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After showing that the CP! model factorizes we obtain the S-matrix for fundamental
fields and bound states.

PACS numbers: 11.10.Lm

1. The anomaly free model

The classically established equivalence of the CP! and O(3) non linear sigma model
[1], has never been shown quantum mechanically. This notice aims at calling attention
to a fact that, in our opinion, solves the problem.

The CP"~! model has a quantum anomaly preventing conservation of the non local
(classically conserved) charge [2]. However, when coupled minimally to fermions, the
anomaly cancels [3], the gauge field zero mass pole disappears, and the model turns out
to be factorizable [4]. The S-matrix can be calculated, and compared with the 1/n expansion
of the model [4]. Accordance is obtained in lowest order. The S-matrix has no pole in the
physical sheet, and the z-field interacts via a repulsive force, preventing bound states.
This situation is very different from the pure CP" ™! model, where long range forces confine
partons in mesons. These long range forces, responsible for confinement, imply also the
existence of the anomaly, as shown in an explicit calculation {2}

Briefly the CP"" ! model is the theory of an n-component complex z-field whose
Lagrangian density is given by [1]

& = D,zD,z, (1)
where
D,z =0,z—A,z, (2a)
A=~ Lz (2b)
n
and the consiraint
22 = Y 22 = nf2f. (20)
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At the classical level this model is known to possess an infinite number of conservation
laws [5] and the simplest classically conserved non-local charge is given by:

QY f dy,dy,e(yy — y ) ot y)JE(, v2)— QJJ”O »dy, (3)
where
J(x) = 2(x)8,2(x) +24,2(x)2(x) )

is the classical traceless Nother current associated with the SU(n) rotations.
The classical integrability condition

) 3
0,09=0,05+2 L 1,60, 5,01 = 0 ®)
n

ij

is equivalent to =0.

At the quantum level we have problems because the charge (3) involves a product of
two currents at the same point and so it is not well defined. To give a proper definition of
the quantum non-local charge we must look at the short distance behavior of the product
which appears in the commutator of Eq. (5). This has been done [2] and we are left with:

[T, (x+8), J(x)]7 = C2(e)JJ(x)+ D)8, T (%) + ES(€) 2,2, F 1o (%), ©)

where C§,, D;; and Ej are non zero and F,, = 0,4,—0,4,.

Now we are able to define the quantum non local charge QY = lim QY.
60

| . N
5 = ;{ j dydy2e(y, — y )5t yIE(t, yz)—Za.[dyJ'{(t, y)}, D
|y1—y2| =6

where the dependence of Z in the cutoff  is such as to cancel the linear divergences which
appear in the commutator (6). So that, in order to obtain a well-defined charge Q we

must have
2 n & imé g
=—1In .
" o 2 ®)

The mass m is dynamically generated and given by m? = p2e” ™/ where u is the
renormalization point and y is the Euler-Mascheroni constant.

In accordance with the confining properties of the theory one can verify using (6)
and (7) that the quantum non-local charge is no longer conserved.

dQ”

2
? f ZiZjFlody’ (9)
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This means that the model has an anomaly in its quantum non-local charge and
because of this the model is not factorizable, and consequently has no factorizable S-matrix.

However, for # = 2 the picture changes. In this case the anomaly can be easily shown
to be a total divergence, and we are able to construct a new quantum non-local conserved
charge. We can then show that the CP* model has a quantum conserved non-local charge
just redefining the old one (7).

The Nother current (4) can be written as follows [6]:

J,= -D,XX"+XD, X" =YD, Y"'-D, YY", (10)

where the fields X and Y (for the CP! case) are the two-components fields:

() ()

satisfying
Y*X = 0, (12a)
X*X =YY =1 (12b)
and connected by
Y, = £infa (621 = —1). (12¢)

In general the following identity holds
XFEX Y+ YFLY™ = 1(8,J,—8,J). (13)
Now, the anomaly is just
(X X[ =% 0:)FL, = (Y] Yi— 3 8, )F),. (14)

The above identity is a direct consequence of (11). So that we can take the mean value
of both sides obtaining (13), which is the total divergence of the current (10).

At this point a standard definition for a conserved guantum non-local charge can be
made and we conclude that the model is anomaly free.

This fact follows from a very simple criterion obtained in the context of group theory
[7], for the so called non linear sigma models defined on symmetric Riemannian spaces.
There a general criterion is shown for the presence or absence of anomalies in these quan-
tum models. The conclusion is the following. Let a mode! be defined on a symmetric space
M = G/H. One can have two possibilities:

1) The model is anomaly free if H is simple.

