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Continued from a previous paper (Acta Phys. Pol. B13, 321 (1982)), some structural
observations are further made on the intrinsic behaviour of the vectorial internal vector
() associated with each point (x), which is shown to be represented by the base connection
of y (i.e., 8y), different from the ordinary absolute differential of y (i.e., Dy). Then, cor-
responding to the difference between Dy and Jdy, a new Finsler metric such as g,(x, y) = y1«(x)
+ hy(x, ») is introduced, which is induced by unifying” the purely Riemannian metric
yax(x) of the original gravitational field in Einstein’s sense and the internal Finsler metric
ha(x, y) of the internal space spanned by vectors {y}. Some fundamental considerations are
also made on the metrical Finsler connections with respect to the metric g1x(x, »).

PACS numbers: 03.50.Kk, 02.90.4+p

1. Introduction

The geometrical structure of the gravitational field in Einstein’s sense [2] is, of course,
four-dimensional Riemannian (R,), which is entirely governed by the Riemannian metric
(= gravitational potential) y,(x) (x, 41 = 1,2,3,4). In other words, this R,-structure
may be regarded as ‘“‘point space-like”, “macroscopic” and “local”, because only the
point x is chosen as the independent variable (cf. [3]).

On the other hand, in the theory of gravitational field in Finsler spaces [1, 4], the
line-element (x, ), instead of the point (x), is adopted as the independent variable and the
(tangent) vector ¥ (= y*; 1 = 1,2,3,4) is regarded as the internal variable associated
with each point x (= x*; k = 1, 2, 3, 4). Therefore, it may be said that the Finsler structure
(F,) is more microscopic than the Riemannian structure (R,) in Einstein’s sense and the
“deviation” of the F,-structure from the R,-structure is caused by the y-dependence.
Or else, it may be considered that the Finslerian gravitational field is obtained by attaching
the vector y to each point x of the Einstein’s Riemannian gravitational field at some micro-
scopic stage. This corresponds to the “nonlocalization” of gravitational field by the vector
y, as has been considered in Section 2 of [1] (cf. also [3]). In this sense, the F,-structure
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of the gravitational field may be regarded as “line-element space-like”, “microscopic”
and “nonlocal™.

The vector y belongs to the so-called internal symmetry space spanned by vectors {y},
which will be named the (y)-field. The (y)-field itself has, in general, a somewhat “non-"
-Riemannian structure (R,), including Riemannian (R,) or Minkowskian (M) structure,
while the original gravitational field in Einstein’s sense, which will be named the (x)-field
spanned by points {x}, has the R,-structure. Therefore, the resulting Finsler structure
(F.) is induced by “unifying” the R, -structure of the (y)-field with the R,-structure of the
(x)-field. One typical example of this “unification” will be given in Section 2, and a new
Finsler metric represented by (2.5) will be proposed concretely.

The vector y, as the internal variable, shows its own intrinsic behaviour, different
from an arbitrary vector, say X (= X*; v = 1, 2, 3, 4), that is, y is endowed with the
internal symmetry such as Poincaré or Lorentz transformation. This intrinsic behaviour
is grasped geometrically by its intrinsic “‘parallelism” or connection (i.e., dy), which is
nothing but the base connection (cf. [1, 3, 5]), and is different from the ordinary absolute
differential of y (i.e., Dy). In Section 3, the relation between Dy and Jy will be clarified
and then, on the basis of the difference between Dy and Jy, some fundamental observations
will be made on the metrical Finsler connection with respect to the metric of (2.5).

In Section 4, some other comments will be made on the Finsler structures with respect
to the metric tensors of (2.5) and (2.6), the latter has been introduced in the previous
papers [6]. In particular, a new physical interpretation of the special form of torsion given
by (4.2) will be proposed. Section 5 will be devoted to conclusions.

