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1. Introduction

The following notes have been written after a set of lectures given at the Szczyrk
Summer School; they are as close as possible to th.ir oral counterpart; for this reason,
the style is quite direct, also no attempt is made to give precise references at each step but
they are collected at the end of the sections. The aim of these lectures was to present a review
of the “multidimensional universes™ where the old Kaluza-Klein idea holds true: we live
in a world of dimension bigger than four but we do not realise it is so. This simple idea
has enough power to restrict our attention to very particular topological spaces and very
special metrics; however a detailed study of the subject can hardly be done without some
basic knowledge of the relevant mathematical background, for this reason I decided to
give first a survey of the theory of fiber bundles (this survey is rather based on intuitive
grounds, even if precise definitions are sometimes given, however it is complete enough
for our purpose), this is done in Section 2, then there is (Section 3) a discussion on invariant
metrics on groups and homogeneous spaces, this section could be entitled “What can be
the shape of our internal world ?”. Then comes a v.ry short section on basic Riemannian
geometry — almost without any formula. The important results about the structure (topol-
ogy and metric) of these multidimensional universes is given in Section 5 where the physical
ideas are also discussed; the impatient reader can go directly there; however, the mathe-
matics of the subject being studied before (i.e. from Section 1 to 4) Section 5 is by itself
short but “dense” and it is maybe unwise to step directly there. In Section 6 we show how
to obtain many homogeneous Einstein metrics on groups and homogeneous spaces and
study how they can lead to “spontaneous symmetry breaking”. Actually I want to draw
the attention of the reader on the fact that this Section 6 is special, in the following sense:
the subsections devoted to Einstein metrics is certainly correct but the part (Section 6.3)
devoted to the possible application to symmetry breaking is an unfinished and unpolished
work (forgive the pun!); there exist difficulties (mentioned in the text) which, 1 hope, could
be overcome.

Now it is maybe necessary to warn the “specialist” that there exist two entirely different
kinds of theories under the keyword “Kaluza-Klein”: in the first kind of theory (that
we will discuss), dimensional reduction is automatic and is a consequence of the invariance
of the metric under a group; in the second kind of theories, the metrics employed are usually
not invariant and one has to perform some harmonic analysis and “integration over the
internal space” to recover some 4-dimensional theory: this kind of theory will not be
discussed at all.
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2. Generalities on fiber bundles
2.1. Intuitive aspecis

Everybody knows what a topological space is, but one has to be cautious about the
vocabulary, in pardcular,
a) a topological manifold is a special kind of topological space (each point possesses
a neighborhood looking like an open set of R". Notice that the following object ““o0” is not
a manifold (it contains a cross X).
b) a differential manifold is a special kind of a): it has to be “smooth”.
¢) a fiber bundle is a special case of b) and can be thought of as a collection of “fibers”
glued together and parametrised by a “base space”; there is also an additional structure
derived from the action of a group on the fibers.

Warnings:

* The seme diffcrentiable manifold can be sometimes given several fiber bundle structures.
* For the moment, we do not specify any particular metric on the spaces under considera-
tion (no shape is specified vet).

2.2. Examples

2.2.1. The infinite cylinder

a) It is a collection of lines glued together and paramet-
rised by a circle B = S'.

b) These lines are “copies” of the set of real numbers R
but the origin is not specified on each line. We say that
the typical fiber is R.

¢) The fibers are paramstrised by the points of a circle B,
therefore we have a map = (called the projection):

E—>B

z~~o7{z) = x

The set n~'(x) = E, is called the fiber above x. B
d) The additive group of real numbers acts on the fibers

(by translation). x = T({z)

€) We can also cover the base (i.e. the circle B) by open sets

U; = 1-[. Then =~'(U)) is a strip diffcomorphic to U;x R and we can think of E as a
pasting of these strips.

f) The infinite cylinder is called a “trivial bundle” because it is diffeomorphic to (base
space) x (typical fiber), here, E = S’ x R.

g) In order to specify the coordinates of a point z ¢ E, we need an origin on the fibers,
therefore we need to “cut” the cylinder, therefore we need a map o from the circle (base)
into the cylinder. This map — called a section of E-—has to satisfy the relation no o
= Identity. The role of this section will be to mark the origin on each fiber: o(x) is now
the origin of the fiber above x and we can now say that the coordinates of z € E are (with
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respect to the choice of ), z° = (x, &) where x = n(z) € B and a € R. The choice of ¢ is of
course arbitrary (call it gauge freedom!): if we had chosen another section ¢’ we would
have found z% = (x, f) with B # a.

Warnings:

* A fiber bundle is not necessarily trivial!

* Tt is not always possible to find a global section.

2.2.2. The infinite Moebius cylinder (also called open Moebius strip)

The previous example (infinite cylinder) could be constiucted as follows: start with
a usual strip and extend the segments “at infinity”. Now, if we follow the same procedure
but starting with a Moebius strip, we obtain the Moebius cylinder.

’\—\.—\’N
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O(x)
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The figure crosses itself but this is due to the fact that it is impossible to embed this object
in three dimensions. The properties a, b, ¢, d, e discussed in Section 2.1.1 are exactly the
same but property f has to be modified: E is not a trivial bundle (E # S’ x R); however
it is still a pasting of trivial bundles (see e), this property is called “local triviality”.

2.2.3. The torus 72
a) It is a collection of circles glued together
” and parametrised by another circle.
’ % b) The fibers are copies of S'— or of the
group U(1) — but the origin is not specified
\ E on each circle.
¢) Fibers are parametrised by the points of

| another circle B and we have a map (projec-
: tion) m:

l Tt ! E——>B
|

z~~eo (2) = X

i

}

E d) The group U(l) acts on the fibers.

x g ¢) We can also cover the base (the circle B)
by open sets U; = 1-[. Then =~ (U)) is a por-
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tion of cylinder diffeomorphic to U;x S* and we can think of £ as a pasting of these
pieces of cylinders.

f) The torus T2 is trivial because 12 = (base) x (typical fiber) = S’ xS,

g) The discussion runs as in 2.1.1, property g): to parametrise the points of E, we need to
cut the torus. According to the choice of a section o, we can write z = (x, €*%) with x = n(z).

2.2.4. The manifold S? xS*

This manifold (which is not embeddable in 3 dimensions) can be thought of as a collec-
tion of circles S’ parametrised by the points of a two-sphere S2. 1t is a (trivial) bundle with
base S? and typical fiber S'; the group U(1l) acts on the fibers.

2.2.5. The manifold S® = SU(2)

1t is first maybe useful to remind the reader that SU(2) has the topology of the three-
-sphere (proof: parametrise SU(2) by 2'x 2 matrices with complex coefficients «, § then,
we obtain det( ) = Re? (1) +Im? () +Re? (B)+Im?> (f) = 1, i.e.,, the equation of
a 3-sphere).

