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A careful treatment of closed fermion loops in quantum electrodynamics is developed
starting from Schwinger’s gauge invariant formulation of the current, involving a line integral,
in an external field problem. The analysis is carried out for multiloop contributions and to all
orders of perturbation theory. The derived vanishing property of closed fermion loops when
any subset of the external photon momenta are set equal to zero has a very important role in
the renormalization program as this does not necessitate the introduction of the unwanted
light-light scattering contact term in the Lagrangian. This also permits taking the limit of
the photon zero-mass at least for Euclidean nonexceptional external momenta. The functional

approach, used in this work, is found to be particularly suited for treating the closed fermion
loop problem.

PACS numbers: 12.20.Ds, 11.10.Gh, 11.10.Ef

1. Introduction

The purpose of this work is to carry out a detailed study of closed fermion loops,
with an arbitrary number of external photon lines, in quantum electrodynamics by using,
in the process, Schwinger’s (1953, 1951 ; Johnson 1965) gauge invariant formulation of the
current in an external field problem. Closed fermion loops have always caused problems
(cf. Jauch and Rohrlich 1976) due to their lack of transversality when obtained by a naive
application of perturbation theory. Light-light scattering graphs involving four external
photon lines (with or without radiative corrections), in particular, have a naive degree
of divergence equal to zero, and one would then, according to the renormalization (Ma-
noukian 1976, 1982) program, carry out subtractions over such subdiagrams. Consistency
with the counter term formalism, however, would then require (see Manoukian 1979)
the introduction of light-light scattering contact terms in the Lagrangian. A careful
treatment of closed fermion loops shows, however, that the Schwinger formulation guaran-
tees the rvanishing of closed fermion loops when any subset of their extcrnal momenta
are set equal to zero, and subtractions, over closed fermion loops, are then naturally intro-
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duced by this formalism. Subtractions over closed fermion loops in the renormalization
scheme then may be formally “kept”, since in any case they do not contribute to the final
result, and most importantly no unwanted light-light scattering contact term is then to be
introduced in the Lagrangian due to the redundancy of the corresponding subtractions
in the subtraction formalism. As a matter of fact the introduction of such a contact term
would necessary introduce proper subdiagrams involving only photon lines. According to
an earlier analysis (Manoukian 1980) such proper subdiagrams may develop singularities
in the limit of a zero photon-mass even for Euclidean nonexceptional momenta. We derive
a general expression (see in particular Eq. (16)) for handling closed fermion-loops,
their transversality, and their vanishing property with the vanishing of any subset
of external photon momenta, are then established. The important role of the analysis
in the subtraction formalism of renormalization is discussed without the need of introduc-
ing, in the intermediate steps, ultraviolet cut-offs or dimensional regularization; and the
existence of the photon zero-mass limit in the renormalized theory with Euclidean nonex-
ceptional momenta, are then respectively pointed out. Although the study of gauge invar-
iance treatments has a long history, the present paper should fill a gap for its completeness
in treating all processes (as opposed to just some processes or some low order contribu-
tions) in a unified manner and in handling the problem in the light of the renormalization
program (cf. Manoukian 1983). The treatment also avoids dimensional regularization
methods, as mentioned above. The paper should be also of pedagogical value, and in study-
ing the problem we have taken full advantage of the path integral formulation of field
theory. The treatment of nonabelian gauge theories will be carried out in a subsequent
report.

