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In the framework of the reggeon theory with dipole Pomeron the secondary reggeon
propagator is studied and the anomalous dimension is evaluated for different structures of
an input reggeon and also for different types of its interaction with Pomeron. The results
obtained are compared with the experimental data on the g-reggeon exchange.

PACS numbers: 12.40.~y

1. Introduction

In spite of considerable progress in QCD there are many problems in hadron physics
which remain outside the range of applicability of the QCD methods. Among them it is
necessary to name first of all, the hadron interaction at high energies but small momentum
transfers: elastic scattering, charge-exchange processes and so on. In these processes,
however, the methods using the reggeon notions proved to be up to the mark.

Over a long period of time both Pomeron and secondary reggeons were considered
as simple poles in an angular momentum plane. It was reasonable since total cross-sections
scemed to be constant in asymptotics. In this case corrections to a simple reggeon pole
induced by its interaction with a simple Pomeron pole are small at high energies. The
sitaation changed when it became clear that Pomeron is harder singularity than a simple
Jj-pole. In the light of new understanding of the Pomeron it became necessary to reconsider
all which is known about secondary reggeons. It is obviousthat the properties of a renormal-
ized secondary reggeon depend, to a considerable extent, on specific assumptions concern-
ing the structure and properties of Pomeron singularity.

There is a number of approaches to the Pomeron [1-6] differing essentially in predic-
tions for asymptotic behaviour of hadron elastic and inelastic interactions. In the reggeon
field theory (RFT) the critical Pomeron is very popular [1]. It results in the total cross-
-sections rise ~(In s/s,)’® where yp < 1 but in the decrease in the ratio ¢./o.,. Such
a behaviour contradicts experiment (this concerns, first of all, the o,/0,,). Secondary
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reggeons in this theory are transformed from a simple pole to a harder singularity [7, 8]
contributing to the amplitude ~S*(In s/s0)’®. In the first order of e-expansion one has
yr = €/24. But the analysis of the data on the g-reggeon exchange gives larger value of
yr (see Section 3). Furthermore, the e-expansion converges badly (physical value of ¢ equals
2) and, therefore, the obtained parameters of the critical Pomeron are unrealistic.

In this paper we study the secondary reggeon in the framework of the dipole Pomeron
theory [6] which originates naturally if we accept the following arguments.

Almost in all variants of reggeon theory [1, 3, 4] the renormalized reggeon differs
essentially from the input one!. Therefore, it makes sense to single out such Pomeron
singularities for which the input Pomeron is renormalized to a small degree and then to
choose between them the ones being in good agreement with experiment. Solution of this
problem leads to the alternative [6, 9]: either Pomeron is a two-fold pole (dipole) or it is
a pair of colliding hard branch points with hardness 3/2 (froissaron).

2. Renormalization-group properties of reggeons in dipole Pomeron theory

We shall assume the Pomeron to be a two-fold j-pole. Let us consider firstly the case
when the secondary reggeon is a simple pole and the vertex for reggeon-reggeon-Pomeron
(RRP) interaction is constant and equals 4,. The Langrangian for such a theory can be
represented as

L = Lo+ Lr+ Lrp, )]
where

- + = 5’ 2 - . ¢ + 3 e
Lp(x, 1) = =% p(x, 1) <a_t> p(x, ) —ixgVy(x, t) 5 Vy(x, )

+(a1)2V2+—> V2 d —.E +2-> ﬁ - 6_2-+—> 2,
0 1/’(3% t) 'P(x’ t) i 3 L4 (x, t) atz 'P(x, t)+ atz w(x’ t) K4 (x’ t) (2)

is the Lagrangian corresponding to free Pomeron and triple-Pomeron interaction (its

form is considered in more detail in Ref. [6]). In (E, K)-representation (E = 1—j)the Lagran-
gian (2) leads to the triple-Pomeron vertex

L2307y _ o 2 ,,

r (Ei’ kl) - (27!5)3/2 E (3)

(for simplicity we omit in expressions (2), (3) the dependence on k; as will be seen below

this dependence does not change reggeon propagator at zero momentum).
The next term in (1) describes the free secondary reggeon

«>

.

a Eed ’ + = - + = -
5 @(x, 1) PP P(x, ) —og Vo(x, OV @(X, 1) — Ag,p(x, (X, 1), 4

where ¢(x, t) is a reggeon field, g, is a slope and 1 —A4g, is an intercept for this reggeon.

