLJ] 6j5(x) + SWLJ] djs(x) }
8js(x) 66 djs(x) o6

=0, 30)

where J = (jA’ '_’3 'l)-
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Wl oWl
at = EL oty =
WL erie)
<1P(x)> 5]?(,\‘) H (5<¢A(x)> .]A(‘x)’
oI} _ orf¢]
— _i, — —nx), 3
e R T S b

where I[¢p] = W[J]— [ dx(j<$> +7yp>+{ydy) is the effective action, we find from
(30), taking into consideration (28) at y = 7 = 0, the Ward-Takahashi identity

oI{¢]

o] } o
o{@(x))

de {(‘P(X» m —<LP(x)>

(32)

(Similar derivation was used in the g-model [18]). Differentiating functionally with respect
to the mean fields {¢), {@> we obtain from (32) connection between the propagators
and the vertex functions

A6 (%, ) —A55(x, y) = 5dz{<<p(z))F566(x, z, 1) =L@ T s56(x, 2, ¥)}
= jdl{<<p(z)>F665(x, 2, Y=L FH DT ss55(%, 2, Y)}»
A56(x, y)+ 455 (x, ) = § dz{{P(@2))T ¢s56(x, 2, ¥)—{ZK2)>T666(%; 2, )}

= [ dz{{@(2)»T s565(x, z, ¥)—<P(2))T s55(, 2, )}, (33)

where

BT 1. NN ) ()
Hpa(3)>5da()y” BTV T 50 w03 bs (0Pl

A45(x, y) =

Equalities (33) are exact relations for complete Green’s functions. If we now use
loop expansion and takeinto account that it retains the properties of the generating function-
al symmetry, it can readily be concluded that relations similar to (33) hold for any n-loop
approximation. In a single-loop approximation when {@(x)> = ¢, the constant and
vertex functions are given by relations (22), (24). We have from (33) in the momentum
space

éla_sl(Pz)“égsl(Pz) = ‘Porgss(oa P)"(f’orgse(oa P
= ‘Porgss((), P)“"T’orgss(os D), (34a)

A58 +453 (%) = Bol §56(0, P)— @0l 666(0, P) = ol $65(0; P) = Pol 3550, ). (34b)
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Using (13), (A1), the fulfilment of naive Ward-Takahashi identities (34) can be easily
checked for the unrenormalized values.

Passing to the renormalized values, according to (15), (26), we make sure that Ward-
-Takahashi identities (34a) also hold for renormalized values. Similarly, it is possible to
check the fulfilment of (34b) for renormalized values.

Derive now the Ward-Takahashi identities connecting the vertex function

8¢S(x, ! WL
Fu(za X, V) = - > <Au(z)) = [ ]

€004, (2)) 9j,(2)
with the complete reverse fermion propagator {S(x, y)>~' where (S(x,y)) = *W[J)/
/6i(x)dn(y). To do this, write (35) in the form

(35)

_y 08y, 1> 1
Iz, x,8) = — dedKS(x, T S T 36)
g eodi A2y (
Now, taking into account the equation of motion for the field A4,(x)
Mo _y (37)
dA(x)

we obtain, making use of (4) and the equality 6{A4,(x)>/64,() = 8,,0(x—¥),
&Sy, 1)y _ IS0, 2iyS(z, ne"°Dg

L = a 38
€08<A,(2)) [ e"°D¢ (38)
Differentiating (38) with respect to z, and taking into account (4), we have
o oSy, > | :
U1 iS00, 230 = 1)~ (S(z DYy ~2). (39)

02, eod{AL2))
Differentiating (36) with respect to z, and using (39), we arrive at the Ward-Takahashi
identity

DD i, 9971060~ (5E ) 5G=2) (40)

"

Passing in (40) into the momentum space according to formula (23), we obtain

(Pu— PP, ') = <SP ™' —<SE'N ™ (41)

5. Schwinger-Dyson equations

For convenience of loop expansion, the generating functional (27) is represented in
Minkovski space in the form