2. Treatment of closed fermion loops

The vacuum to vacuum transition amplitude {0,]0_)> in the presence of external
scurces may be formally written in the form of a path integral (cf. Fradkin et al. 1970)

0,10_> = N f[DA] exp i { (dx) (dx)ii(x)G(x, x’; eA)n(x')
x exp — [ (dx) { de’ Tr [y, A°(x)G(x, x; €' A)] exp iL(4, J), ¢))
[¢]
where N is a normalization factor independent of the external sources #, # and J,. All the
Green’s functions of the theory may be obtained from the expression in (1) by functional

differentiation with respect to the external sources. #(d4,J) denotes L(A)+ [ A"J,,
where #(A) is the free photon Lagrangian. G(x, x'; eA) satisfies the equation

()—? + m—ey”A“(x)) G(x, x'; eA) = d(x—x'), )

where A*(x) is a classical field. Under a gauge transformation A,(x) — A,(x)+05,4(x)

G(x, x'; e(A+84)) = exp ie[ A(x")—A(x)]G(x, x'; eA). 3)
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The function (Schwinger 1953, 1951; Johnson 1965)
G(x, x'; ed) = exp [—ie [ d&*A,(E)]G(x, x'; ed), [e))

however, is gauge invariant as the line integral in its exponential part compensates the
factor in the exponential in (3) under a gauge transformation. The Schwinger formalism
is to define G(x, x; ed), occuring in the trace in (1), as suitable limiting procedure x — x’
of the gauge invariant object G(x, x'; ed). The Green’s function G(x, x; eA) generates
all the single closed fermion loops, and upon expansion of the exponential

exp — § (dx) | de’ Tr [1,4(0)G(x, x; ¢ A)], )
0

one may then generate all closed fermion loops contributions. The expression G(x, x; eA)
may be defined by (Schwinger 1953, 1951; Johnson 1965)

G(x, x; ed) = lin; A\(; G(x 4, x_; eA), (6)
<0
where x; = x+¢/2, dt* = (¢//2)dA, —1 < A < 1, and Av denotes averaging over +¢. We
define the Fourier transforms
(dp) &
@n)* Gp+m)’
Accordingly from (2) and (7) we obtain
Tr [ey,A"(x)G(x 4, X ; ed)]

Z( ) Ql . Q" A‘“(Ql) Au"(Q")ei(Ql+"'Q")

S(x) =

_ (42, o
)—f@n)ze 449) Q)

@ @2n)?
x g~ M@zt ¥ Qne/2 f@s—‘; e” Tt [1,, SO0, S(P—Q2) - 1, S(p—Q2— ... —Qn)].  (8)
Also by using the well known expression
X4+ 1
i [ 4 0 ALQE I [ Qe ] 9
f derA, (&) = J P e 5 diex > | ®)
X- -1

we obtain

T O (—ief2y" [ dO,  dOQ,
exp—ie J dt¢*A,8) = _>. ' J 5 gt ... ghm
J - m! @n)? " (2n)?

% A,(Qy) ... A, (Q,)e @+ +em= f dA, ... Idz,,, exp%[lell+ o +0,84,]-  (10)

-1 -1
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Accordingly we have
Tr [eYuAM(x)G(x+’ X_; eA)]

a0 N—-1
_ N (—i[2)" in Q1+ ONx s N
= Nz;(e) Zo ml ) o A"(Qy) ... A™(QN)

1
”~ .
X J di, .. '[dA exp o [Q &h, + ... +0,8,,]exp— %[Qm+2+ .o +0x]e

-1 -1
dp ipe
| Gy € o Em T [Vt 1 SO, =Bt 2) - VunS(@ = Oz — .. —Qw)]. (A1)
i .. . .
Using the property & e'7® = — P €', integrating by parts over p, and taking the aver-
/4

age over +¢& and —e, we obtain for

de’ ~ Ve
f(dx) J‘ o Av Tr [e'y, A" (X)G(x 4, x_; e A)] (12)
0

the expression

(e) dQN 4
Z f(Zn) (n )2( )°3(Qi+ ... +Qw)

© 1 1
. s (1/2)m etpe+e—tp£ '
x A*(Qy) ... 4 (Qn)z mt | G ( 5 )fd,ll... Jaim
m=0 -1 —1
xexp [—3(21Q:1+ - +4,0,)0/0p] exp [ (Qps2+ ... +Qy)2/0p]
0
X S S(P)ims 2 S(P—=Cm+2) - VuyS(P—=Cpi2— ... —Q0)].  (13)
p op