Now, it is important to realise that SU(2) can be considered as a collection of circles S
parametrised by the points of a two-sphere 52, exactly as in the previous example; indeed,
choose a subgroup U(1l) ~ S in SU(2) and make a coset decomposition of SU(2) along
U(), i.e., define the equivalence relation aRb <>ab~! e U(1) < ae bU(1), the set of
equivalence classes is the homogeneous space SU(Q2)/U(1) = S? and we can write the
decomposition SU(2) = () (aU(1)). Therefore, exactly as in the previous example we

aeS2
can consider S® = SU(2) as a fiber bundle with typical fiber S* and base S2 but this time,
it is not trivial because S* # S?x S!. Properties a, b, ¢, d, e, g could be discussed as pre-
viously. Since we cannot draw a picture of S3, it is convenient to refer to the above fibering
of S? by the following picture (easily generalisable!):

3 !

2.3. Definitions
2.3.1. Principal fiber bundles

The precise definition (which follows) becomes quite natural after the study of the
previous examples. P has a structure of principal fiber bundle with total space P, base M,
projection n and structure group G if
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1) P and M are smooth manifolds, with {P M} a smooth map onto.

Z s> X

2) Each x e M has a neighborhood U such that n~Y(U) is diffeomorphic with Ux G
(local triviality).

3) G is a Lie group acting from the right on each fiber.
The third axiom means that fibers are just copies of the group G, however the origin is not
specified on these fibers. The adjective “principal” means that the typical fiber is a Lie
groups (all previous examples are principal bundles) but there are more general situations
(next Section). One has to remember that the structure group G acts from the right, this
is a convention but, fortunately, everybedy agrees.

2.3.2. Associated fiber bundles

Starting with a group G, one can study actions of this group on other manifolds: on
a vector space (we study linear realisations of G, i.e. representations) or on a manifold
which is not a vector space (then we study non linear realisations of G, for example G action
on homogeneous spaces G/H).

In an analogous way, starting with a principal bundle P, whose stiuctural group is
G and choosing a manifold F on which G acts (linearly or not), we can construct a new
space by putting a copy of F above every point of the base of P, in other words we replace
the typical fiber of P (the Lie group G) by a manifold on which G acts.

The precise definition is the following: consider a (left) group action on a manifold
F—ie. ifge G, peF, we know what gp e Fis —, then define the following equivalence
relation in PxF

(z,p)~(Z,p)eTgeG: <z =2zg and p =g 'p
The quotient space E = P x F/~ is called an associated bundle; it is called a vector bundle
if Fis a vector space. Let us callu = z- p = zg - g~'p an equivalence class (£ is the set of u);
the meaning of this notation is the following: the “geometrical object” u has “coordinates™
pin the “frame” z (and it has coordinates g~'p in the frame zg). This somewhat abstract
definition should be clarified by considering a well known example: let M be a manifold
of ditmension n and P the set of all possible frames of this manifold, it is clear that P is
a bundle (intuitively it is a collection of fibers — the set of frames at one point of M —
parametrised by the points of M); moreover, if we choose (arbitrarily) one frame z at one
point x, any other frame z’ can be obtained by an action of the group GL(n): z' = zg;
P is therefore a principal fiber bundle and the structure group is GL(n). Now, the group
GL(n) acts also on the vector space R":if ge GL(n) and p € R", we know what gpe R*
is; therefore we can construct the associated (vector) bundle P x R/~ = E via the above
construction, it is clear that Eis nothing else that the “tangent bundle of M and an element
u = z - p of Eis a tangent vector (geometrical object) which has coordinates p in the frame
z. The “abstract” definition given previously has the advantage of being general and useful,
even if F is not a vector space.
A pictorial way of looking at bundles is given by Fig. 5.
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Warning:
* The structure group G of P (principal fiber bundle) acts on P from the right, on F from
the left but not at all on the associated bundle E.

2.4. A few systematic examples

® A given Lie group G has usually many structures of principal fiber bundles (it can be
sliced in many ways!): generalising the example 2.2.5, if one chooses a (closed) subgroup
H < G, one can write G as an H bundle over G/H.

@ Given a principal bundle P of base M and structure group G, we can always construct
a lot of associated vector bundles of base M and fiber V (a vector space) by choosing ¥ as
arepresentation space for G; we can also construct a lot of associated (non vector) bundles
E of base M and typical fiber G/H. The reader may convince himself that one can even
recover P as an H-bundle over E (there are several ways of “slicing” P!).

@ Hopf fibering of spheres: we present without proof a list of nice examples (useful
later to build more examples).

From the embedding S" = R*"! and from the usual construction of the real projective
space RP" as set of directions in R**, i.e. from

the diagram

Z,
Rn+1 5 Sn Sn
z 3 we obtain
n
re" = sz, ' RP
in the same way, U
net _ R2n+2::)52r‘w‘l 52”’1
from g we obtain
n 2n+1 cp”
cPp =S  /U)
SU(2)
n+t - RLnH.:)SLnG 4ns3
from 3 we obtain
n 4n+3 n
HP = S /SU(2) HP
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The previous fibering of spheres are principal fiberings (the typical fiber is a group); let
us quote also the (non principal) fibering of S!5 as an S7 bundle over S8.

2.5. Group action on manifolds and the role of the normaliser

After what has been said previously it should be clear in the reader’s mind that a space
which can be written as |“/" _,/ can be obtained from a principal burdle [  ,,, however,

it is maybe not clear (but it is important) that a space which can be written as [*'¢

can be obtained from a principal bundle ,N"H » Where N is the normaliser of H into G.

2.5.1. Normal subgroup. Normaliser. Centraliser

® Let N be a group and H a subgroup, in general N/H = {nH/ne N} is not a group
because multiplication of classes i = nH is ambiguous, unless nH = Hn for all n; in this
last case H is called a normal subgroup of N and N/H is a group (left and right classes
coincide).

@ Let G be a group and H a subgroup (H = G). The normaliset N of H on G is defined
as the biggest subgroup in which H is normal, i.e. N = {n/nH = Hn,ne G}.

The normaliser N of H in G should not be confused with the centraliser Z of Hin G
defined as follows: Z = {z/ze G,V he H,zh = hz}, Z contains in particular the center
C of H.

For example, consider H = SU(2) x U(1) G = SU(5); then, up to discrete factors,
C = U(l), Z =SUB)xU(), N =SU3)xSU2)x U(l) and N/H = SU(3).

2.5.2. N/H as group of automorphisms of H\G

Consider the set of right classes H\G = {Hp/p € G}, then it is natural to call “auto-
morphism” of H\G a one to one map from H\G into itself commuting with the right G-action
i.e. such that «(pg) = oa(p)g. It is easy to see that there is a one to one correspondence
between these automorphisms of H\G and multiplications (from the left) by elements of
ne N (indeed n[Ha] = [Hna]) however, multiplication by n or by nh, h € H gives the same
result therefore N/H can be considered as the group of automorphisms of H\G and N/H
acts on H\G from the left.