Wi, n,jl= —ieln fDd) exp (i‘jo) . 42)
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Here we have introduced the parameter ¢ which is assumed to be equal to 1 at the end of
computations [16]. Expansion in terms of the parameter ¢ corresponds to loop expansion.
Using definitions of (31) and formulae (42), (6), (7), it is possible to make sure that the
following Schwinger-Dyson equation is. true

(Yu u —8a{ DAyt iegaV 4 5, )('P(l» = (). (43)

N

Taking the functional derivative 8/6n of both sides of equation (43) and assumingn = # = 0,
we obtain a Schwinger-Dyson equation for the single-particle Green’s function

(yu M gA<¢A(x)>vA+ngvA ><S(x ) = 6(x—y). (44)

Similarly, an equation for multiparticle Green’s functions can be obtained from (43).
Using the definitions

0{Pa(x)> 8ESCe 7!
A 3 s F » Ay == - S, 45
a(x,y) = 5.0 4z, %, y) 2 OADS (n.s.) (45)
and (44), we have an integral form of Schwinger-Dyson equations
<S(x9 }’)>—l —(ypau" gA?A(‘rbA))(S(x—y) = Z(x’ Y), (46)

where X(x, y) = —egiya | dtdz{S(x, )>4 45(x, 2)['5(z, 1, y) is a mass operator. The equation
of motion for the mean fields follow from the condition éW,/é¢, = O

MEPA(X)> = jatigatry{S(x, x)>.  (ns.) 47
Consider that 8j,(x)/5{¢s(»)> = A1a(x, ). Then, making use of (47), (45) and the equality
oCS(x, x)>

()<¢A(};5; —8a fdzdt(S(x, T (3, 1, 2) (S(z, x)>  (n.s.)

we find
M50 4p8(x—p) = A4p(x, y)—ig] tr y, | dzdi{S(x, )OI (3, 1, 2) {S(z, x)>. (n.s.) (48)
‘We obtain from definitions (45)

0X(x, y)
Tz, x,9) = —y.0(x—y)o(x—~2)— ———""—. n.s.) (49)
A y) ¥ 49( ; o ) 2.5 4(2)> (
In a similar fashion, the vertex functions are determined
845c (x, y) 824cp(x, ) N
r Z, X, Y) = — ——m , I t,z,X,)) = — . (30)
w5 ) = =Sy o e BRI T 056

Note that from (48) it follows, by virtue of the Ward identities (40), that
M5 Y) _ s B2

, (5D
ay, 0Yyu
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Thus, the propagator for the collective fields 4,,' does not satisfy the transversality condi-
tions, which is due to the field A4, massivity. At M, = 0, 4 ;v‘ satisfies the transversality
condition, which is in agreement with the results obtained by other authors [9-11]. Passing
into the momentum space, we obtain from (46), (48), taking into account (23)

(SR~ = ip—8KDDv4—Z(P),

dk
2(p) = iey, f 3 SS(p— kDA () g(p—k, p),  (ns.)
(2m)
dk
A5p(p") = Midap+itry, f a2 {S(p+ k)T g(p+k, k) {S(K))- (52)

The renormalization procedure based on the Schwinger-Dyson equations (48), (52)
and relations (50), which is not connected with the perturbation theory, is carried out in
the initial model in a way similar to that of the case of scalar-scalar interactions considered
in [6]. At the same time, the relations in the momentum space will take on the form

A4p(P") = A45(PHZ3", TP, @) = I'y(p, DZy, ¥ = vZ3 ',
(S = <S(Z3',  <($o' =<PZi'?  (ns)

’ ZZ > - - - -
gi = g4Z4 (Z—) , A3p(0) = MidZyt, (SO = mz3! (53)
1
plus similar relations for three- and four-vertex functions.
The non-renormalized matrix element corresponding to the n-vertex diagram and
including m vector-fermion vertices can schematically be written in the form