We note that an exponential factor exp [Q(0/0p)] merely acts as a translation operator
of p to p+ Q. We will eventually symmetrize over the pairs (u;, Q,), ..., (n, Ox). We
note that in (13) for every term depending on p there exists a corresponding term with
p replaced by —p. Also

0
0p,, Py,

Tr [VumHS(P) s VanS(P=Ci2— .. —QW], (14)

involves N S-propagators and N gamma matrices: y,,, ..., ¥,y Accordingly if N = odd,
then by using the fact that the trace of an odd number of gamma matrices is zero, we see
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that we have a complete cancellation between the p and —p terms in (13) for N = odd in
the limit ¢ —» O (of course this is the content of the classic Furry theorem). We may then
restrict only the terms with N = even (N = 2,4, 6, ...) in (13) for ¢ — 0, and we obtain for

de' -
(dx) | — Tr [e'y,A*(0)G(x, x; €' 4)], (15)
e
0
the expression

d d
Z ©" Q‘z... LA 20)*8(Q1 + ... +ONAM(Q)) ... A*N(Q)

@m)*  (2n)’
N=2,4,...
1 1
1/2
K 2 s [t [ dtmesp T4, . +2u00000)
m=0 -1 -1
/
x exp [ (Qms2+ - +Qn)0/0 p} aph a—pﬂ;
XTr [‘)’Mm+1S(p)'yﬂm+zs(p—Qm+2) e ’yuNS(p_QM’FZ—— e —QN)]' (16)

By power counting and by an application of Gauss’s theorem we learn thatfor N = 6, 8, ...,
we have only to retain the m = 0 term in (16), as for m = 0,

0 0 0
{ﬂ o o T [ S(P) - VS0~ Qa2 - —Qu)l}, an

apl‘m OPIH apﬂm-l
integiates out to zero, over p, by Gauss’s theorem. Also the exponential factor
exp [7(Qz+ ... +Q4)9/0p] = 1+0(3 (Q.+ ... +Qx)9/0p), (18)

may be replaced by one (for N = 6, 8, ...) as it also gives no contribution by an imme-
diate application of Gauss’s theorem. Upon symmetrization over the pairs (¢, @y), .-,
(1tx, On) we have for N = 6,8, ..., the following terms contributing to (16):

N rdg, d
@£ QA; Qn)*3(Q1 + ... +QWA™(Q)) ... A™(ONTy. un(@1s > On), (19)

@n)?* " (2n)
where
Ty Q1> s Q) = .f e Z Tr [7,S5(P)Y s,
[is--iN}
X S(P—Qiy) - VuiyS(P— Qi — - —Qi)]; (20)
and . z }denotes summation over all ermutations of the indices in (1, ..., N). We will
i N

come back to the general expression for N = 6, 8, ..., given in (19) later.
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We now consider the term N = 4 in (16). That is we study the expression

2r)*8(Qi+ ... +0)A"(Qy) ... A™(Qa)

(3) ‘[dQ1 dQ4
2r)?® " (2n)

12
(’? J(zn) fd/ll oo iy exp [~ 5 (4,0, + .. +4n0,)0/0D]
-1

X exp [§ (@u+1+ ... +Q4)8/0p]

X 65“‘ R Tr [V S - V0 SP=Qria— - — Q). Q1)
Since
—a—...i'rr s S@) - 728 =Qms2— - —Q)] = 0 (i>
ap'“ apﬂm Bm+1 s m+2 4 p4 ’

we may apply Gauss’s theorem to replace the exponential factor
exp [~ 5 (4:Q1+ - +2,0m)0/0p+% (Qps2+ ... +04)0/0p]

simply by one as derivatives (8/dp)" of arbitrary order n will give zero contribution upon
integration over p. The 1,, ..., 4,, integrations may be then simply carried out to give
the numerical factor (2)". Upon symmetrization over the palrs (B2, Qs -ovs (s O
we then obtain for (21)

©* [ dg,  dg
4} @o? " @n?