2.5.3. A new class of associated bundles

Suppose that we start from a principal fiber bundle P of base M and structure group
N/H, N being the normaliser of H in a group G{(H < N <= G); then, following the general
coustruction of associated bundles given in Sect. 2.3.2, we can, using the above action
of N/H on HG, construct a new bundle E of base M and typical fiber H\G.

Warning:
* The structure group N/H of P acts on P from the right (since P is a principal bundle),
it acts on H\G from the left (Sect. 2.5.2) but does not act at all on the associated bundle
E (Sect. 2.3.2). However the group G still acts on E (from the right).

In other words G plays the role of “active” transformations of E and N/H is the group
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of “passive” transformations (it does not move the points but changes their coordinates);
when His trivial then G and N/H are equal: active and passive transformations are described
by the same group.

2.5.4. A theorem on group actions

Let us quote, without proof, the following theorem (which is quite natural after
the previous discussion): let E be a manifold on which a group G acts regularly from the
right (call H, the little group or stabiliser at u: H, = {g/gu = u}, then suppose that all
the groups H are conjugated), then one can prove that E is a fiber bundle whose base M,
the set of orbits, is a manifold and whose typical fiber is H\G; moreover the structure
group is N/H (i.e., E can be constiucted as an associated bundle to a principal bundle
of base M and fiber N/H).

Here we should pause to make a first physical interpretation: E is a “multidimensional
universe”, G is a group of global transformation, M is the space time, H\G is the internal
space and N/H is the gauge group.

T

The basic reference for this Section is [1], more details about the “role of the normaliser”
and about group action may be found in Sect. 2 of [2] and in [3].

3. Special metrics on Lie groups and homogeneous spaces

3.1. Intuitive aspects

When no metric is specified, one should think of a finite dimensional Lie group as
a kind of surface with well defined topology (holes, handles, ...) but without given shape;
however multiplication of points is defined, the notion of neighbourhocd exists and this
“protoplasmic” surface is smooth. Choosing a metric is choosing a shape; in most physical
applications, the usual choice is the so called Killing metric but it should be realised that
the corresponding “shape” — which is maximally symmetric —is by no means the only
possible one. When we come to discuss the physical interpretation of multidimensional
universes, we see that the Lie group under consideration (or, in some cases, the homog-
eneous space) coincides with what people call ““the internal space” ; at each point x of space
time we have such an internal world, but its shape may change with the space-time point
and we have therefore to know how to parametrise the metric of this internal space. For
a given manifold, a metric (therefore a shape) can be maximally symmetric, partially
symmetric or may have no symmetries at all; here we use the word symmetry with
its intuitive meaning but it will be necessary later to become more precise.

3.2. Left and right invariant vector fields on a Lie group G

Let us call %, the tangent space at the origin e € G, i.e., the Lie algebra of G; let us
also choose arbitrarily a base {X,} in this vector space. These vectors can be considered
as first degree differential operators acting on functions defined on G and they satisfy
the commutation relations [X;, Xz] = Cl,X,. Also let us call {Y*} the dual basis of {X,},
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they satisfy Y*[X;] = ;. Now, using matrix notations, let us define {¢,} the base of left
invariant vector fields on G which satisfy

gfe) =X
2:18(82) = £,8182)>

[817 EB] (g) = Czﬁgy(g)a

{w"} the dual basis of {&,}:0[e] = 65.
{e,} a basis of right invariant vector fields on G which satisfy

ea(e) =
€,(82)81 = €,(2281)
[61, eﬁ] (g) = C:ﬂey(g)

{c°} the dual basis of {¢,}: 6°[es] = 5. Of course, &,(g), for example, denotes a vector
of the tangent space to G at g € G. One can prove that [e,(g), £4(g)] = 0. To fix the ideas
let us give an example with SU(2) parametrised by three Euler angles 6, ¢, y; at the point
g = (0, ¢, v), consider the following:

0 0 1 0
&y = cos g ~sin @ (cot 6 oo S0 Et—p); o' = cos pdf+sin ¢ sin Ody

g 0 1 0
&, = sin ? % +cos <p(cot(9a—(;7 gl 5{—/}), w? = sin pdf—cos ¢ sin Ody

£y = —; @’ = dp+cos Ody

0 0 1 0
e; = COos w@ —sin w(cot@—é—q—) ~ a0 5;) o' = cos pdf+sin y sin 6dg

] 0 1 0
e, = sin w% +cos w(cot@—— - — ~—> 6% = sin yd0—cos v sin Odg

dy sinf d¢
0 3
ey = — ¢” = dy+cos bde
oy’
One can easily check that '[e;] = o'le;] = &'}, that [e,, &,] = ¢; etc., that [e, e,] = —e;

etc. and that [, ;] =0

3.3. Metrics on Lie groups and their isometries
3.3.1. Example with SU(2)

A metric is a rule allowing us to compute the scalar product of two vectors at one
point ge G. If ' are the coordinates of g in some chart, the tangent space at g is spanned
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- -

g .
by the operators {?} and the cotangent space by {d)'}; therefore a metric can be written
,}}
d Lo

— ® ——. However, it is in
oy ay’

most cases easier to use a non coordinate basis composed of invariant vector fields. Let us
give a simple example and consider in SU(2) the following metric:

as h = h;;dy'®dy’ (and the inverse metric as &' = A"

h=o0o'Ro'+0’R0°+0*®@w’.
It can be easily proved that /# can also be written'as
h=o6'®c+c’Q@c*+6°®s°
= diRdAO+de@dep+dy@dy+cos H(dyRde+de®dy).

In order to study isometries, it is convenient to intrcduce the notion of Lie derivatives:
if u, v, w are three vector fields, one defines

20 =[u,v] and  Z0OW) = LOSWHIQL(W).
In the previous example, the inverse metric is
! = e, Qe +e,®e;,+e;Qe;5 = &,®¢, +2,0¢6,+£,Q¢;.
It can be easily shown that
L =2, =0,

For this reason, we say that the isometry group Iso (h) of the metric 4 is SU(2) x SU(2);
it can be shown to coincide — up to scale — with the usual Killing metric and corresponds
to the usual “round” three sphere S* (as already recalled, SU(2) has the same topology
as S%). Let us consider now a less symmetric metric on SU(2):

h = ilo'®o' + 20’0+ 0’ Qw?,
where A7, 43, 15 are positive real numbers; it is clear that the inverse metric is:
_-1 . .
h =T§81®81+ =& Tz'b3®83
A A3 A3

and, using this last expression, it is also clear that the isometry group of this metric is
SU(2), indeed £, (h') = 0 since [e;, ;] = 0. This property would not be obvious if we
used the following equivalent expression for 4!

h = [A} cos® p+4} sin® ¢]d0®@d0+[[13 sin® g+ 43 cos® @] sin® 0
443 cos? 0ldy®@dy+ A3de®d g +sin ¢ cos @ sin (4% —12)
x [d0@dy—dy®dO]+2; cos [dyRdy +dp®dy].
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The above metric is called left invariant (it can be written in terms of left invariant vector
fields) and corresponds to a kind of hyper ellipsoid if 2, # A, # 43, the first example was
bi-invariant. Let us end these examples with the following SU(2) x U(1) invariant metric:

h=0'Qo'+0’®w* +i{(0*Qw?),
- 1
hl=e,®e+¢,@e,+ P(83®83).