2. On the Finsler structure

As mentioned above, the Finsler structure (F,) of the gravitational field is caused
by attaching the internal vector y to each point x, so that F,-structure is derived from the
“unification” of the (x)- and (y)-fields. Concerning this “unification”, the Rg- or Rg-structure
is first obtained and then, the final F,-structure is derived from this Rg- or Rg-structure (cf. [6]).
This way of thinking is justified by the contact tensor calculus or the theory of tangent
bundles [7}], in which it has been proved that the R,,- or R,,-structure can be arranged
to become the F,-structure (n = 4 in our case). But it should be remarked that the “‘unified”
field in our sense is not necessarily compared to the tangent bundle over the Finsler mani-
fold, because the intrinsic behaviour of y, that is, the intrinsic “parallelism” of y can be
chosen in various ways according to our physical demands and the metric for the internal
(»)-field can be chosen differently from the whole “unified” Finsler metric (see Section 3).

In this Section, in order to emphasize the physical function of y as the internal variable
and distinguish the external x and the internal y explicitly, we shall denote x = (x)
(k =1,2,3,4) and y = (/) (i = 1, 2,3, 4) respectively, the latter will be shown to be
brought in the “unified” field as the vector y* (see (2.1)).

Now, in general, the (y)-field has some “non”-Riemannian structure (R,), including
R,- or M,-structure. The flat (y)-field with M ,-structure may be likened to the isotopic
space [8]. In order to “unify” the (x)- and (y)-fields, it is necessary to reflect (or map) the
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R,-structure of the (y)-field in (or on) the R -structure of the (x)-field. For that purpose,
we shall here introduce the following mapping relation:

V5= )y, ¥ = e, (2.1)

by which the vector ' of the (y)-field is reflected or embedded in the “unified” field as the
vector ¥*. The transformation matrix e satisfies the relations erel, = &% and efel = 8,
and ' plays the role of 1-form corresponding to y* (cf. [9]).

Let the metric tensor of the internal (y)-field be denoted by 4;;(3), which presents
a Riemannian aspect, including a Minkowskian one (1;;). By the mapping relation of (2.1),
hi(») is reflected or embedded in the “unified” field in the form

ha(x, ) = ed(®)e()h;(y), (2:2)

which becomes, of course, Finslerian depending on y as well as x. In fact, this metric
resembles the 1-form Finsler metric derived from the I1-form metric function

272
LGN = LYY, ie. by = %W(Cf. [9]). If the (»)-field is Minkowskian, then
y oy
(2.1) and (2.2) are reduced to
yOo= e s 0= el Y (2.3)
ha(X, 1) = el(x, Y)en(x, ;s (2.4)

where ¢ denotes the Finslerian vierbein and the relation #n;; = (;17;+1,;4,)/2 holds good.

The whole “unified” Finsler metric g,,.(x, y) of the “unified” field is given by “unifying”
the external Riemannian y;(x) and the internal Finslerian /4, (x, ). We can consider
several kinds of ““unifications”, but here we shall choose, as a typical example, the following
formula:

gax(%, ¥) = Y+ hlx, ¥)- 2.5)

It is found that the internal vector ' is fused into the ‘“‘unified” field through the term
h,(x, ). In the previous papers [6], another ‘“‘unification” such as

g).x(x’ )’) = ylk(x) * €Xp 2a(x, y) (26)
has been proposed. Comparing (2.5) and (2.6), we can obtain ome relation
exp 20(X, ¥) = (a+ha?™ 2.7

which means that the conformal scalar ¢ is also prescribed by the internal metric 4,,., and
vice versa. This corresponds to the microscopic character of our conformal scalar ¢ intro-
duced in [6], different from Brans-Dicke’s scalar [10] or Dirac’s conformal scalar [11].
Some other structural features related with (2.5) and (2.6) will be mentioned in Section 4.

Returning to (2.5), we can consider, with emphasis on the physical function of the
vector y as the internal variable, that the metric 4;, is used to measure the length of y alone
(.e., y* = h;,»*y"), while the metric g;, is used to measure the length of an arbitrary vector
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X(# ») (e, X* = g,,X"X"). Therefore, corresponding to the difference between g, and
h;,, we must introduce two different kinds of metrical Finsler conneciions Dg;, = 0 (and
Dh,, # 0) and 6h;, = 0 (and dg;, # 0). Their relation will be considered in detail in the
next Section.