Cr)*8(Q1+ .. +Q)A"(Qy) - A QM Q15 - Qo) (22)

with
4 @

Tl @5 -0 Q) = - f oy Z Z{ b 23)

i=1 [i1...i37

{ ‘ } = Tr [Yu.S(P)VuuS(P - Qi1) o yuias(p_ Qil - Qiz - Qi;)]

3

1 0
m! ap*s " apM

m=1

XS(P—Qinss) - YureS(P~ Qi — - — Qi) (24)

Tr [v.5(rW,,,.,

(i)
where ) is a sum over all permutations of the indices in (1, ..., i, ... N), with the hood
[it...i3)
sign A on i meaning that the latter is omitted. Because N = 4, Gauss’s theorem cannot
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be applied to dismiss all of the terms involving the derivatives (6/0p) in (24). For example
for i =1,
[0)
{-}= E Tr [, 5(P)7,S(P— Q1) - Ve S(P— Qi — - — Q)]

[isixiz) [i2i3i4]

+ Z a;‘z Tr [7,,5(P)7,,S(P — Qi )y, S(P— @i, — 01)

Lisia]

0
+ Z Py Tr [9,,S(0),4.,S(P— Q1,7 S(P— Qi,— Qi)

Tizia}

. o @
+3 61)"" apui, Tr {yms(p)ym‘s(p-gu)}
Lizisiq)
0 0
+ i 5 5o U [0, S(P)], (25)
apuz apus op™

where [i,isis], [ia, is), [i2,is] denote permutations of the indices in (2, 3,4), (3, 4), 2,4),
respectively. For m = 1 and m = 2, we consider the following terms in (24):

0
= Tr [, 5(0)7,8(P— 23)7..5(P— @3 — Q)]

ap™
5
+ apyz Tr [‘Yﬂ1s(p)))u4s(p - Q4)YH3S(p—Q3 .—Q4)
0
apuz 6]7“4 Tr [yﬂls(p)‘),u:as(p - Q3)]’ (26)

occurring in (25). Each of the terms in (25) do not integrate out to zero by Gauss’s theorem,
the sum of these terms, however, do. To this end note by using the fact

)
S(p—Q) = (e” %P - 1)S(p)+S(p) = O (- Q 5) S(p) + S(p)s @n

\
that from Gauss’s theorem we may effectively set Q5 and Q, in (26) equal to zero, to obtain
equivalently to the sum of the terms in (26)

) _ d
PR Tr [72S(0)7usS(P) 70, S(P)] + P Tr [7:,.S(P)YuS(P)7:S(P) ]

o 8
t o 5;,7.'“ [76,S(P)7,S(p)] = O. (28)



746

Accordingly all the terms involving the derivative (9/0p) in (25) will cancel out upon integra-
tion over p by using Gauss’s theorem with the exception of the term
é &
op* op™ @ ’.—,f

't [7,5(P)], 29
which does not integrate out to zero. The expression in (25) may be effectively replaced by

’ ) ] Tt [7,50uS(P— Qi) - 7, S(P—Ci— - —Qu)]
& @

ap“Z ap.uS a “4

a1 [7.,5(p)], (30)

and the tensor m,,  ,,(Q;, ..., @a) in (23) may be also rewritten as

4 (i)

nul...u‘(Ql’“-’ Q4) j(Zn) Z Z { } (31)

i=1 {i,iaiz}
where {:} now is given by
{*} = Tr 1S, S(P— Qi) - YusS(P— Qi — Qi — @)
1 0 @& ¢
+
3! apllu apm. apllu

Tr [y, S(P)], (32)