Indeed, &£, (h') = 0fori=1,2,3and £, (h!) = 0and we will say that ey, e,, e3, &5 are
Killing vector fields.

3.3.2. General results

More generally, a left invariant metric on a Lie group G is entirely characterized
by its expression at the origin e of G (i.e. it is a bilinear symmetric form on the Lie algebra
%); if one knows the scalar product {v, v,> of two vectors v, v, at g € G, one also knows
the scalar product of the left-transported vectors pv; and pv, at the point pg: {vy, v,),
= {pvy, pv2Y,q If {€,(8)} is a base of left invariant vector fields, any left invariant metric
can be written as # = A*e,®¢,; where the A* is symmetric but independent of the point
g€ G (independent of v, 8, ¢ in the previous examples). More general metrics can be
constructed by allowing the A* to depend upon the point (make 4,, 1,, 1; functions of
v, 0, @ in the previous example). The space of all possible metrics on a Lie group is clearly
infinite dimensional ; however the space of left invariant metrics on a Lie group of dimension
n is itself a finite dimensional of dimension n(n+1)/2 (Proof: choose a bilinear symmetric
form in the Lie algebra). From time to time, questions of volume are irrelevant: one does
not want to make the difference between a given “shape” and another one which is just
“bigger””: the manifold of left invariant metrics with fixed volume is of course of dimension
n(n+41)/2—1 and one can easily show that it is homeomorphic with SL(#)/SO(n). A metric
can be bi-invariant, therefore Iso(/) = G x G and there is only one such metric (up to scale)
if G is simple, it may have no invariance at all, therefore Iso(k) = Identity, or it may have
few symmetries (then Iso(4) = Hx K = G x G): in particular it may be left invariant.

3.4. Metrics on homogeneous spaces

3.4.1. Technological remarks

When an equivalence relation is defined on a space E, the set of equivalence classes
is called a coset space; when G is a group and H a subgroup, the coset space G/H of left
classes along H is called a homogeneous space; when the homogeneous space G/H is not
homeomorphic with a product of homogeneous spaces, it is called irreducible; if & is the
Lie algebra of G and # the Lie algebra of H, the subspace & appearing in the decomposi-
tion ¥ = #®F can be interpreted as the tangent space at the origin of G/H and is the
support of a representation of H (indeed [+#, ¥] < &) called the isotropy representation;
when the isotropy representation is irreducible (on the real), the homogeneous space G/H
is called isotropy irreducible. 1f a homogeneous space is irreducible symmetric and is such
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that [, ] = #, itis called irreducible symmetric (it is in particular isotropy irreducible).
Example: SO(8)/SO(7) is a symmetric space, Spin 7/G, is isotropy irreducible not symmetric,
SU4)/SU(3) is an irreducible homogeneous space which is neither symmetric nor isotropy
irreducible; notice however that the three previous spaces are actually the same differential
manifold: the seven-sphere S7; one should therefore associate the previous qualifiers
(“symmetric” etc...) to the pair (G, H) rather than to the underlying topological space.

To make the link with the previous section, it should be noticed that a homogeneous
space G/H (with H a closed subgroup to avoid pathologies) can always be written as a fiber
bundle with base G/N and typical fiber N/H, where N is the normaliser of H into G. Also
one can prove that when G/H is isotropy irreducible (in particular if it is irreducible sym-
metric), the group N/H is discrete.

3.4.2. G-Invariant metrics on homogeneous spaces G/H

The group G acts on G/H by left multiplication (if ge G and § = pH e G/H, one
has a map e G — Lg(p) = gb = qpH), therefore one can try to do here what we did
previously in the group case: we first go to the origin 6 (= e = H) of G/H and choose
an arbitrary scalar product g, in the tangent space & at 0; we then go to another point
p and consider two vectors W, W, in the tangent space at p; one has to define what is the
value of g;(W,, W,). To do that we use the map L, and its tangent map, the linear map
DL, and write p = L,(e), W; = DL,(V,), W, = DLV>) for some V7, V, in the tangent
space & at 6. We then define g (W, W,) = g(V,, V). But this definition is ambiguous,
indeed if p = L,(¢) we have also p = L,(e) for h € H, then for some ¥, ¥, in & we obtain
Wi = DL,(V{), W, = DL,(V;). But go(Vy, V) # gy(Vy, V,) in general! (see Fig. 7).

Those (special) scalar products in & for which the last equality is true are called Ad H
invariant and for them the previous method works; actually one proves that there is a one
to one correspondence between G-invariant metrics on G/H and Ad H invariant bilinear
scalar products in the tangent space at the origin. Let us give a few results and comments:
® There is always at least one G invariant metric on G/H, up to scale, when G is simple,
it is called the “normal” metric and is obtained by taking the restriction of the Killing
metric of G to the subspace S(¥ = #+& and & = #* for the Killing form).
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@ The normal metric on G/H associated to the pair (G, H) is not necessarily the most
symmetric one: also the full group of isometries of the normal metric may be bigger than G.
® If G/H is irreducible symmetric, the normal metric 4 is the only G invariant metric
(up to scale). Example S7 = SO(8)/SO(7). Iso(h) = O(8).

® If G/H is isotropy irreducible, the normal metric is also the only G invariant metric
(up to scale). Example S7 = Spin 7/G. Iso(h) = O(8).

® If G/H is not isotropy irreducible, the dimension of the manifold of G-invariant metrics
is d =) r{ri+1)/2 where & = ®(V; ® R"), V; being the space of a real irreducible

representation of Ad H.
Examples S’ = SUM4)/SUG3); 7 = 1+1[3+3], d =2,
Ix4  1x2

ST = USpehUSp(2); 7= 3[11+1[4],  d =" + =" =7

Basic references for this section are [l], [4]. Many comments, examples and other refere-
nces can be found in [2, 5].

4. Riemannian geometry almost without any formulae

The specialist in general relativity may probably skip this section (see however Sec-
tion 4.5) which is devoted to the definition of a few basic quantities like the scalar curvature,
Starting with an analogy in the 2-dimensional case, we will define these objects almost
without using the usual artillery of connexion coefficients, Riemann tensor, etc...