$R=

1 1t is not so for the case of weak coupling [2] but this variant of the theory fails to agree with experi-
ment.
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The last term in (1)

Frp = — i@k, D@, D) [P, D+ (%, 0] ®)

describes an interaction of reggeons with Pomeron.
Since the number of secondary reggeons is conserved one can made the phase trans-
formation [7]

(X, ) = (X, 1)

which does not change the interaction (5). This allows us to use for secondary reggeons
instead of E the variable

(év = E_ARO = OCRO—j.
Thus, we have the reggeon theory with the input Pomeron propagator

i

G(1,1;0) EF)=— e, 6
] ( ) (E'—O((')kz)z ( )
the 3P-vertex of the form (3); the input reggeon propagator
GO, ) = s ™
° 8 —ap,p
and the RRP-vertex
- A
(1,0:1) >y _ %o
Iy " AE k, 8 py) = Qny )

We follow here the notations of Ref. [7] where the secondary reggeon is considered in the
theory with critical Pomeron. We shall not dwell on the rules for diagram calculus which
can also be found in Ref. [7].

The aim of the paper is to study the infrared properties of the vertex function
rmoE. ki, &, p;) (the notations are seen from Fig. 1). Unrenormalized vertex functions
™" depends, in addition, on the parameters ap, og,, ro, Ao

E 1 ’—k’i 1/ ;F’{
Enkn Bk

[
Es Px
Fig. 1. The vertex function rame g, 1?,-, &, ;i). The wave lines stand for Pomerons, and the dashed lines
are secondary reggeons
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The renormalization procedure comes to

1/2 1/2

W% 1) = 27 (0, 9% 0 - Zg e, 1),

and when the renormalization point is at £ = —Ey < 0 we have
L™ (E; Ky 81 pis 1y by o, o, Exy)
= ZOrMR R (E,, Eia & I_;i; Y05 Ao 956, oo)-
The renormalized quantities are defined from the conditions

(Lo T2 e 2
lT( (E,k )|E=°EN,k2=0 = —EN,

e ir' SO, KDip= —pypi=o = —20/(Ex)En,

(0,0 0 T2y - o
[r( )(‘5),1’ )-5=’En,p2=0 = —EN’

652 l[v(OO 1)(@ p )xé"——Fu p2=0 = _al,l(EN),

- = - 7(Exn)
(1,20 .
I( )(Ela kla ’la klla E:’Za k,2)§E1=2E;'=2E2'=—EN n \3/2
o =t =Ti=0 (2m)
. - MEL)
0,151
re )(glapl,éai,lﬂ, k)(g'l 281 =2E1" = ~Ex = 2 ;_/E

P =Ky’ -P1 0 ( 77:)

Going to dimensionless parameters

r(Ey)
g(EN) = [——-a,(E“‘N)]l/z L)
By - MEE'
BT ST (B ¥ aEDN
o N ar(En)
V(Ey) = _a' (Ex)

it is not difficult to ascertain that

F(n’m;k)(gEi’ k*i, ééab l—;u gs 8rs d’, vV, EN)

o E
€1+(n+m)/21—v(n,m k) <Eu ks, &, p” 2 Srs ? .V, _g)

EZ,

®

(10)

(an

(12)

(13)

(14)

15)

(16)

amn

(18)
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and the renormalized vertex function I'™™® satisfies the renormalization-group equation
group €q

