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It is shown that in L-R symmetric models with additional horizontal symmetry the
one-loop corrections can significantly change the zeroth order predictions of these models.

PACS numbers: 12.10.Ck

1. Introduction

In gauge theories of the eiectroweak interactions the quark mass matrix is completely
arbitrary. Its diagonalization gives the physical quark masses and the so-called weak
mixing angles grouped in the Kobayashi-Maskawa matrix. All these parameters are free.
On the other hand speculations on a connection between the quark masses and the Cabibbo
angle are as old as the Cabibbo theory. They are supported by the well known phenome-
nological relation for the Cabibbo angle -

my
e = \/ n,
my

where mygy, m, are current masses of the d and s quark respectively.

Practical realization of this idea was suggested by Weinberg in 1977 [1]. He proposed
to impose an additional symmetry. upon the Yukawa coupling lagrangian. It allows one to
express the weak mixing angles in terms of the quark masses. This additional symmetry
must commute with the gauge symmetry of the theory. It is called horizontal symmetry
and it will be denoted by Gy in the following. Horizontal symmetry relates each quark
family to the others as well as each Higgs multiplet to the others (if, of course, the used
representations of Gy are irreducible).

We restrict our considerations to the standard model [2] and the left-right (L-R)
symmetric model [3] with a global horizontal symmetry [4]. The most general Yukawa
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coupling lagrangian has the form:

Ly =3 (V’Lr;(c':l)y’kﬁbk'HPLF%’/’;{d’k)+h.c. (1)

i,j.k

where i are doublets of SU(2), vk, ¥k are singlets for the standard model and YR = vy

.
z’(‘,); ¢ = it2p; are Higgses
k

) = 72¢; 12 are Higgses for the L-R symmetric

are doublets of SU(2) for the L-R symmetric model, ¢, = (

P i

for the standard model, ¢, = ( b 3
2k 2k

model.
The Gy-invariance of the Ly can be expressed as follows:

K/ T"Ky = Dr®,
KITTIEP)KR = D“I’(") @

where K;, Ky, D are representations of Gy, for the left (L) and the right-handed (R) quarks,
and for the Higgses, respectively. Above equations usually determine the matrices I'y up
to a few free parameters.

There is exhaustive iiterature on horizontal symmetries. Numerous models have
been proposed. The most general discussion of models with a horizontal symmetry leading
to phenomenologically acceptable mixing angles has been given by Ecker, Konetschny
and Grimus [5].

The aim of this paper is to evaluate the radiative corrections to the Cabibbo angle
obtained in the way described above. We do not want to choose any particular horizontal
symmetric model because its explicit construction is not necessary for our purpose (except
that it should predict phenomenologically acceptable values of the weak mixing angles).

2. Radiative corrections

After introducing a horizontal symmetry the weak mixing angles are not free param-
eters. Spontaneous breakdown of the gauge symmetry breaks down the horizontal
symmetry, too. As it has been shown [6], this mechanism induces finite radiative correc-
tions to the relations expressing the weak mixing angles in terms of the quark masses,
obtained in the tree approximation. The corrections are finite because we have no coun-
terterms to the weak mixing angles and on the other hand the theory is renormalizable.
It is interesting to study how much the radiative processes can change the zeroth order
predictions. We only consider the coriections to the Cabibbo angle which is known with
a reasonable accuracy:

sin O = 0.228840.01.

For the purpose of our calculations it is covenient to write the interaction of quarks and
gauge bosons in the following form:

-‘?im = u_)ota?uwoAa") (3)
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where we assume that the gauge boson fields 4 are mass eigenstates with mass M,. The
quark multiplet v° has the following structure:
11_)0 = (P, A, Py, fir) @

where p, n stand for all up (p) and down (n) quarks. The mass matrix of the multiplet
y® is

m = [-—g=-—-pom— -1, %)

where m, and m, are off-diagonal mass matrices for the unmixed quarks p, n, respectively.
The interaction of quarks and scalars is given by the lagrangian (1).

The relevant for our calculations Feynman diagrams are presented in Fig. 1. They
contribute to the quark mass matrices and therefore to the weak mixing angles, too.
We are interested in corrections which do not have symmetry of the group Gy (in the

A, ¢
M —— P Q }Uh
’ ~, W, ghasts
/ hY
é \

a b c

[

Fig. 1. Diagrams contributing to quark self-energy

sense of Eqgs. (2)) — all the others (including infinities) can be absorbed in the redefined
constants of the lagrangian. This fact causes that the tadpole diagram 1c¢ does not contri-
bute at all. We expect the largest correction comes from the diagram la. The contribution

2

m

of the diagram 1b should be (#) times smaller than the contribution of the diagram
w

2
m
la (mq is a mass of a quark, My is a mass of a charged boson; we assume that( Mq > < 1),
A\ w
We will consider the diagram 1b later on.