2) Anomalies are allowed if H contains notrivial ideals.

2. Fundamental z-fields S-matrix

In this section we construct, from the asymptotic ﬁel'd, a quantum non-local charge
which has no contribution of the gauge field 4,. To justify this procedure let us recall
that the asymptotic part of a conserved current can be taken as the one which has the
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same commutation relations and vacuum expectation value as the interacting current [8].
The procedure as well as all the normalizations are completely analogous to Ref. [2].
The non-local charge can be written as:

QY= -3 _I du(p)du(p,)é(p, — p2): (ak(py)aiik(py)

_b:l'(pl)b (pl)) (am(pl)a (Pz) a (Pz)am(Pz))

——fd()l @’ ").{m(p)a i)~ b3 p)blap)

5
— 5 i (P)ain(p) ~ bin(P)bs, (p)}, (15)

where a and b are creation and destruction operators obeying the usual commutator
rules. The out-form of the same charge Q¥ differs from (15) just by the sign of the first
term.

The action of the non-local charge Q" on the asymptotic states of two particles charac-
terized by the rapidities 8,, 6, and by the isospin indices ¢, dj, ¢, d; is given by:

Q”W;Cu 0202>in = (szx)dldzclczw dy, 0,d>,, - (16a)

om<01c1a aéc;}Q” - out<0 d,la 62d2} (Mout)cx'cz'dx'dz" (16b)
where
(MDisieres = =} (316754 — 5257152
ij

0 g 8
o 5““*502"’2) , %)

o é

1 dy scad

- Sic15id1geada
( + 5

ir in

66111150242) _ 2 (5i025jd25c1d1+

AL — 1 idy" gjez’ sd2’cy’ idy sjey’ edi’ey’
(‘\/Iout)cl’cz’dl’dz’ - —2'(‘S é 5 “5 5 5 )
ij

_ 5id1’5jc1’5c2'd2’+ 6__ 501’d1’5c2’d2'
ir 2
ij

0 0 dr cerdy
=5 §erar5e d’) . 18

_ ___2__ <5idz’5jcz'5cz'd1' +

in

Now the elastic scattering amplitude of two particles with rapidities 0, and 0, can
be written as:

o015, 02¢3101¢1, 02€231, = (47)°3(07 —0,)0(05 —8,) {576, (0)
+ 50252y (0)} — (41)°8(07 — 0,)8(05 — 0,) {576 u (0) +8° 5 uy(0)},  (19)

where ¢ = 0,0, and u,(0), u,(0) are restricted by the nonlocal conservation law obtained
imposing that:

Maueyes dy'dy out<0 di, 92d2|9161, 02€2) ins (203)

our{0ich, 056510910, ¢, 0,6, = p
KO1c1, 02631Q7101c,, 02029 {mwlcl, 05c0,dy, Ords>iu(MDarare e (20b)
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This set of linear equations for u,(8) and u,(8) can be solved giving us one of the so
called “factorization equations”.

uy(6) = — "—()-"ulw). @1)

Another factorization equation which relates ¢,(0) with 7,(f) can be obtained by the
usual crossing symmetry or in the same way as u,(6) and wu,(6) just writing the elastic
scattering amplitude of one particle and its anti-particle as follows:

w01t 05851011, 058,33, = (4m)%6(0; —0,)3(05—0,) {5'5%1,(6)
39V 1,(0)} — (4m)°0(03, 0,)8(03—0,) {37 (0)+575 Ty (0)).  (22)

From the above equations we obtain both relations among t,(6), £,(6) and r,(6)
r,(0) which read

‘ie 1,(0) (23a)

t,(0) = — -

in
and
ri(0) = ry(@) = 0. (23b)

Finally we see that the relations (21) and (23) correspond to those of class IT of Ref. [9].

3. Bound states S-matrix for CP* model

Now it turns out that CP! and the mcdel coupled to fermions have the same factor-
ization equations. We claim that the difference between the two models lies in the bound
state spectrum. For the mcdel with fermions there is no bound state pole [4], consequently
the S-matrix for the partons is a compleie one. On the other hand the pure model should
have one bound state pole, in order that quantum mechanically, the equivalence between
CP! and O(3) non linear sigma mcdels holds [10].