£ 0 Be) L —pue) -+ (1=Lfa) L Lt
o¢ g o2 r(E 92a pw 7 (n+m)y
n+m (n,m;k) A g 4
+kyg—1— —— (I CE ki, 883, pi3 8, 8ro o v, Ey) = 0, 19
where
0g é¢lnZ
= Ey =, , 20
b=Exgp> v=Ex 0Ey (20)
B = E Jgx _ Jln Zy @1
R = Ly O Ex s YR = EnN OEx s
(=g % @)
- NaENa
£, 23)
g = —
N Ey

The solution of Eq. (19) reads as
F("’m;")(éEb ;_{’ia fé’)i’ ;z; gy gR; afs v, EN)

= I'"™(E, k;, 8, py; 8(—1), ga(—1), &(—1), W(—1), Ex)

-1

X exp {-— J dr [1+ B o G~ kB, B, v(r'))}}, 24)

0

where ¢ = In ¢ and the function depending on 7 can be found from the equations

5O _ o @s)

;i—r) L = 1w, i, 26)
B _ (o, 5o, 50 @7
YO o0, 50,500 (%)

at the initial conditions g(0) = g, gr(0) = gr, &'(0) = &, ¥(0) = v.
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The formulas given above need some remarks. First of all, we note that a Pomeron
part of theory can be studied irrespectively of the reggeon one and this has been done to
some extent in Ref. [6]. Here it is only important that f-function for Pomeron has zero
at g = 0. Therefore, in what follows we shall focus on Egs. (27) and (28).

To find the functions Sy, o, and also the renormalization constant Z; we calculate
one-loop corrections to the bare propagator (7). These corrections are defined by the
diagrams shown in Figs. 2, 3. At g = O the contribution to RRP-vertex comes only from.
the first two diagrams in Fig. 3.

—p

€,9

GO = g g

Fig. 2. Diagram representation for the %014 & py in the one-loop approximation

Fig. 3. The same as in Fig. 2 for I'OGA&,, 5, &1, 51, EL k1)

As a result we obtain for the unrenormalized vertex functions

. . 2 Gth, o\
ir(o,o;l)(ée, p) = E—af p2_§. ; o - (5- ,0 R‘j pz) (29)
U Ro 4o +ag,) \ %o+ %,
and
E E : 4n%ho  Bx
il..{Jo,l;l)(__EN’ 0, — .0, — l, ) = A-03/2 L :?2 ; N 7 (30)
20072 T @ T @ dpt,

From formulas (9), (12), (13) and (15) we find

AZE_Z
Zit =
Sn[i (10 +aRo)]

or
Zyp = 1—-gg/8n
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and taking into account the definitions (17) and (18) we get

AoEn? 3 ASER?
g(E)=‘_—&1 ’ = e ’ ’ 3/2° 31
YT B otap)1? 8n [4 (%o +ar) 1" Gl

ORo AER? 2+ aﬁo/a(,)
EN=—1{1- . 32)
HE %o ( 82 (o +oko)] 1+t /o5 52
These equations and also Egs. (21), (23) give
Br = g 33
R ™ T8r an 8r» (33)
, V(2+v)

= . 34
R 4n(1+v) (34

Putting Bz = 0 and ¢ = 0 we find the only infrared stable point

R 4n
(gR13 vl) = '?7 0]).

The fact that this point defines really the infrared properties of the theory is easily seen
from the solutions of Egs. (27), (28)

gr(7) = gR,+(gR_gR1)e—2t > 8ry, T 00, (35)
vty =vexp(—%1)-0, 1- 0. (36)

The anomalous dimension yg can be determined from (21),

2
= ——, 37
Pr o 3D

Evaluating the integral in (24) with the functions (35), (36) we get

1 —kop, + ntm
iy glTRR —-
remo~ g T £,
where
2

e, = 2™ =1

Rj 47€ 3
Thus

ntm
mik)y « - - . 1+ ~kymy
r(" " )(QE,', kx'a ggb Pi: & 8rs a,5 v, EN) ~ ‘: 2

&~0

X F(”,m;k)(Eia I_‘:i’ giﬁ 5;: Oa gR;s ala v€2/3, EN)
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‘This means that

