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AN EXACTLY SOLVABLE MODEL FOR FERMIONIC
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An exactly solvable quantum mechanical model is further discussed, where leptons
and quarks of higher generations are excited states with respect to small oscillations around
an equilibrium realized within leptons and quarks of the first generation (considered as
composite systems). The model predicts elements of Kobayashi-Maskawa matrix in con-
sistency with recent experimental data, if the Cabibbo angle is used as an input. The heavier
the top quark is, the smaller are the mixing angles of higher quark generations. The hypo-
thetical next charged lepton is predicted unambiguously at 28.5 GeV.

PACS numbers: 14.80.Dg

1, Introduction

The negative result of search for toponium in the PETRA energy range shifts our
expectations for finding the top quark to the higher energy region which, fortunately,
has become available in the CERN collider. As this shift in energy has relevant consequences
for the model of fermionic generations we considered recently [1], we turn back to its
foundations in the present paper,

Essentially, there are two such consequences. (i) The rapidly rising character of fermion
mass spectrum (being a main ingredient of the model) becomes now even more pronounced.
It makes the smallness of mixing angles for higher generations (expected in the model)
more and more natural (cf. also [2]). In fact, this smallness is recently confirmed by the
direct data [3]. (i) The conjecture (explored in the model) of simple proportionality of up
and down fermion masses to corresponding electric charges squared cannot be valid if, as
1t seems now, the top quark mass has to be distinctly larger than 4 x5 GeV = 20 GeV.
On the other hand, the electric charge remains the only known quantum number which
distinguishes up and down fermions, so it is still natural to expect that the Coulomb repul-
sion is a kind of driving force in producing mass differences between up and down fermions
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within each generation of leptons and quarks. It reminds us of the classical concept of
Poincaré stresses [4] representing all non-electromagnetic forces necessary to provide the
internal equilibrium in an extended particle against the Coulomb repulsion.

So, we can now rephrase the assumptions of the model in the following form:
(i) Leptons and quarks of the first generation v,, e~ and u, d are ground states of a composite
system.
(if) There are small radial oscillations around the equilibrium realized in these ground
states, leading to excitations observed by us as leptons and quarks of higher generations.
(#ii) These small oscillations can be described in a reasonable approximation by the follow-
ing one-dimensional hamiltonian or mass operator:

2 2

M=mo+% +I%[q+lf(q,p)]2—£2)-, ¢))
where
ip,f(qg. Pl = M—mg )]
and
f(—q, —p) = —flg, p), 3

while p = —id/dq, u > 0, w > 0 and /> 0.

Small oscillations having properties (1), (2) and (3) turned out to be much different
from the harmonic oscillations and were called in Ref. [1] the quasiharmonic oscillations.
Here, we will use the term pseudoharmonic oscillations which, perhaps, is more adequate.
Note that the condition (3) provides the symmetry of M under the discrete transformation
g = —q which seems to be very natural for small oscillations (g is a radially oriented co-
ordinate). This condition will be relaxed in Section 3. Note also that the constant p plays
here the role of a mass scale A of some hyperstrong interactions responsible for binding
our composite system.

In contrast to Ref. [1] we will not assume here that w is proportional to the electric
charge squared: w ~ Q2.

As follows from Ref. [1], the model is exactly solvable in terms of “pseudoannihila-
tion” and “pseudocreation” operators @ and a*, where

1 — i
a = —z4Juw [g+if(q, P)]+ -,——p}- @)
V2 {\/ [ N2
In fact, we can write Egs. (1) and (2) in the form
D .2
M = mg+ 7(). + N ®
and
l[a,a*] = 1+(2-1)N, (©)
where

N = ata @)
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is a “pseudooccupation number” operator and

I +wl2
-2’

22 o

(3)

Note that for / - 0 or 4> > 1 we get a harmonic oscillator. Henceforth, we will assume
4? > 0, which implies 42 > 1 as o/ > 0. The eigenvalue equation

Nind = N,jny, <ninp =1 (n=0,12,..) (9)

and the commutation relation (6) give

1
Na*iny = (A*N,+Da"|n), Nain) = —(N,—Dain). (10)
/.
Hence
a*ind = VAN, +1in+1>, and = N, in—1> (11)
and
Nn+1 = ')l'zl\]n_*_1 (12)

Defining the ground state |0) through the condition a|0> = 0 which gives N, = 0 and
solving the recurrence formula (12) we obtain the spectrum for N:

- ':'2’!_'1 0 for n =20,

N = P {1+i2+ e +A2 for n =1 (13)

Then Eq. (5) gives the recurrence formula and spectrum for M:

22 w ce2
Mpiy =M = A" (My—mg)+ '2—(/~ +1) (14)
and
‘Zn_.

m, —-m0+—(A +1) - (15)

K

Since A2 > 1, Eq. (15) gives an exponentially growing spectrum ~exp (2n In 4) + const.
It is bounded from below by m,. In the case of A2 = 1 we get a harmonic oscillator wherc
N, = n and m, = my+wn. Formulae similar to (14) and (15) were found and discussed
previously on a phenomenological ground [5].