Let us calculate the diagram la in the unphysical basis °. According to the expression
(3) the relevant part of the quark self-energy has the form
1

—iz4 g %’2 Z f dx(2mt(1—x)—4t,m) In [M2(1—x)+m*x*]t,, (6)
= 7

a 0

where M, is the mass of the boson “a”. The correction to the quark mass matrix m is then:

Am = 34 .
}p:m

The transformation from the unphysical basis to the physical one is done by the unitary
matrices U, Uy ... which diagonalize the relevant quark mass matrices m,+4m,, ...
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The matrices U’ should not be very different from the matrices U which diagonalize the
bare quark mass matrices m,, m,. Then we can write U’ = U - W where W is close to the
identity matrix (we assume 3 generations of quarks).

14ioy o oy
W]f = —ar 1+ia5 a3 . ]ail < 1- (7)
—af —a¥  1+ixg

Parameters «,, o, ¥z are complex; a,, as, & are real. Corrected Kobayashi-Maskawa
matrix has the form:

UKM = U’P+U = WL UKMWL' (8)

Matrix Ugy contains zeroth order predictions for the weak mixing angles (we use its
standard parametrization). Equation (8) enables one to calculate corrections to the weak
mixing angles if the matrices WP and W{ are known. The latter can be found from the
condition that the U’s should diagonalize the one loop corrected quark mass matrices.
The relevant equation has the form

m, = WL m,Wg +4m,, ®

where the m,, m, are diagonal up quark mass matrices: the first one stands for the pysical
quark masses, the second — for the bare quark masses. Matrix 4m, is the correction to
the m, calculated in the physical basis of the quarks i.e.

Am, = L UY*Am U +% UR* AmiU?,

where m,, m':, are corrections to the m,, m;’ , respectively, in the notation given by Egs.
(4) and (5). We must remember that the contribution to m, is given by all the diagrams
from Fig. 1a (they are presented in Fig. 2) regardless of the helicities of the external physical

I
N

[ d
R

{M} =p7—'—2"?m {.D} P2 -m2

Fig. 2. Contributions to the diagram from Fig. la due to different ‘‘helicities” of the external quarks
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particles. The last conclusion is valid due to the equation:

#(p)ysv(p) = 0,

where v(p) is a bispinor describing a free quark.
The final equation for the parameters of the matrix W{ is obtained by multiplication
’ +
m,-my l.e.

mi = WemPWet —Am, - mi,—m/, - Am; (10)

(we remember that m;, = m*). Only the off-diagonal terms of the LHS of Eq. (10) play
important role — their sum have to give zero. The diagonal terms are absorbed by the
renormalization. It is easy to see that the diagonal parameters of WF (i.e. o, as, o) have
no influence on the off-diagonal part of Eq. (10). We can put a, = a5 = ag = 0.

Let us introduce a new notation:

Adm,-mi+m,-Am} =a¥ as a,]. (11)
ay a¥ ag
From Eq. (10) we get
%® 2
_ Ay — 0,03 Ny ) _ a, . ajs 12
% = p) 35 %2 = —3 75 %3 = 3 3 (12)
mi—m? mE—m? mZ—m?

where we use standard notation for the masses of the first three up quarks. Analogical
expression can be found for the parameters of the matrix W{, (o; = §;). Now we can
calculate the correction to the Cabibbo angle:

— three quark families

cos O¢ = cos (Oc+460c) =~ |cos Oc—sin ¢
X (308 0, +a, sin 0, + BT cos 05+ B3 sin 60)], (13)

— two quark families
cos B¢ = |cos Oc—(oy + BF) sin 0}, (14)

0,, 03 are the angles of the standard parametrization of the Kobayashi-Maskawa matrix.

One can see that radiative processes with flavour conserving neutral currents contri-
bute to the diagonal elements of the matrix Am, (4m,) because in such processes the external
physical quarks must be the same. This means that we can neglect diagrams with an ex-
change of a neutral vector boson and neutral Higgs which preserves flavour.
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3. Corrections to the Cabibbo angle in the standard model

In the standard model only the diagram 2a contributes. It is due to the fact that
charged vector bosons couple only to left-handed currents. Therelevant analytical expression
can be written down using Eq. (6) as follows:

1
34 e 1_;:_2 Z J dx 2mt,(1—x) In [M2(1 —x)+m*x*]t,: (15)

charged O
bosons

~1i

. : om ‘
We can expand the integral in powers of the small matrix e <1t is small because

2
<;n4q) <1, M, —mass of the charged boson “a”).

m\? m\*
P Z (mtata+const - mt, (K/T) t,+0 (}\7) ), (16)

charged
bosons

ZA

Term mt,t, does not contribute to the o’s and f’s because the matrix ¢#,¢, is diagonal and
the matrix m’' = m+mt,t, is diagonalized by the same unitary rotation as m. Finally

2 2
the leading correction is of the order g < 1 ) (g is SU(2) coupling constant included

1672\ M,
in t,), so it has the same magnitude as for the diagram 1b. All such contributions will be
considerd later on and we expect that they should be small if quark masses are not too
big.