We define bound state as [10, I1]:

o (04 +92)>
Toyaz
2

= ‘5‘ {1“1(91)&2(02» - I&z(f)l)a;(f)z))}lﬁ,az, (24

where i3 ,, are the Pauli matrices.
We suppose that a bound-state is defined with a difference in the rapidity variables
given by a constant «, which characterizes the bound-state pole [11]:

0,—6, = ina.
The bound state S-matrix is defined as
4(?;’5};6;5’21{21&2/31ﬁ2> = 015«11325€!2315Y1'62'572'61'+O-Zéaj?1'6¢2ﬁ15p262'5?2,61'

+ 0351xﬁzaazyz'éﬁlél'aﬂ'&z' + 6461151'5121315/’2?2'5‘!1’52' + 0-5011ﬂ25a252'6ﬂ171'572'51'
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+ Géaax}':'(saz}‘z'éﬁx@x'55252' + 670J151'()1252'5ﬂ1?x'552?2' + 08511)’1’501262'0!3161’5132}'2'
+695dx51'5d2)’2'bﬂ1}’1'5ﬂ252" (25)

and the action of the non-local charge QY on the bound states is well known.

iji.a b - ij a b
Q ‘Tcatflznﬁlﬂ2>iﬂ - (Min)ax’az'ﬁx’lfz’awzﬂ11321nm’az’nﬁl’ﬁz’>in (263)
a N a _b gif )
ou(<n‘/1'?2'n51‘62'lQ = out<n‘/ﬂzﬁ§1<’21 (ﬂjoul)‘ixvzéxt’z?x"iz'ﬁl'&z" (Zéb)
where
(l\/I;'f; avar By = %(510!2'51,31'50!2/31_51'131(51'0'250!2'51')50!10!1'5/12132'

+% (5%2'5}'12511212’ — 5!'0!2’5][3254113;')52111'5/1'1131’
_*__;_ (5513151‘011’(511&’ - 51'0:151'#1’531@1')5:1212’5132/32’
+% (550!151'52511'82'__.55.32’51711'51132)5“212'51?:”1'
+ aé!‘jéa1?1'5&%’5615:'5!7252'__ ¢15&15}11’51212'56zﬂa’éﬁzﬂz’

+ (1)251'0:2’51'1250:1&1'5/1’1131"51?2132’ . ¢35iﬁ15iﬂx’5a1d1’5azaz’5ﬂzﬁz'

+ ¢45iﬁz'5jﬂzézxal’éazaz’éﬁxﬁx’ (27a)
. 0;
with (]’)i == —‘l—
in
and
(Mi{n)?l?zﬁx&zh’)’2’51’62’ = _% (6i61l(5j?l5wldl—5”1’5].5155!’“)5”?2’56252'

_% (5i}'1'5j¢52'5‘,‘152 _ 51'515]'715)’1'52')57272'55151'
_% (5iY25i51551';r’2'_ 5i51'51‘yz'561v:)5717x‘55262’
__;_ (51'6251'}'2’5*/262’ _5i?25i62’(3vz’62)5m:'56151'
+a5ij571)‘x'572}'2'5§x51'5‘7252' - ¢15:'71'51'}’1572?2’56161'56262’
+ ¢25ih§jyz’5yw1'56151’(56262’ _ ¢35i51’5.i515ny1'5?2?2'55252’
+¢45i525ﬁ52’5?1}'1'5)‘272'5515x" (27b)

The non-local conservation law

(M::{n)y,yzélazyl'yz'al'dz'<?'1%5’15’21“15‘2[’)1 By

= 71720182000 8:1B5> (Midayay pyrprascasis 28)
implies the following equations
o
o, 2 (29a)

= rec1’
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O¢
oty (29)
O¢
T a1’ (29¢)
e =05 =0, (29d)
o= % : (29)
’ o (296)
g =09 = — 7,
®
where ¢ = b1+ _ ¢3+¢4‘
2 2
We have then as solution for the S-matrix
_ 2¢(p—1)+(1~a?)
= [qs(d: —o—1) (p+a— 1)] 76%u0u
o= +(d-D(U-aD] .
+ l: Po—a—1) (pra—D) :|0'60ik5jl
2¢(p— 1) +(p—1) (1—a?)
_l: gbz(d)-—a—l)_((ﬁ—{—oc-l) }o’e&léﬂc. (30)

Now we see that we must fix « in order to satisfy crossing and for o = 1 the final
S-matrix becomes the one from the O(3) non-linear sigma model [10, 11].
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