2. Fermion masses

The spectrum (15) leads to the mass relation

w
Py =Ty = — (AP+Di" (n=0,1,2,..) (16)
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which in turn implies that

My 2= Mpyy £ 2

a2 (17)

My y—m,

o) w
In particular, m, —m, = 7(lz+l) and my,—my = —2—(12+1)2. If m, > m, we get

w . w
m =~ 5 (A2+1) and m, ~ 5
In the case of charged leptons, identifying n1y, m,y, m, with m,, m,, m,, respectively,

we obtain

(A2+1)%

Ae =399, o, =124 MeV. (18)
Then, the hypothetical next charged lepton (call it “®”) is predicted at the mass
m, = my = 28.5 GeV. (19)

In the case of neutrinos the degeneracy m, = m,,,, if it appeared, would imply ®, = 0
and hence the mass degeneracy of all neutrinos (and so no neutrino oscillations).
In the case of up quarks, putting my, = m, >~ 0 and m, = m, ~ 1.5 GeV we get

W, .2 -
> (Ag+1) ~ 1.5 GeV. (20)
Hence for the top quark
m, = m, ~ (1.5GeV) (U2 +1). (21)
Thus
o 2- (1.5 GeV)?
- -—v—”i«-—l, a)u:'—(*"e)w. 22)
1.5 GeV m,
In particular for
m, =~ 20 GeV, 25GeV, 35GeV, 40GeV (23)
we obtain respectively:
iy > 3.5,4,47,5.1 (24)
w, =~ 230 MeV, 180 MeV, 130 MeV, 110 MeV. (25)

So, if the constant 4 appearing in the commutation relation (6) was a universal constant
ie. if
Ay = Ag = A, = 4, > 4, (26)

there would be

m, = m, =~ 25 GeV. 27
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The hypothetical next up quark (call it “h” for “harmony™) is predicted at

m, = m, ~ 250 GeV, 400 GeV, 780 GeV, 1000 GeV, (28)

respectively.
Analogically, in the case of down quarks, putting m, = my >~ Oand m, = m, ~ 5 GeV
we get

%(;,§+ 1)* ~ 5 GeV. (29)

Thus for
by~ 35,4, 47, 5.1 (30)

we have
wy ~ 57 MeV, 35 MeV, 19 MeV, 14 MeV, (31)

respectively. Then, the strange quark has the mass

m, = m; =~ 0.38 GeV, 0.29 GeV, 0.22 GeV, 0.19 GeV, (32)
while the hypothetical next down quark (call it “f” for “fun”) is predicted at

me = my =~ 62 GeV, 80 GeV, 110 GeV, 130 GeV. (33)

Note that for 4, = 44 = 3.5 there would be w,: wy =~ Q2?: 03 and m, ~ 20 GeV, what
seems to be experimentally excluded. Of course, the possibility of 1, = 44 with a higher
value (e.g. A, = 14 ~ 4 corresponding to m, >~ 25 GeV) is experimentally open.

As is described in Ref. [1], the pseudoharmonic oscillations can be considered as
small if

i _
;;0% (AP+DN,+1] < 1, (34)

where r.,, ~ 10-1° cm is the experimental upper bound for radius of leptons and quarks.
Thus the consistency requires that

p < TN 11 cm (35)
(where N, =0,1,17,273, ... for n=0,1,2,3,..) if we put A =4 and w ~ 10 MeV
(as for charged leptons). In particular, for the extreme value of p equal to the Planck
mass My ~ 10'? GeV the model is certainly consistent with r.,, leaving plenty of margin
for decrease of r,,, (in this case 1/u ~ 10733 cm). Inversely, given the mass scale y, the
number of fermionic generations » (which can be described as pseudoharmonic excita-
tions) is restricted by the condition 17N, +1 < u/(10° GeV). In general, the larger n is, the
worse becomes the description. But, the inequality sign here may be not so sharp.
As is noted in Ref. [1], the excited states with respect to our pseudoharmonic oscilla-
tions are radiatively stable as far as one-photon or one-gluon transitions are concerned.
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3. Cabibbo-like mixing

Now, in order to allow for mixing of n states (defined as eigenstates of the mass operator
(1)) we would like to relax a bit our model of smali oscillations by introducing a tiny viola-
tion of its symmetry under the discrete transformation ¢ —» —g.