3. On the intrinsic behaviour of the internal variable (y)

As mentioned at the end of Section 2, we must consider two different metrical connec-
tions D and & for g,, and 4,, respectively. This copes with the fact that the intrinsic behav-
iour of y is different from that of an arbitrary vector X (# y). That is to say, the “parallel-
ism” of y is represented by the connection dy, not by Dy, while that of X is given by DX
(see Section 3 of [1]).

Now, let DX be denoted by [12]

DX* = dX*+ %5, X"dx*+ C5, X dy*, (3.1)

where I's; and Cj; are the ordinary Finsler coefficients of connection. On the other hand,
let éy (¥ Dy) be written as

8y = dy*+E5,yrdx*+ A%, yrdy*, (3.2)
where E%; and 45, are other Finsler coefficients of connection different from I'; and Cj,
respectively. In (3.1) and (3.2), such homogeneity conditions as C;;;3* = 0, 4;,y* = 0, etc.
may be assumed, if necessary. Then, in order to consider the relation between Dy and 4y,
we shall here reconsider the relation (Dg;, = 0 and Dh,, # 0) and (64, = 0 and 8g;,. # 0)
as follows [1, 13]: The connection D is a metrical connection for g,, (i.e., Dg,, = 0) derived
from the non-metrical one & (i.e., 6g;, # 0). From this, by virtue of Kawaguchi’s theorem
[14], the desired relation can be obtained as follows:

Dy* = 5y*+% g(8g,)y" (3.3

by which the following relations can be obtained from (3.1) and (3.2):

"
og

K __ 1 kv VR =

pA T ""[.L;1.+2 g (0x’1 '—'vlglu :’u}.gw) ’

Ugvu

C:;. A;,-}-%‘ gkv (ayl _A:v).gm—A:ulgw) . (34)

Thus, the relation between Dy and 6y has been clarified. Almost all the geometricians
assume Dy = §y. Therefore, the condition Dy # dy is very different from many special
connections treated by geometricians (cf. [9, 12, 15]). Therefore, for example, the Gauss
equation stipulating the relation between indicatrix and tangent Riemannian space must
be used in its most general form, and the conservation laws, etc. obtained previously in the
case of Cartan’s connection (see (4.11), (4.12) and (4.14) in [1]) do not hold for this case.
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As an interesting special example of 8y, we can obtain one “parallelism” of y, (i.e,,
= 0) from (1.1) in the form

8y" = dy* +E5y'dx* = 0;

X ~
_— Oe,- . oe
——uli — 6\ e i ~

’; , (3.5)
where the homogeneity condition 4};y* = 0 has been assumed. Starting from (3.5), we
can determine several kinds of metrical Finsler connections for 4, (i.e., 6h;, = 0) such
as the 1-form linear connection (&%,, E§;, 45:)* (cf. [9]). If the (p)-field is Minkowskian,
then the quantity ¢ in (3.5) must be replaced by ¢ of (2.3). Of course, in those cases,
38 # 0, even if 6k, = 0, so that the whole metrical Finsler connection for g, (i.e.,
Dg,. = 0) must be newly constructed by taking account of (3.3) and (3.4) (see below).

Now, the intrinsic behaviour of y (i.e., 6)) is reflected in the whole Finsler structure
by replacing dy in (3.1) with 8y of (3.2) as follows:

X* = dX*+F5, X dx* + 0%, X 5y, (3.6)
where
F%, = ', — N3Cs,,
o= (PTINCL,
Ni = (P™05
P; = 5A+szy s
Q3 = Sy (3.7