M~ engh ™ [ (D YSHTAB A Pl AYP )Py, (54)

where F,, F., B, B?, B{, B are the number of internal fermion lines, external fermion
lines, external vector lines, external scalar and pseudoscalar lines, internal vector lines
and internal scalar and pseudoscalar lines, respectively. Substituting the renormalized
values of (52) into (53) and taking into account that n = F;+L1 F,, m = BX+2B{', n—m
= B?+2B?, we find the regularized matrix element

My ~ (€Y (V™ [ (TS A (A () (A" Ky Y= (). (55)
Thus, the matrix element of any process does not contain divergent renormalization
constants and depends only on the renormalized physical values. In the model under

consideration, renormalization of charges, mass-fermion and collective fields leads to the
elimination of divergencies in all orders of the perturbation theory.

6. Conclusion

Thus, the initial model including scalar-scalar, pseudoscalar-pseudoscalar and vector-
-vector interaction has been reformulated by the method of functional integration in terms
of interaction between fermions and collective massive scalar, pseudoscalar and vector



737

fields. At the same time, kinetic terms of collective fields appear from the vacuum polariza-
tion diagrams. Perturbation theory has been considered which corresponds to a loop-
-expansion and leads to renormalizability of interaction. All infinities in the model are
absorbed by the finite number of renormalization consiants. The matrix elements of the
processes of the interaction of fermions with their states (collective field) are independent
of renormalization constants.

APPENDIX

After computations, we obtain from (24), making use of (9), the following vertex
functions (for 4, B, C = 5, 6)
iﬁ%Jﬁ

1 .
el {K [5(395— ®3)+2pk — pq + 3k* —dkq + ¢*]

ISss(p,g) =

1 nd -y
+ T [23(395— @5)—2pk —2kq +qp+3k2_]} s

- 4~
. . igope {dk {1 2
I2s(p, gy = 4(;40 f F{—E [e2(2—3pd) —2qk+ k> —gp+47]
1.
o [g3(¢§—3¢§)—pq+k2]} ,

igg(ﬁo ﬂc_
4r* F

1
I'lcs(p, q) = { (33— 35)g5+2pk — pq +3k* —4kq +q°]

R

1
+ o {g5(3¢3—¢>e)+3k2—2pk+pq-2kcﬂ} ,

. 4
igowo [dk {1 -
Ie(ps q) = 4‘;4" f; {E [g2(p3—3¢2)+k*~2gk—qp+4q°]

1 .
+ o [ga(po—3¢3)+k* —qp]} ,

: 4
igowo [dk (1 ~
Is6(p, q) = 4;4°J‘——F {Tz [g5(pa—360)+ap—q° +k*]

1 .
+ 5 [g3(p3—3p3)+ k> —2qk +qp]} ,

dk (1 .
Iese(p, q) = ey j?{i [83(#5—393)+2pk— pq+k* +q° —2kq]

. .
+ o7 Leo(@5— 3¢3)—2pk+pq + kz]} ,
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- 4
ig dk
MNes(p, q) = O%J

. [go(tpo 3¢3)+2pk+(k—q)* —qp]
4r F

1
+ 5 [g3(p5—303)+k>—2pk+ qp]} ,

s &~
igo@Po {dk
I'%s(p, @) = —i‘j;‘ff { [g5(Pa—3¢3) +Kk* +q(p— )]
1
+ o [g3(¢§~3<p3)+k2—2qk+qp]}, (A1)

where notations F = [(k—q)*+mi] (k> +m}), R = (p+k—g)*+m}, H = (k—p)*>+m] are
introduced.

Assuming that p = 0 in expressions (Al) and integrating, we obtain with the aid of
notations (14)

go?’o

I'366(0, ) = I'ge5(0, @) = —480‘1’02 Y+ 2

J1(9) — g5 9o Bal 2(q),

go(Do

I'256(0, q) = I'gs5(0, q) = _4go¢oz T+ 25 Py J1(9)— 2680 ®5J 2(a), (A2)

where

i 1 1
5@ =1 J dk [Rk-q}2+m312 W) T =g+ m] <k2+m§)2]

is a finite integral.
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