4.1. Gaussian curvature of a surface

4.1.1. First definition

The Gaussian curvature K at any point P of the surface S is the product of the curva-
tures of the curves through P cut out by normal planes. Of course the result is independent
of the couple of normal planes.

Examples:
1
(i) a cylinder of radius R; then k, =0, k, = xR K = k,k, = 0 everywhere.
.. . 1 1 1
(i) a sphere of radius R; then k, = z’ k, = R’ K=kk,= e everywhere.

2 2
(7ii) The graph of the surface s = 2R 2112 looks like a saddle at the origin P = (0, 0).
At thi . 1 1 1
t this pOlnt P, kl ='k“, kz = ——k", Kp=k1k2= —'F.
This definition using oscillating circles makes an explicit reference to the three dimensional
embedding and cannot be generalised easily to higher dimensions.
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4.1.2. The formula of Puiseux-Bertrand

Consider a 2-dimensional sphere S of radius R; in the 2-dimensional tangent plane
at P e S, draw a circle of radius ¢ (length 2n¢); let ¢(P, €) be the curve obtained by drawing
out of P the set of geodesics of length & with tangent vector in the tangent plane; the set
of the endpoints c¢{P,s) is therefore a circle of radius Rsin¢/R, its length I(P,¢) is
27 R sin g/R.

€ .
Notice that I(P, ¢) = 2zRsin == 2nR— e3>+ ... Therefore

3R?

. 3 2ze—1(P,¢) 1

lim — ————— = —.

e—0 T € R
The value of the above limit turns out to coincide with the value of the Gaussian curvature
at P; a very old result tells us that it is always the case... hence the following definition

of the Gaussian curvature (which does not make any reference to the embedding).
4.1.3. Second definition

In the 2-dimensional tangent plane at P € S, draw a circle of radius ¢, let ¢(P, €) be the
curve obtained by drawing, out of P, the set of geodesics of length ¢ (with tangent vector
in the tangent plane), call I(P, ¢) the length of c¢(P,€). Then define Gaussian curvature

.3 2me—I(P,¢)
at P2 Kp=lim — ——+n——.

0 T &3

.5

C

‘ c(P, €)

4.2. Sectional curvature associated to a 2-plane in n dimensions

If S is a n dimensional Riemannian manifold, P € S a point and W < TS, a 2-plane
included in the tangent space TS, then, in W we can draw a circle of radius ¢ and draw
on S the curve ¢(P, €). The sectional curvature of S at P associated to W is defined by
Kp(W). Sectional curvature is therefore a direct generalisation of the usual Gaussian curva-
ture, but here, we have to specify which 2-plane W we choose (in the case of a 2-dimensional
surface, such a precision is of course unnecessary!). The sectional curvature at P associated
- to a 2-plane W can also be written Kp(W) = Kp(u, v) where u and v are two orthonormal
vectors in W.
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It can be proved that the knowledge of all the sectional curvatures at P characterizes
completely the curvature at P (it is equivalent to the knowledge of the Riemann tensor
at P, that we do not introduce).

4.3. Ricci curvature and scalar curvature

Let u;, be a tangent vector at P of norm 1 and u,, u,, ..., u, an orthonormal basis.

n
Then the Ricci curvature at P associated to the vector u, is op(u,) = Z K(uy, u,) and the
=2

n

scalar curvature at P is 7 =Y o(w).

i=1
Notice that:
the sectional curvature associates a real number to a couple of vectors at a point;
the Ricci curvature associates a real number to one vector at a point;
the scalar curvature associates a real number to a point.
One should distinguish between:
@ spaces of constant sectional curvature (they are simply called spaces of constant cur-
vature)
® spaces of constant Ricci curvature (they are called Einstein spaces)
@ spaces of constant scalar curvature.
The usual definition of an Einstein space makes use of the Ricci tensor (that we do not
introduce), it is a space where (Ricci) is proportional to the metric; this definition is equiv-
alent to the one given above.
Notice finally that there are spaces endowed with a homogeneous metric, they constitute
a special case of spaces of constant scalar curvature (examples: any Lie group with a left
invariant metric, any homogeneous space G/H with a G-invariant metric; see also the
example below).

4.4. Ricci and scalar curvature of $3 with a SUQ)x U(1) invariant metric

We already mentioned in Section 3.3 the following metric on §?

! = 6,®¢,4+6,Q6,+ ;—283®83
which admits a group of isometries SU(2) x U(1). The actual computation of the quantities
K, ¢, v can be made by using the usual formulae of Riemannian geometry (that we did
not introduce), with the following results: the functions K, ¢, 7 are independent of the
point P € $3 (it is a homogeneous metri ¢) but K and g are not constant (their value depends
upon the direction(s); the space is homogeneous but not isotropic. More precisely, one
introduces an orthonormal basis E, = ¢, E, = ¢,, E3 = £/4 and finds the following
values: Ricci curvatures g(E,) = o(E,) = 4— 242, o(E;) = 24?; Scalar curvature 1 = 2(4—A2).

Warning:

* Although the space S* is compact, the scalar curvature t can be negative (this is the case
for 22 > 4)!
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The most complete book(s) on Riemannian geometry is probably [6]; the previous class
of metrics on S? is studied in more details in [7] in relation with the spectrum of the Dirac
operator,

5. Multidimensional universes

5.1. Intuitive aspects

The idea which is at the root of all this is the following: in a given physical situation,
the “real world” can be described by a universe E which has more than 4 dimensions but,
“classically’’ we may have the feeling that “we live in 4 dimensions”. This is a rather vague
(philosophical) statement and the aim of this section is to precise its meaning. Usually,
in order to describe some physical systems, one starts with a Lagrangian, or a Lagrangian
density &; here, we have to assume that #(z € E) can be written as a function of four
variables x ¢ M (M being spacetime) (at this point, the reader may think of the extra-
coordinates as the analogue of cyclic variables in classical mechanics). The real valued
function %£(z) which will be interpreted as a Lagrangian is chosen to be the scalar
curvature of E at the point z, i.e., the Einstein action. Two problems come immediately
to the mind : what is the topology of E? (It will be a “kind” of product “spacetime x internal
spaces”) and what is the geometry of E? (What are the metrics of £ for which #(z) depends
only upon M?7).

5.2. The topological structure of E

This question has already been answered in Scction 2 and we just restate the result.