1+ _."+ﬂ ~kyRr,
(k) 7 - , Ey 2
' (E, k;, &, pis g 8> &'s v, Ex) ~ Epl — _E_

EN +H2—-n—m-2k) Ei al];i . ]‘2] E 2/3
X q)n,m;k - VL — = s 8, |»
24 —E —E EN

E == Z EI+Z 6)i‘

It follows from the last formula, that the reggeon propagator

where

G(O,O;l)(éa’ 0) — [F(O,O;I)(g’ 0)]~1 ~ éa—1+7g,

and, consequently, the reggeon contribution to the forward scattering amplitude is of the
form
Ar(s,0) ~ s™(Ins) 7™ = O]y )73,

§0

In the following section we shall show that this conclusion is not confirmed by the experi-
mental data on the g-reggeon exchange. The data require the degree of In s to be positive
and, moreover, it should not be too small.

Leaving the assumption on dipole structure of Pomeron in force (which does not
contradict the experiment) we have to conclude that one of two suppositions is not valid,
namely, either (a) the RRP vertex is not constant, or (b) the input reggeon is not a simple
pole.

Remaining in the framework of renormalizable theory with a local Lagrangian we
may choose the input RRP vertex in the form

rf)o’l;l)(é’ah 51, 6"'1, :U.’la ,l’ k’I) ~ éﬁl'*‘a;f: gl: ;f ~ 0

After the analysis similar to that for the vertex (8) we find the renormalized reggeon
to be a simple j-pole. This conflicts also with the data on g-reggeon exchange (see the
following section).

Thus, we must reject the assumption on simple j-pole structure for the input secondary
reggeon.

In the case when the secondary reggeon is a two-fold j-pole the interaction is also
described by a local Lagrangian. This variant of reggeon theory will be renormalizable if

L4585, by, 4, Py By k) ~ (61 +apy)”

with 4 = 0,1 or 2.

The anomalous dimension at different values of u is given in Table I. The Table
shows also what additional degree of In s appears in A(s, 0) for different input reggeons and
different RRP-vertices.
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TABLE I

Values of anomalous dimension yg, and of parameter y in expression (42) at different input reggeons and
different vertices RRP

Reggeon model Value of ¢ in RRP | Anomalous dimension Value of y in Eq. (42)
vertex VR, i
V : - ' i
Simple pole 0 ! 1/3 : -1/3
\ 1 0 : 0
e | - S Aﬁ_}
Two-fold pole i 0 2/5 | 3/5
i : }f’4 [ 314
\ 2 | 0 \ 1

3. Analysis of experiment

We now turn to the data on p-reggeon exchange in order to verify to what “extent
they confirm the RFT conclusion on the renormalized o-reggeon to have an anomalous
dimension and to what type of an input reggeon they correspond to.

As is known the high-energy behaviour of the total n-p and n*p cross-section difference
and alsothe n—p — n°n differential cross-section are completely determined by the exchange
of a state with the g-reggeon quantum number. The measurements of the processes during
almost 20 years have shown that one singularity dominaies which is approximately as
hard as a pole and its trajectory is near a straight line going through the ¢ and g mesons.
But the accurate analysis of the data reveals some (not large) discrepancy from one-Regge-
-pole model. This is seen from the following example. 4o, behaviour [10] results in

a,(0) = 0.54+0.02. (38)
The behaviour of do/di(n~p — n°n) gives [11]
2,(0) = 0.48+0.01. (39)

This points out, in particular, that the real and imaginary parts of aN charge-exchange
forward scattering amplitude have, in contrast to predictions of one-Regge-pole model,
somewhat different dependence on energy. Fig. 4 shows the ratio Re A(s, 0)/Im A(s, 0).
In one-Regge-pole model