To this end we make in Eq. (1) the substitution

fa,p) - g, p)+1o, (36)

where f, is a small constant, while (g, p) still satisfies the conditions (2) and (3). Then we
obtain the new perturbed hamiltonian or mass operator

2 2

M = mo+ 2 + B [t ip(q, p+ 1T - = 37
2 2 2
which gives
MP = mg+ol% (2 + DN+ gla+a*)+g’] (38)
with
N (39)

whilst the commutation relation (6) still holds for @ and a*. Here, only one new free param-
eter appears: g (beside two old: A and w). Note that the substitution (36) introduces
to the mass operator a kind of initial stress, which is acting even when g+1f(q, p) — 0.

In the representation defined by eigenstates |n) of the operator N (which are also
eigenstates of the unperturbed mass operator M = M} o) we get

<n’[MPln> = ('nn+ gza))an’n + gw(\/I_V: 5n’n- 1 +\/Nn+ 1 5n’n+ 1]9 (40)
where N, and m, are given in Eqgs. (13) and (15). Denoting the eigenvalues and eigenstatés
of perturbed mass operator M¥ by m, and |[nD* we can write

ANUTIMPUIR) = mks,, 41)
and ‘
I = Ulny =Y ("> {n'|Uin), 42)

where U is a unitary operator.

If only three generations n = 0, 1, 2 are relevant, the nondiagonal mass matrix defined
by Eq. (40) takes the form

e

2 =N
my
me+ —s°, mys, 0
®
m? —
P 1
M = |mys, my+ —s%,  mys JA2+1 ], (43)
%)
2
T mi 2
0, mysjA2+1, my+ —s
L @ J
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where

gw
Ny

s 44

)
and my; = my+ 5 (A*+1) and m, = my+ % (A2 +1)*>. The perturbative solution for

eigenvalues and eigenstates of the mass matrix (43) leads to [6]

1-1s% s, 0.015s?
1.066 ,
-8, 1- 5, 0.26s 3 ‘
U = 2 +0(s” or 5%), (45)
0.066
0.24s%,  —0.26s, - s?
- J

where my = 0 and 1 ~ 4 are used. Then s = 2g/(A2+1) ~ 0.12g.

As is shown in Ref. [1], the explicit form of the U matrix (which diagonalizes the mass
matrix (43)) enables us to calculate in our model the Kobayashi-Maskawa matrix [7].
In fact, it was demonstrated in the case of 1, = A, that the generalized Cabibbo-Kobayashi-
-Maskawa unitary operator has the form

V=1U;"U, (46)

where U, and U; are the U operators for up and down quark families, u,c,t, ...
and d,s, b, ..., respectively. In the case of three generations n = 0, 1, 2 the V operator
becomes the usual Kobayashi-Maskawa matrix:

Vier Vi Vis €y $1€3, 5183
. : ) is is
V = l/cd’ Vcs, Vcb = _SICZ! 0102634‘52333 N CLCZS3_52C3e sy (47)
v- V ” _ _ is + ei&
1d> tss b 5182, €18203—C353€, €18353TC)C3

where ¢; = cos 6, and s; = sin 8, (i = 1, 2, 3). In our case we can put § = 0 since the V
matrix is real.

Using formulae (45) and (46) we calculate the matrix V. Then, comparing the result
with Eq. (47) we get [6]

5y = 54— Sy,
§3—55 = 0.26(s54—5,),
s3+8; = —0.23(54+5,). (48)
On the other hand, the perturbative solution for m§, which in the case of matrix (43) is
m? ,A%—1

P 1.2
my = Mo+ —§
0 °T e T A2t

+0(s%), (49)
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gives

m, g

s my @,

, (50)

ol

~

where my = 0 and A ~ 4 are used and the popular current masses m, ~ 4 MeV and
my ~ 7MeV are assumed for mp (here, w, ~ 180 MeV and wy ~ 35 MeV as follows
from Eqs. (25) and (30) for 4, = A4 = 4). The set of four equations (48) and (50) can te
solved for s,, 54 and s,, s; if the experimental value of

sy =~ Vo = cos B¢ (51)

is taken as an input. For the input s; ~ 0.22 or s, ~ 0.23 we obtain in this way

1 —0.0045))
0.98, 0.22, { 0.0035}
V| —022, 0.97, 0.057 (52)
0.017
\ {0.0089}, ~0.057, 1.0 ]
or
( —0.0054) )
0.97, 0.23, { 0'0038}
Vo~ | —0.23, 0.97, 0.060 , (53)
0.018] )
i {0.010} ,  —0.060, 1.0 )

respectively (for the meaning of matrix elements in Eqs. (52) and (53) compare Eq. (47)).
Here, the upper or lower numbers for V,, and V4 correspond to two possible cases of
su5g > 0 or < 0, respectively.