Let E be a manifold with a right action of a compact Lie group G, and suppose that
all isotropy groups H, (u € E) are conjugate to a standard one, say H,, = H. Let M be the
set of all orbits, S = H\G the coset space of right classes along H and let N be the normaliser
of Hin G. Then M is a manifold and E is an associated bundle with structure group N/H
and typical fiber S. Then we can draw the following picture: '

S

N
m

M

X pwmme———s

Of course M is interpreted as space-time, S is the typical internal space (the fiber above
x € M being the internal space at x). Notice that if £ is such that all isotropy groups H
are not conjugate to a standard one, we can decompose E into strata parametrised by set
of conjugacy classes of stabilizers and the previous theorem applies to each individual
stratum.
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5.3. The Riemannian structure of E

Endowed with the above structure, our multidimensional universe E may have a lot
different ‘““shapes”; however, we are interested here only in those shapes for which the
scalar curvature 7% is constant along the fibers: for those metrics only, we will obtain “di-
mensional reduction”, i.e., t5(z) will be a function of x € M. Actually, this class of metric
is even too big and we limit ourselves to the class of G-invariant metrics on E (it is a subset
of the set of all metrics on E for which t° is constant along the fibers). In Section 53.1,
we discuss the case where S is a Lie group G and in Section 5.3.2 the more general case
S = H\G.

5.3.1. Let P be a principal bundle with base M and structure group G, then a G-invariant
metric g on P determines and is determined by
i) an arbitrary metric y on M
i) a G-invariant metric A, on each fiber G, of E above xe M.
iify a connection in P (the connection form is valued in Lie(G)).
Moreover, in some coordinate system, the metric g can be written as

g = P, dX"®dx"+ h,g(x) [(6"+ A;(x)dx") ®(c® + A’f(x)dxv)]

where {6"} can be thought of as the dual of right invariant vector fields in the copy of G
above x; of course the inverse metric is

g™! =0, — AW @2, — Ai(x)es) + hPe,®ep.

At this point it is maybe necessary to draw the attention of the reader on the following:
on a Lie group, one can define right and left multiplication, hence left invariant vector
fields ¢, (dual ©”) and rightinvariant vector fields e, (dual ¢*) — see Section 3.2 — ; however,
on a principal bundle P, there is only a global right action of G on P — see Section 2.3.1,
the associated vector fields are usually called fundamental vector fields and we denote them
by ¢,, if we make a local gauge choice in a neighbdrhood of x € M, we have really a copy
of G above x and we can define locally the “right invariant™ vector fields e,; these vector
fields enter in the expression of the metric g given above, for this reason, the previous
expression is not obviously gauge invariant (although it is!) but exhibits clearly G-invariance
(the Killing fields being the ¢&,).

Finally, the scalar curvature t%(z) is only a function of x € M and can be written, up to
a total divergency, as

t(2) = () +1°(x) = & FL)F*" (x)h,p(x)
— % B*P()h"°(x) (D 4h,pD"h s+ D hy D hys),

where t™(x) is the scalar curvature of M at x, 7°(x) is the scalar curvature of the internal
space S, = G,, F}, is the usual Yang-Mills strength and

Duhaﬂ = auhaﬁ - Azcgahéﬁ - AZ‘Cth"“‘

Let us consider now a few subspaces:
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a) S = G = U(1), then 7° vanishes; if #, = [2d6? with constant / then the fourth term

vanishes as well but if A, = I?(x)d0? then the fourth term gives a contribution
0,00% .
—~ 12~ — with ¢ = /2.

b) $ = G = U(1), then 7° does not vanish. If &, = 8,50 ®c” that is if the restriction
of the metric g to the copy of the group G above x is bi-invariant, the term 7° can be inter-
preted as a cosmological constant and the fourth term vanishes; then, we recover the usual
Yang-Mills Lagrangian coupled to gravity. But in the general situation /4, = hl,,(x)a’®o‘g ,
~17° can be interpreted as a potential term for the scalar fields /,,(x) and those scalar
fields are coupled covariantly to the gauge field in a way which is reminiscent of the
o-models.

The emergence of these scalars f,y(x) — they are scalar fields from the space time
point of view —, which measure in a very precise sense the shape of the internal space
at x, is quite intriguing, in particular because they are very natural but do not seem to
appear in the today’s description of particle physics phenomenology.

As an explicit example, let us consider the case where G = SU(2) and, in some gauge,
in a neighborhood of x e M, the metric /1, can be written as

e e €,¢e € e
1®er | a®e GG, () >0

(x)  a(x)  pa(x)

.
Ayt =

hyy = pa(x) > 0
hy; = pu3(x) > 0.

Then
o = MO FL P (0 F P () + Fu P i (x)

) 10" 0 1:0fu 1)
hod M il Lu Ml

1 i<j i<j
1#i
1#j

(See also examples in Section 3.3.1)

5 Gy = fy+pat i
Moreover, 1% = ;(402—af) where {0, = 11,1, + otz + ity
? T3 = Hiia2fis

Itis clear, on this example, that A,4(x) has to be a field (transforming according to Ad®Ad)
and not a constant; in the opposite case the gauge symmetry would be broken — unless
My = pp = 3 = Cte.
5.3.2. We now discuss the general case S = H\G
Let E be a fiber bundle with base M, typical fiber H\G = S and structure group N|H,
then a G-invariant metric g on E determines and is determined by
() an arbitrary metric y on M
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(i) a G-invariant metric k, on each fiber S, of E above xe M
(iii) a connection in the principal bundle P = E (the connection form is valued in Lie
(N\H), N\H being the typical fiber of P).

Of course the theorem given in Section 5.3.1 is a consequence of this one for H = E.
The above result is proved and discussed in full details in {2] and this discussion will not
be repeated here. However, after the study of Sections 2 and 3, this theorem should appear
as quite “natural”. It is interesting to notice that, in this case, the “global” symmetry
group G and the “local” symmetry group N|H do not coincide. Let us mention only how
the previous relations where the internal space §S'is a group generalise to the case where S is
a homogeneous space H\G: call & the tangent space at the origin of § = H\G and {7}
a basis in the Lie algebra of G which is orthonormal for the Killing metric, then write the
decomposition Lie(G) = Lie(H)+&, & = Lie(N|H)+% we assume that the basis {7}
is adapted to this decomposition and write:

T} =1{1:, T},
T} =T 1.}
Let us call also Cf‘j the scructure constants of G associated to the basis {7;}. Then we obtain:
H(Z) = (0 + W)~ § Fa(OF (kg () =4 ()
(D, hgD"h s+ D, D"hg;)+(total divergency),
with
S = W (L CLChy— L W h,, ClyCLl 4 C2yChia— Ci4Clp)
and
Dhy = 8,hug— ASCahsy— ALCthgye

In all the cases covered by this theorem, dimensional reduction is automatic i.e. ©(Z),
Z € Eis only a function of x = n(Z) e M and we may have the feeling that the *real world”
is only 4 dimensional. The following table gives a few examples:

G 3 H H\G NH
G ' e G G
SO(n+1) E SO(n) - s" z,
SU@+1) 5 SU») s2nt+1 u@)
USp(2nr) ; USp(2n—2) | g4n=1 SUQ)
Es | Ee " Es/Es SUQR)/Zs

54. Symmetric gauge fields

Suppose that E is locally M x G/H and that G is not simple (G = G,G, say). In many
cases E can also be written locally as U x G, where U is a manifold with a dimension bigger
than dim (M). We can therefore proceed to an intermediate dimensional reduction (from



841

E to U); however the obtained metric and Yang Mills ficlds defined on U will possess
symmetries (under G,), a reflection of the fact that the dimensional reduction was not
complete. One can also go backwards, start with metric and Yang Mills field on a mani-
fold U, assuming symmetries under a group G, and asking about the outcome of dimen-
sional reduction [8]: using the theorem of reduction (Section 5.3.2) as a tool, it is not so
difficult to answer precisely this question in the more general case [9, 10].