Re A(s, 0)/Im A(s, 0) = tg (nx,(0)/2) 40)

and for o, = 0.51 we have Re A/Im A = 1.03. The experiment reveals that this ratio is not
constant but decreases with energy. In particular, Refs. [12, 13} turned attention to this
fact. To describe the change of the ratio Re 4/Im A in the region p,,, < 20 GeV/c an
additional phenomenological g'-pole with

%(0) = —0.074£0.04, « =0.4+0.2GeV >, (41)

is usually introduced. The nature of this term is not clear.
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Re A(s,0) / Im A(s,0)

1 L 'j\'ll" ¥ IT"I!!! 1] 3 LI B I T A2

10 102 10> Ptab, GeV/e

Fig. 4. Ratio of real part of =N charge-exchange forward scattering amplitude to imaginary one. Curves
correspond to the model (42) for y = 0 (reggeon is a simple pole) and for y = 1 {two-fold pole). The data
are from Refs. [10-12]

It may be connected with g, of, ... branch-points whose intercept and slope are
near to (41).

To explain the change of Re 4/Im 4 at py,, > 20 GeV/c the assumption has been
put forward in Refs. [12, 13] that in asymptotics inelastic processes, similar to elastic
ones, tend also to a limit arising from analyticity and unitarity. In Ref. [13], a singularity
with unit intercept has been intrcduced to N charge exchange amplitude and it has been
obtained that its contribution is small at p,,, < 5 GeV/c (< 5% of whole value of Re 4 (s,
0)) but for p,, ~ 200 GeV/c it is 20%. In this model

Re A(s, 0)/Im A(s5,0) ~ — /s &> —®, 5 — 0.

The measurement of polarization in np — n°n at mcmenta 100-200 GeV/e is crucial

for such a model.
Let us now turn to the expression for the renormalized g-regg=on. Its contribution

to N charge-exchange forward scattering has the form
A5, 0) = —r(—is/so) @~ Un"(—is/s,). (42)
The amplitude is normalized in such a manner that

do 1 2
—— = —jAj%,
dt l6r

4o, = /2 Im A(s, 0).
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Fig. 5 shows how the model (42) agrees with the data on do/dt (¢ = 0) [11] and 4o,
[10] at different values of the parameter y. For y < 0 we have the z?/point 2 2.3 (we use
89 experimental points) that is due to the factors noticed above. The value of x? falls off
rapidly when 7y increases and the model agrees well with the data for y 2 0.2. In the range
0.6 <y < 2.5 the ¥ value does not depend appreciably on y.

In Figs. 4, 6 the model is compared with experiment at y = 0 and y = 1. Other param-
eters of the model take in these cases the values in Table IL

2 .
N =
Kt
1
j
1 ] 1 ] 1] 1 L
0.2 0.6 A ¥

Fig. 5. Dependence of y*/point on the value of y. The curve is obtained fromn fit to the data [10, 11)

As it is seen from Table 1 the case y = 1 corresponds to the input and renormalized
0 reggeons to be two-fold Regge poles. This scheme describes well the behaviour of do/dt
as well as the decrease in ratio Re 4/Im 4 with energy.

As a whole, the available data confirms the RFT conclusion that the renormalized
secondary reggeons are (at ¢ < 0) harder singularities than a simple pole. But to define
the hardness of the reggeon pole one needs the measurements of charge-exchange processes
in a wider energy interval.

TABLE II

Values of parameters in expression (42) from fit to the data on da/dt (t = 0) and Ao,

50 (GeV?) «(0)

Y }’ r (mb)

11.2 0.178 0.304

0 ! 4.30 ' 3.93 0.509
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0.3

Pab GeV/e

Fig. 6. Differential cross-section of =~p — =°%n at ¢ = 0 and difference of =—p and w*p total cross-sections.
Curves are the model (42) at y = 0 (dashed line) and y = 1 (solid line). The data are from Refs. [10, 11]
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