The quantity P% is, of course, assumed to be non-singular. The quantity N7 plays the role
of nonlinear connection (cf. [12]), and the quantity F), embcdies the “unified” symmetry
or “unified” gauge ficld from the standpoint of gauge field theory (cf. [1, 3, 4]). The result-
ing metrical Finsler connection for g,, (i.e., Dg,, = 0) is characterized by the three quanti-
ties (F};;, N%, ©},). From (3.6), the two kinds of covariant derivatives with respect to x and y
(with g,,, = 0 and g;,|, = 0) can be introduced, and then, by use of three kinds of Ricci-
-identities with respect to those covariant derivatives, three kinds of curvature tensors
and five kinds of torsion tensors can be defined, in general; these, however, are all omitted
here (cf. [12, 15]). Geometricians have been considering many kinds of specializations of
metrical Finsler connections along the theory of special Finsler spaces (cf. [9, 12, 15]).
For example, what conditions are necessary and sufficient in order that the quantity Fy;
may depend on x alone, etc. These specializations, however, cannot always be accepted
for physical problems, much to our regret.

It should be noticed here that several kinds of metrical Finsler connections (Fy;, N3, ©},3)
can be constructed for the metric tensor g,, of (2.5) under some convenient conditions
such as F},, = F;, and N = F§, and @5, = 0%, etc., and that the set of all metrical Finsler

! The symbol 0 means the contraction by y, e.g., £, = E¥ y*.

04 pa
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-connections for g;, (such as Dg;, = 0) derived from a fixed non-metrical Finsler connection
(F%,, N%, O%,) for g, (such as g, # 0) is given by (cf. [15])

Fi= F:A+G:vX§.+é— gw(gv,,fﬁ'gwi, )+ Q0Y)

wrvas
x e x
N; = N3— X,

0% = O+ g8, + 2020,
where X%, Y5, and Z;; are arbitrary Finsler tensor fields, and g,,3, and gh:iu denote the

covariant derivatives with respect to the fixed connection, which vanish if the fixed connec-
tion is metrical for g,,, and Q}) = 3076, —g,.").

4. Other comments

In the previous papers [6], the author, bearing in mind the conformal structure of
Brans-Dicke theory [10] or the Weyl-Dirac theory with torsion [11], has proposed the
Finslerian conformal structure in the form of (2.6), where the conformal scalar o is construc-
ted by y properly and represents the difference between Fy- and R,-structures. In those
papers [6] (and also in Section 5 of {1}), the vector y is regarded as the so-called space-
-time fluctuation at some more microscopic stage than in Einstein’s sense, which is assumed
to be summarized as the metrical fluctuation in the form of (2.6). Starting from this metric
(2.6), we can also determine several kinds of metrical Finsler connections for g;, under
some convenient conditions. In fact, one special connection has been determined concretely
by us [16] under the assumption that oy = Dy, Fy; = F3,, O}, = 0%, and N = Fg,.

As in the previous papers [6], if y is reduced to a function of x (i.e., y = y(x)), then
those two metrical Finsler connections derived from g,, of (2.5} and g;, of (2.6) become
also Riemannian or non-Riemannian according as the torsion (T5,(x) = F3,—F;;) = 0

4

or # 0. It should be noticed that if the relation y*(x) = Y. €{(x) is chosen as the osculating
=1

condition, then y* = eiy* = 1 holds good (see (2.1)), so that A;()) and corresponding coeffi-

cient 4% (= eLeleld},) become constant (cf. [9]). The osculating (non-) Riemannian coeffi-

cient of connection can be written formally in the form

FZ,(X) = {21:}+¢§u’ (4-1)

where {},} denotes the Christoffel three-index symbol derived from y,,(x) and &}, is defined
as the rest; the latter contains the contortion tensor constructed by the torsion T7,(x).
In the case of (2.5), the term &}, contains the contributions by /,,(x, ¥(x)) too, while in the
case of (2.6), it contains the contributions by a(x, y(x)). Therefore, it is obvious that those
effects of @}, still remain after the averaging process () with respect to y considered in the
previous papers [6] is performed, so that the resulting macro-field becomes somewhat
“non”-Riemannian, in general. Those “non”-Riemannian features may serve as the source
term at the stage of field equation (see Section 5 in [1]). It should be remarked that in Section

5in [1], the osculating process (y = y(x)) itself is regarded as the averaging process with
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respect to y, but in [6], a new averaging process () satisfying the conditions {exp o) = 1
and {¢;> = Oisused. However, the averaging process { itself cannot yet be “geometrized”.