0] .
and Z , as before, is a sum over all permutations of the indices in (I,..,1i,...,4)
Lisiaisy
with i omitted in the latter. It is surprizing that the presence of the extra term in (29) and
(32) has not been emphasized in the literature.
We study the transversality property of 7, ,..(Q:, ..., @2) in (31). Consider the
expression in (30) and contract it with, say, 05> Upon using the elementary property

0
S(p—Q)0S(p) = S(p—0Q)—S(p) = (7 ¢/*—1)S(p) = O (—' 0 5) S(p),  (33)

we obtain for the expression in (30) upon contracting it with 0%, and upon integration
over p:

dp

an Z {(e‘q’“” ) — 1) Tt [7,,5(P)7,S(P— @i S(P— @i, — Q3]

[iaia)
b
+ Qz Tr [v,.1S(p)y,.,,S(p)v,.,.S(p)]} (34)

Neither of the terms in the curly brackets in (34) integrates out to zero. Power counting,
however, rigorously establishes that their sum integrates out to zero by cancellation and
an application of Gauss’s theorem. The presence of the extra factor in the curly brackets
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arising in (29) is then crucial. To contract the expression in (30) with Q%', and integrate
over p, we note that the terms in the first part in (30) may be obtained from
o Z ] Tr [Y}tzs(p))}uus(p— Qix)yl‘ils(p_ Qig - Qi3)y“fcs(p_ Qil - Qi3 - Qia)] (35}
111384
by mere translations of the vector p in the above terms. Such translations are permitted
by Gauss’s theorem since N = 4. Accordingly the same analysis for the expression in (30)
when contracted with Q% may be repeated with the expression (35) now contracted with

Q%". The other terms in (31) may be handled similarly. Accordingly Q%'n,,  ,(Q:, ..., Q)
=0, for j=1,2,3,4.
If we set Q, = 0 in (30) we obtain
; P : Tr [7,,5(P)7uS(P— Qi) - V0, S(P— @i, — @i, — i) Nlg, =0
izizia
G,
+ o Tr [7,5(0)7,5(P— @i)7, S(P— @i, — Qi) ]
[i3ia}
0
= = ap"z Tr [’)"Mls(p)yllias(pw Qi;)yu,‘.s(p_ Qi3 - Qi4)
[isia]
0
+ - Z Tr [7,,5(P)7,,5(P)7,., 5(P)]- (36)

lisial
Again by Gauss’s theorem the sum of the expressions in (36) integrate out to zero as we
may effectively set Qs and Q, equal to zero in them. A similar analysis may be carried
out for all the terms in (31). Accordingly =, . ,(Q1, -..» @s)lg,=0 = 0 for j=1,2,3,4,
Now we consider the case with N = 6, 8, ... in (20). Consider the expression

Z [)’,“S(p)v,“,s(p Qu . 'y’uNS(p le s "Qin)]z (37)

{iz...in}

(2)

contributing to 7, ,.(Qy, ... Qn) in (20). Upon contracting the expression in (37) with
Q‘;’, say, we obtain by using in the process (33),

(2n) Z (e7 %P — 1) Tr [, S(0)7,,S(P— Qi) -+ Vi SP— Qi — . = Q)] (38)

[is...in]

and the integrand integrates out to zero since N = 6, ..., without the need of an additional
factor as for the case N = 4. The other terms in (20) may be handled similarly and we
obtain Q%m,  ,(Qi, ... Q0x) =0, for j=1,.., N If we set Q, =0 in (37) we obtain
for the 1ntegrand in the latter

d
PR Tr [7,,5(0)7,8(P— Qis) -+ Vi S(P— Qi - — Q3] (39

{is...in]
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which integrates out to zero by Gauss’s theorem without the need of an extra term. The
other terms in (30) are handled similarly. That is