Similar results have been obtained by Horetzky [7].

4. Corrections to the Cabibbo angle in the L-R symmetric model

In this model the interaction of the charged bosons with quark current has the form:
Lim = LW+ gjr,WE +hec. . an
The general form of the charged boson mass eigenstates is the following:
WEY = Wt cos E+ Wt sin &,
WEY = —WE* sin E+WET cos &. (18)

Present experimental data require [8]

My,
1€l < 0.042; = 20.6.
My,
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Theoretical bound for the angle & is the following [3] (for

M .
LEIPN 1)
My,

It is seen that charged vector boson mass eigenstate can be a mixture of the state which
couples to the left-handed current and the state which couples to the right-handed current.
This can significantly change the result on 46, compared to the standard model. Now
all the four diagrams of Fig. 2 contribute to the correction 40. Proceeding similarly as

before it can be shown that the leading contribution comes from the diagrams 2b, 2c
2

" MW:

1€l < My,

and it is of the order —— 6 5 My We write down the explicit expressions for the a, and B,
for the case of two quark families.
g2 My, -
oy = 225 2 In—sin 8ccos Oc ~ 4.6-107°
1612 mc+m“ My,
2 m_—m,
By = — ——54sin2f ——— ~46-107°
16n Mg+ mg N W,

(for ¢ = 0.035, m, = 4 MeV, mg = 7MeV, m;, = 150 MeV, mc = 1.5 GeV).
Then from Eq. (14) we find
A40c ~ B, = —4.6- 107> rad.

For the three family case the analytical expressions are quite lengthy and we do not present
them here. The final results are shown in Fig. 3. Our poor knowledge of the parameters
of the Kobayashi-Maskawa matrix (except the Cabibbo angle) forced us to calculate the

A )
2% my=25GeV 4 C* my =45GeV
-003 1 -003
~Q01 -0.01
1 1 - 1 |
01 03 o §0) 0.1 0.3 ip QEO)

Fig. 3. Correction to the Cabibbo angle as the function of the zeroth order values of sin 6{) and sin 6

(upper line — sin 8" = 0.1; lower line — sin 6{”) = 0.002) and the mass (still unknown) of the top quark

me. For the other parameters we assume the followmg values: my = 4 MeV, mg = 7 MeV, ms = 150 MeV,
= 1.5GeV, mp = 4.5 GeV, sin Q) = 0.229, CP violating phase factor ¢ = 0.002
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correction 46 for very wide phenomenologically acceptable range of their values. We
should emphasize that the correction shown in Fig. 3 does not depend on the construction
of the specific model but it only depends on the zeroth order predictions of the model.
The magnitude of the correction may be of the order of present experimental accuracy.

5. Corrections from the Higgs sector

We do not want to choose any particular model with horizontal symmetry because
it is not clear which one is the best. In this section we describe general features of the

corrections coming from the exchange of the virtual Higgs bosons. As it has been mentioned
2 3

. . . . m .
before such radiative corrections have the magnitude of the order —Gj—z —M—f(M 2 is the
n a

mass of the lightest charged boson). Then from Egs. (12), (13) the largest correction to the
6c has the folowing form:

2 3

g m,
W“f(oc’ 05, 05)

A8 ~ B, ~ =
c = /b 64n*
where function f(fc, 0,, 0;) vanishes when 0. approaches zero or 6, and 6; approach
zero (i.e. radiative processes cannot produce mixing between families if there is no mixing
in the tree approximation), so

F(Bc, 05, 05) ~ A sin Oc(sin 0,+B sin 65).

We assume that 4 = B = 1, then for the angles 0, = 6; = 0.1 and m, = 25 GeV,
46¢ is about 7.5 - 10-* rad. This correction is still small but for the bigger values of 6, 05
and m, it can be much larger.

6. Conclusion

We conclude that contrary to the standard model in the I-R symmetric model with
a horizontal symmetry the radiative corrections to the Cabibbo angle may be important
for the experimental verification of such a theory. The correction 46, may be comparable
with the present experimental error for 6.

I wish to thank Professor S. Pokorski for stimulating discussions during my work
on this problem.
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