The theorem of reduction, in the case S = G, has been floating around, in the mathe-
matical folklore for a long time (but I do not know any precise reference); in the non
principal case, S = H\G, it has been proved and discussed in {2] where many examples
are also worked out.

6. Einstein spaces and symmetry breaking

6.1. Intuitive aspects

The motivation for this section is the following: from the one hand, we saw in the
previous section that the potential for scalar fields (they measure the “shape” of the internal
spaces at x € M) can be interpreted as the scalar curvature of the internal space at x (which
is a space of constant scalar curvature), from the other hand, there is an old theorem
(due to Hilbert) which says that saddle points of the total scalar curvature — considered
as a functional on the space of metrics — for fixed volume, coincide with the Einstein
metrics — putting these two facts together and remembering that the scalars h,5(x) are
covariantly coupled to the gauge field, one may look for an analogue of the usual Higgs
mechanism.

6.2. Einstein metrics on groups and homogeneous spaces
6.2.1. Standard examples

The Killing metric on a Lie group G is an Einstein metric; the (unique, up to scale)
G-invariant metric on an irreducible symmetric space H\G is Einstein; the (unique, up to
scale) G-invariant metric on an isotropy irreducible space H\G is Einstein.

Warning:

a G-invariant metric on a non-isotropy irreducible space H\G is usually not Einstein,
even if it is a normal metric (obtained from a bi-invariant metric on G by going to the
quotient).

6.2.2, Einstein metrics as saddle points

As stated in 6.1, a very old theorem assures that for a given manifold, the total scalar
curvature defined as [ t°d vol, considered as a functional on the space of metrics (with
4 :

fixed volume) admits saddle points for all Einstein metrics. The constraint of fixed volume
can be easily understood; consider for instance a standard two-sphere of radius R, its
scalar curvature can be made arbitrarily small or large by increasing or decreasing its
radius (t = 2/R?); this kind of variation is not interesting: we have to fix the volume and
study the variation of the total scalar curvature (“‘squashing deformations”). In what
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follows, we will not study Einstein metrics in general but only the homogeneous Einstein
metrics (more precisely the G-invariant Einstein metrics on S, S being G or G/H); in this
last case the total scalar curvature is equal to the product 7 xvol (S) and we have only
to look at variation of 7, T being considered as a functional on the space of G-invariant
metrics (of course, with such a restriction, we only get a necessary condition but, for all
the cases treated here, it can be shown to be sufficient).

6.2.3. A general method

The basic strategy is more or less always the same: one first chooses some fibering
of the manifold S under consideration (for example, the group G as a K-bundle over
G/K, G/H as a N|H bundle over G/N, etc...), then chooses a particular “natural” metric on
S (for example the Killing metric on G or the normal metric on G/H...) and begins to
“distort” it in a way appropriate to the fibering; in the obtained family of new metrics,
one looks for those where the Einstein condition is satisfied, either by computing directly
the Ricci tensor or by looking at saddle points of some functional.

6.2.4. Non standard Einstein metrics on groups

Let us do it explicitly in the case where S is a simple compact Lie group G; following

the above recipe, we choose K, a subgroup of G and write G as a K bundle over G/K
(to ease the following, assume that (G, K) is a symmetric pair), then we start from the
following bi-invariant (and Finstein) metric on G: g = — (Killing form). Notice that
we can, at this stage, apply the decomposition formulae of Section 5.3.1 and write 16 = 79/K
+15— 1 C5,C% or

L

4 2 4 *
where n = dim G, k = dim K, I = n—k = dim G/K and ¢, the index of K in G being
defined as follows: Killing metric of G restricted to K = g35 = —-CZ,,CSW Killing metric
of K = gf,f,; = —CEA;CA%‘; and calling ¢ the coefficient gfg = cgpp. The previous decomposition
of 7% is a “Kaluza Klein reduction” (before Kaluza Klein) where the “‘external” space
is G/K, the “internal” space is K and the “field strength” is Cé,. Notice that when (G, K)
is a symmetric pair we have indeed ¢ = 1—1I/2k but this would not be true in the general
case. Following the general recipe, we now write Lie (G) = Lie (K)®@P — orthogonal
decomposition for g — and consider the following family of metrics (# is a real parameter)
on G: h = g/P+1t%g/K. These metrics, obtained by a scaling of g in the direction K are no

. . . . . 1
longer G x G invariant but only G x Kinvariant; the scalar curvature of G is now %= —

2
k\ 1
+ <C Z);Z— — %k(l—C)tz.

However, when ¢ varies, the volume of G varies; in order to keep it fixed we just have

kin
to make a conformal rescaling and consider the family of metric h = (t—2> h, then
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k
det b = (72-> - (#2)¥ = const. The associated scalar curvature reads

1 ck k
6 (2| S e—ne2 .
T ) 5 +_—4t2 + 4(c )

We now vary this expression with respect to ¢ and find

G
(%) = — L (M2k+l) tzk/n—s(tz_l) (tz_ 2k“l) ,

4 (k+1D) 2k+1,
where we used the property ¢ = 1—[/2k, valid for a symmetric pair. We find therefore
2k—1
two Einstein metrics: corresponding to the values t* =1 and * = ETw The first

value corresponds of course to the bi-invariant metric g used in the beginning, the other
value corresponding to a non standard G x K invariant metric on G <for example, studying

G = SUQ3), if we choose K = SO(3), we obtain an SU(3) x SO(3) non standard Einstein

2x3-5 1 .
metric on SU(3) for the value 2 = el . Using the same recipe in
2%x3+45 11

a more general case leads to the following results: Let G be a simple Lie group,

= —(Killing form on G), K a connected subgroup of G (not necessarily simple) and write
the following decompositions: Lie(G) = Lie (K)®P and Lie(K) = K,®K, ... K,
where K, is the center of Lie (K) and K; (i = 0) are simple components, than calling
n=dimG, k =dim K, k; = dim K, ] = n—k and ¢; the index of X; in Lie (G), we obtain
a family of Gx K, invariant metrics of G:h = g/P+oog/Ko+o.8/Ki+ ... +og/K;

1 i .
(o; being positive real number) and a new family & = 7 h, where f = ([]of)"/" of metrics
i=1
of fixed volume. For h to be an Einstein metric, the following set of equations have to be
satisfied:

3

1
oA = 152k, {H—Zko““ Z 2ki(1—¢) (“i“‘l)}

i=

(I4+2ko+2k) 1 —cpod+ Y 2kl —choo;—(1+2ko+ Y 2ki(1—c))a;
o =t
+(I4+2kp)c; = 0,
when P is not Ad K irreducible, we have to check that the found solution (ug, &, ..., )
satisfies a third condition.