Ty un@1s s OW)lg=0  for j=1,..,N

The situation for N = 2 is well known (Johnson 1965) but will be discussed for complete-
ness and for the convenience of the reader. From (16) we have for N = 2,

d
(29), (zQ)zz< m)*8(Q1 +0) A (@) A(Q2)01(Q1s 02, (40)

d
Tu @1 @2) = f (27!% {ex (%2 3 )Tr [7:S(P)7, S(p— Qz)]}

3
+1 J da exp(—ﬁ. %i a_p) 5 * S 1)

By an application of Gauss’s theorem, the integrand in (41), appearing in the curly brackets,
may be replaced by

3\ @
Tr [vms (p+ %Z) VS (p- %)] [1+24 (Qz ) ] e Tr[7.5(P)  (42)

We note that the latter is symmetrical. Upon contracting the expression in (41) with O,
we obtain for the latter

~ F 2
Tr D,m(e—(az/z) ©/07) _ o(@2120100) §(pY] + Tt [Qz 5%5 [1 +5 (Qz :—) ] Pus S( p)]
4 ap

_T a) . 3\ 1 GAY S
(G R G R CR R
0 AN
+Tr [Qz +7% (Qz ) ] P S(D)- (43)
op op

By cancellation and from Gauss’s theorem we then obtain Q%7 ,(Q:, Q) = 0. If we
set 0, = 0, the expression in (41) becomes identically equal to zero. Thus we have treated
all the cases.

We have seen that Schwinger’s gauge invariant formulation of the current guarantees
the facts that Q%'n,,, . (Q1, ..., On) =0and 7, . (Qy, ..., OWg;=0 = O0forj=1,.., N.
We note that upon integration over the photon field in (1), the 4*}(Q9), ..., A*¥(Qy) in

@ 4 - 4@ 1@ O (44)
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provide virtual and external lines for Green’s functions. Transversality then implies, in
particular, that for any virtual photon line hitting a closed fermion loop, a Q, term in
a photon propagator will not contribute and we may effectively work in the Feynman
gauge.

We may summarize by saying that

d
nm...mv(Qla LR QN) = Jaﬁzlnl...uy(gla QN> P), (45)

where for N = 2, I, ,, is given by the expression in (42), for N = 4 I, _,, is given by the
expressions through (31) and (32), and for N = 6,8, ... I, . is given by the integrand
in (37).

Since 7, ,x(Q1s ..., Qn) vanishes when any subset of the @, ..., Qy vanish, we
may effectively rewrite (45) as

d
nu;...uN(Qla (AR QN) = J‘# Q(N)Iul...uN(er LR ] QN; P): (46)

where

N
By = 14+ Y y (—1)6;, ... 6, 47
J=1 1<ig<...<i;<N

and 0; is the operation of setting Q; = 0. We note, in particular, that 6,0, = 0 by can-
cellation of the terms in (47). The expression (46) provides a rigorous definition for closed
fermion loops in dealing with the renormalization (Manoukian 1976, 1982) program
without, introducing in the process, ultraviolet cut-offs or dimensional regularization.
Also we note that the multiloop contributions are obtained from the “multiplication”
of single closed fermion loop expressions (46). Accordingly a multiloop contribution will
again vanish if any subset of the remaining external momenta are set equal to zero. The
vanishing of closed fermion loops with the vanishing of any of their external photon mo-
menta implies that their degree of divergence is reduced from their naive one by a number
equal to the number of their external photon lines. This, very welcome, vanishing property
of closed fermion loops implies that we may, without loss of generality, s:ill carry out
subtractions of renormalization over them, since in any case the latter are redundant,
without the necessity of introducing a light-light scattering contact term in the Lagrangian.
Due to the absence of a contact lighi-light scattering term in the Lagrangian then in turn
implies that any graph in the Feynman rules cannot contain a proper subdiagram composed
solely of photon lines. According to an earlier analysis (Manoukian 1980) the photon
zero-mass limit may be then taken for Euclidean nonexceptional momenta. A study in the
above spirit will be carried out for nonabelian gauge theories in a subsequent report.

Editorial note. This article was proofread by the editors only, not be the author.
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