The results (52) and (53) are consistent with the recent experimental estimate
l/;.lb 1 +0.010
—1 < 0.15, iV, = 0.053Z¢ 000 (54)

'cb

extracted from data for B-meson decays [3] (cf. also the experimental analysis in Ref. [8]).
In fact, they give

Vo 700801 s 0087 55
Ve | 0062f° "7 7 (33)
or
Vub "‘0.090 .
o~ , Ve = 0.060. (56)
Vo 0.063
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We would like to stress that, in contrast to Ref. [1], in our present calculation no extra
parameter appears (beside 4, 4 and w, 4 estimated from heavy quark masses and s, 4 estima-
ted from the ratio m,/m, and the Cabibbo angle 6.). For values of i, = 4 larger than
A, = Ay =~ 4 used here (corresponding to values of m, larger than m, ~ 25 GeV) one
gets the mixing angles 0, and #; smaller and smaller.

4. Classical analogy

The operator f(q, p) defined in Eqs. (2) and (3) satisfies with respect to g the nonlinear
differential equation

of(g.p) _ p* | po’ Yy
= — + — [gq+If(q, — 57
P o 5 La+1f(q, p)] 3 (57)
with p = —i0/dq. Fortunately, there was no need to try to solve this equation explicitly.

It may be interesting, however, to find an analogy of f(g, p) in the case of classical mechanics,
where Eq. (57) depends parametrically on the momentum p and, therefore, can be easily
solved. Then we obtain

q+If(g, p) = @tan [QC(p)q+arctan w] R (58)
Q C(p)
where
Qz\/ﬁfa), C('p)=\/]-6-9~z+l—’i. (59)
2 ) 2 2u

Here, C¥{(p) > 0 since ol < 2 for A2 > 0 as it follows from Eq. (8) (in particular wl = 1.76
corresponds to 4 = 4). We can see that the momentum-dependent interaction in the classical
pscudoharmonic oscillator,

2
Hw

[a+1f(q. p)]— =, (60)

V = —
2 2

has singularitics (double poles) at the points

v+ Dn
g = S 0 41, 42,0, (6D
2C(p)«2
Note that the condition (3) is fulfilled, if the inisial value in Eq. (58) satisfies the condition
It happens that, if f(0, p) = 0 and if p?/24 is neglected in C(p), the interaction ¥ can
be expressed by the Pdschl-Teller potential discussed several decades ago in the theory
of multiatomic molecules [9]:

1

V= Veld—q0)— 77> (62)
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where
a* [ (wlf2)™? (wl]2)~?
Verld—q0) = 2 —| —5- +
a0 = 45| e * e a0 ©2
with
c \/; wl CcQ T "
= — o = —— N = ——,
2 2 % 3cq (64)

Such a truncated V, if inserted back to the Schrodinger equation with H = M and m, = 0,
gives (exactly)

C? (12 —1\? +1+/12+1\/1+1 -1 1 5
Ny =-—\ 5 | n+3+ -5— il -,
=T\ |TTTT 2 “\ 211 I (65)

whereas our previous exact solution is

B An—1

m'l
l

(n=0,1,2..) (66)
(cf. Eq. (15)) because m, = 0 and

w 1
?(l +1) = T (67)

(from Eq. (8)). We can see that neglecting the momentum dependence in the interaction
part of M we deform drastically the mass spectrum, losing its exponential character.
Nevertheless, the periodicity of Vpr (9—4o) reflects in some way the many-body nature
of our composite system.

Finally, it should be mentioned that the operator ¢ = ¢q-+If(q, p) appearing in the
interaction part of the mass operator (1) satisfies, due to the condition (2), the commutation
relation

[4, ] = {1+ KM —mg)). (68)

If the operator g is formally replaced by the coordinate ¢ and the operator M —m, by
the general hamiltonian, Eq. (68) transits into the noncanonical commutation relation
[q, p] = i(1+1H) considered by Saavedra and Utreras [10] who boldly conjectured that
inside hadrons the usual Heisenberg canonical commutation relation [g, p] = i should
be thus modified. (Note that in our case such a modification might be pertinent inside
leptons and quarks rather than inside hadrons.)
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