As to the torsion T%,(x) appearing in (4.1), the following interesting special form has
been introduced in the previous papers [6]:

Ti(x) = 830,— 06502, “4.2)

g P . . .
where ¢, = ol which is influenced by the conformal transformation. Concerning this,
Ix”

we shall here propose another physical interpretation: Now, from the standpoint of thermo-
dynamics of irreversible processes (TIP), we shall treat the space-time fluctuation y(x)
as the thermodynamical variable connected with entropy production. And we shall also
assume that y(x) is summarized as the metrical fluctuation in the same form as (2.6), i.e.,

g%, ¥(x)) = () - exp 20(x, y(x)), (4.3)

which may be regarded, in this case, as a geometrical “‘unification” between the (x)-field
with R,-structure and the (3)-field with R,-structure. That is to say, (4.3) embodies a geomet-
rical “unification” between the framework of general relativity and gravitation (GRG)
and that of TIP.

Concerning the R,-structure of TIP, the author has already shown [17], on the basis
of the relation between the cycle theory and the holonomy group theory, that the concept
of torsion is connected with entropy production. Therefore, corresponding to the non-
-Riemannian structure (with torsion # 0) of TIP, the “unified” field prescribed by (4.3)
becomes conformally non-Riemannian.

In general, by analogy with TIP [18), the entropy change (4S) in the “unified” field
(= thermodynamical gravitational field) is stipulated as

A4S = qAX7, (4.4)

where 4X' means the “unified” discrepancy, X’ = (x*, y*) the “unified” coordinate, and
o; may be likened to the ideal vector defined by (4.4) itself. Since A4S contains some irrever-
sible component (i.e., entropy production) caused by y(x), 45 is not completely integrable.
Therefore, o; becomes, in general, non-integrable, so that the non-holonomic object
O’y is introduced as

6[(“]'—8}&1( = _OgKaI’ (4.5)
This fact means that the torsion T5x of the “unified” field is introduced by
Tjx = oGy —0yax) (= —0jx)- (4.6)

It should be considered that the coordinate X' is so chosen that the relation T f-K
(= Flx—F%;) = — O’ may be satisfied. The “‘unified” metric tensor g;;, which is nothing
but g,.(x, y(x)) of (4.3), is defined by «; as follows:

g1y = (oo, +oyap)/2, 4.7
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which gives (45)* = g AX'4AX’. In this case, the “unified” coefficient of connection
corresponding to Fj,(x) of (4.1) is given by

Fil\(X) = {.IIK}'*'(I).IIK’ (4-8)

where {}} represents the Christoffel three-index symbol formed with g;; and @) the
contortion tensor formed with T7.
From (4.3) and (4.7), we can extract

(¢ =) oy =vy,expo, 4.9)
so that from (4.6) and (4.8), we can put

(TJIK E) Tfu = 52‘011_5202.’ (410)
(Fix =)F5, = {5} +650,. @.11)

Thus, the special form of torsion given by (4.2) has been obtained in (4.10), and its interest-
ing thermodynamical meaning as entropy production has been given. At any rate, one
geometrical ‘“‘unification” between GRG and TIP has been proposed.

5. Conclusions

Thus, we have made a structural study of the intrinsic behaviour of y, In Section 1, we
have mentioned our standpoint to regard the Finslerian gravitational field as one kind
of “nonlocal” field. In Section 2, the internal (y)-field has been embedded in the external
(x)-field and the Finsler metric g,,(x, ¥) = 7,{(x)+#,.(x, y) has been introduced. In Sec-
tion 3, the relation between Dy and dy has been clarified and the whole spatial structure
has been considered. In Section 4, some other comments have been made, and a new physical
interpretation with respect to the torsion T7,(x) = 8%0,-—0,0; has been given.
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