6.2.5. Non standard Einstein metrics on homogeneous spaces

As mentioned previously, the general method of Section 6.2.3 applies here also;
we will not enter into the details but just mention a few examples: by writing G/H as a NJH
bundle over G/N (N being the normaliser of H into G) and scaling the normal metric on
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G/H (which is not necessarily Finstein, although it is induced by a bi-invariant metric
on G) along the N/H direction, one can obtain new Einstein metrics for a wide class of
spaces, for special values of the scaling parameter (this is the case, for example, of gant3
spheres written as SU(2) bundles over HP"); other kinds of fibering may be used (for
example S!° as a S7 fibering over S8 etc.).

6.3. Symmetry breaking

6.3.1. A word of warning

In the Higgs setting, Higgs fields are section of some associated vector bundles and
one looks for a non zero local minimum v, of a suitable fourth degree G-invariant poly-
nomial; the shifted Higgs field ¢’ = ¢ —v, is not equivariant under G since v, is ouly
invariant under the subgroup G, whaich fixes it; consequently, ¢’ does not yield a well
defined section of the associated bundle. This problem (very often overlooked) can be
handled in several ways (see [11]) and we will not go into it but just mention it because
there is, in our setting, an analogous difficulty (which has not been studied yet). Let us
nevertheless proceed and write formally %,4(x) = hjs+h,s(x) in the Lagrangian (i.e., the
expression for t%(z) given in Section 5.3.1 (or 5.3.2)), Ags being an Einstein metric in the
“internal space” S.

6.3.2. A mass spectrum for the gauge fields?

Let us analyse the situation when S is a group G (we suppose G unimodular, then

CZ, = 0). Using the definition of D,, the term L = —3% A h"*(D,h,zD*h,5+ D h,,D*hys)
can be expanded and we get

L = —% BPh7%(0,h,30"hys+ 0,1, 0" hys) — BP(0,1)5sCor AL+ 5 M g ALA",

ayip

where M o5 = Jyp+Kop; Koy = CLCls is the Killing form and £, = h"hsy, CoChy
Let us now make formally the shift hu(x) = hgs+H,4(x), hgs being a homogeneous
Einstein metric on G that we supposedly obtained by the method of Section 6.2.4. i.e.

a G x K invariant Einstein metric, we even suppose that (G, K) is a symmetric pair (then

the value of the scaling parameter is 2 = —iﬁ—:) The calculation is straightforward,
we find that
+ 3 MpALA = + M AZAY 4 Rest,
where
/25 = 0,
Mg =0,
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In other words, when 2 = 1 (i.e., we expand around the bi-invariant metric of G), the

gauge field stays massless; however, when 1? = i::_j (i.e. we expand around a non

standard Einstein metric on G, G x K invariant, with the notations of Section 6.2.4) then,

the components of the gauge field taking their value in Lie (K) stay massless but the compo-

nents lying in the subspace P (Lie (G) = Lie (K)+P) acquire a mass m? = 2[%/4k?2—]?

in dimensionless units. Let us assume for example that our internal space is G = SU(4)

and that the volume is fixed, then if we expand the scalar fields 4,4 around the bi-invariant

metric, we get 15 massless gauge fields but we can also expand #,; around the following

G x K invariant Einstein metrics:

(i) K = S(UQ) x U(2)) ~ SUQ2) x SUQ) x U(1) for 12 = 3/11

(i) K = USp(4) for 1 = 3/5

(i) K = SO@) for 2 = 1/7

In case (i) weget k = 7 massless gauge fields and = 8 massive fields of mass m* = 32/33.

In case (i) we get A = 10 massless gauge fields and = 5 massive fields of mass m? = 2/15.

In case (iil) we get & = 6 massiess gauge fields and = 9 massive fields of mass m? = 18/7.
In the previous examples, the pair (SU(4), K) is symmetric but there exist other saddle

points {other Einstein metrics) involving non symmetric pairs.

6.3.3. A problem of interpretation
Besides the problem already mentioned in 6.3.1, there is another difficulty which is

better explained by looking at the following figure which is a graph of the negative of the
scalar curvature for the one parameter family of metrics found in Section 6.2.4.

! ck k
G 25\kin 2
=" =+ 5 + —(c=D|.
v=) [2 4¢* 4( )]
For typical values of the parameters, we get the following curve:
] —‘CG

7 -t
The point A corresponds to the standard bi-invariant metric on G and B to a non standard
Einstein metric. This “potential” is therefore not bounded from below — even with the

fixed volume restriction —, moreover the non standard Einstein metric of this family
corresponds to a local maximum of the curve; in a more general situation, Einstein metrics
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correspond to saddle points which are neither minima nor maxima of the total scalar
curvature function. The “physical” interpretation of the results of Section 6.3.2 is therefore
unclear: we explained what happens if we expand a non trivial saddle point but

1) are we allowed to “expand” around them?

2) even if we can, why do it and are these saddle points important in a quantum
mechanical perspective ?

The above ideas are certainly not conventional but seem to show a new direction in
the study of what is usually called “spontaneous symmetry breaking”. The potential for
the scalar fields that we study here is actually not completely unrelated with the familiar
Higgs potential: there exists a precise relation which is investigated in one of the sections
of [10].

The most complete treatment of Einstein metrics on compact groups is [12]. Many
other references (and comments) may be found in [5].

7. Conclusion

‘Rather than going through the several sections of these lectures, it is probably more
important to stress the advantages of the multidimensional approach to the study of gauge
fields; there are, at least, two (good) reasons to look at gauge fields in that way. The first
one is philosophical: usual Yang Mills theories can be recast under the form of a metric
theory in a universe which is “bigger” (there is a one to one equivalence of formalism, see
Section 5.3) this is an important epistemological fact. Moreover, and maybe more important,
this another way of thinking about Yang Mills theories gives new ideas in order to generalise
them and to try to describe the geometry of our “real” world.

I would like to thank the organisers of this school, in particular Profs. A. Pawlikowski
and E. Malec for their warm hospitality in this Szczyrk Summer School.
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