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The relativistic field equations for interacting massless attractive scalar and source-free
electromagnetic fields in a cylindrically symmetric spacetime of one degree of freedom with
reflection symmetry have been reduced to a first order implicit differential equation depending
upon time which enables one to generate a class of solution to the field equations. The nature
of the scalar and electromagnetic fields is discussed. It is shown that the geometry of the
spacetime admits of an irrotational stiff fluid distribution without prejudice to the interacting
electromagnetic fields.

PACS numbers: 04.40. 4 ¢

1. Introduction

The gravitational effects of cylindrically symmetric interacting massless scalar fields
are a subject of current interest because of their possible applications to nuclear physics.
The case of coupled source-free electromagnetic fields and stiff fluid distributions equivalent
to massless scalar fields was investigated in a recent paper [1], when the geometry is describ-
ed by the Einstein-Rosen metric. An earlier paper [2] deait with self-gravitating irrota-
tional stiff fluids analogous to scalar fields in the space-time described by the metric

ds?* = €5(dt* —dr?)— eP(r’d6* + dz%) (1a)

C = C(,1), B=B(1)), (1b)

where the coordinates (r, 6, z, t) correspond to (x!, x2, x3, x*) respectively. This metric
is a specialization of a general one [3]. It has been shown in [2] that the parameter B is
a linear function of time. A Cauchy problem pertaining to the Klein-Gordon equation

for the scalar fields has been subsequently studied under the assumption that this parameter
is independent of time.

13)
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The aim of the present investigations is to extend the above mentioned work. in
which source-free electromagnetic fields interact with the massless scalar fields. The field
equations have been reduced to a single first-order and implicit differential equation in
time only whose solution can be used to generate a set of exact solutions to the field equa-
tions for the case where only one component of the electromagnetic field tensor survives.
The behaviour of the scalar and electromagnetic fields is discussed in Sections 4 and 5,
respectively. Conditions under which the solutions reduce to those givenin [2]are mentioned
in Sec. 6. It is shown in Sec. 4 that the scalar fields are analogous to irrotational stiff perfect
fluids notwithstanding the presence of the electromagnetic fields. Finally, the uniformity
and nullity of the electromagnetic fields are studied.

2. Field equations

The Einstein field equations for linearly coupled scalar and electromagnetic fields are

Gy = Ry—(3)gyR = —T;—(G )M, )
I; = ViV = (3)euVal ™, (2a)
M;; = —F,F ;+(‘37)gijFquh (2b)
1 |
OV = == (/-2gV),; =0 (3)
VT8
. — g 4
F .,-=~:3§(~/—gi‘ )i=0, (4a)
Fij= A= Ajs (4b)

where the units are so chosen that the velocity of light ¢ = 1 and K = 1/8 7. Here and in
what follows, commas represent ordinary differentiation and semicolons, covariant differen-
tiation. Tj;, M;;, V, F;; and 4; represent respectively scalar stress-energy tensor, electro-
magnetic stress-energy tensor, the scalar fields, electromagnetic field tensor and the electro-
magnetic four-potential. Equation (3) is the Klein-Gordon equation of the scalar fields.

Because of the geometry of the space-time imposed by Eq. (1), we have
Apg=A4,.=0V,=Vy=0 and F,3=0 35)
For convenience in setting up the ficld equations, we introduce the transformations
U=1t—r, v=1_t+r 6)

The subscripts 1 and 4 in the following denote differentiation with respect to u and v respec-

tively. Five of the field equations (2) are associated with the five non-vanishing components

of the Einstein tensor Gj;. The rest of the field equations can be written in the compact
form (in view of Eq. (5)).

Fi F 3 = Fi4F 3 = F14Fs, = F14F3, = 0, (72)

Fi2F3, = Fi3F = 0. (7b)
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Equation (7a) suggests that either F;, # 0 or F;, = 0. Here we consider the former case
for which Eq. (7b) is identically satisfied. The latter case is under investigation and will
be published later. Under this condition, the field equations may be written in the equivalent
forms,

By +(3)Bi—CyB;+(31) (B, —Cy) = — V7, (8a)
Byy+(3)Bi—C B, — (5 1) (B4~ Cy) = — V2, (8b)
2C,4+4B,,+3B,B, = —2V,V,, (8c)
B, = B,, (8d)

o€
B,,+B,B, = . F?, (8e)

in which the scalar and the electromagnetic fields are delinked.
Besides these equations three others are obtained from Eq. (3) and (4a):

1 1
2Vy+ (= +B, ) Vy+| —=— +B, )V, =0, &)
2r 2r
rFy 4 = —1(By—Cy)F 4 +5 Fyy, (10a)
"F14,1 = _"”(B1_C1)F14_%F14- (10b)

3. Solutions

As a first step, we integrate Eqs (8d) and (10a, b) and obtain

B = B(t), (11)
Fia= = e8%€, (12)
2r

Here and in what follows, all lower case latin letters except r, 1, z, u, v and w represent
arbitrary constants. The relation (12) is analogous to the relation (3) in Ref. [4]. But this
relation may or may not generate a class of solutions to the ficld equations.

Substituting Eqgs. (11) and (12) in the remaining field equations and reverting to the
original coordinates, we have

1 p2 I 1 s 2
B+3 B> —(CHC)B+ — (B—C,~C) = —(V,+ V)%, (132)
r
v . . 1 .
B+ B*—(C,~C)B— — (B—C,+C) = —(V,~= V)%, (13b)
r

2B+3% B*+C,—C,, = V}-V?, (13¢)
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2
- . a -
B+‘;‘ Bz e 4nr2 e 2B+C’ (13d)
1 .
I/;l‘—'Vrr— - Vr+BVt = 03 (136)
r

where () represents total differentiation with respect to time, and the subscripts rand
¢ represent partial differentiation with respect to r and ¢ respectively.
To solve these equations, Eq. (13d) may be written in the form

4 .
¢ = 2 rod, (14)
a
where
& = P(t) = €. (14a)

Substituting . Eq. (14) in the difference between Egs. (13a) and (13b) we get

vy, = s
t’r — 2}_ 3 )
where

W = W(t) = 2B+(d/d). (15a)

Using Eqs. (14) and (153) in the sum of Eqgs. (13a) and (13b) and also in Eq. (13¢),
we reduce them to the forms

s p2 e 2 ‘
B+ B —BW— 5= V=V, (162)

)
B+3B*+W+ 5 =V -V2 (16b)
r

Egs. (15) and (16a, b) may be considered in place of Eqs. (13a), (13b) and (13c¢).
Adding and subtracting Eqs. (16a) and (16b), we get

2B+3B*+W—BW = —2V2, (17a)
o 4 )
W+BW+ 5 =2V2 (17b)
r

It is evident from Eq. (17a) that ¥, is a function of time alone. Using this fact along with
Eq. (15), we reduce Eq. (13¢) to the equivalent forms

Vo= —BV, and V,=--", (18)



17

which immediately yield
V,=be " (19a)

and

v, =—. (19b)

The constant of integration m may be evaluated to be +.,/2 by substituting Eqgs. (19)
and (15) in Eq. (17b) so that the latter is identically satisfied. Thus we obtain from Eqs (15),
(19a) and (19b)

_1
V,=1% 2 — (19¢)
W = +2./2 be”®. (20)
In view of these two equations, Eq. (17a) takes the form
2B+3B°F4 /2 bBe P +2b% %% = 0. Q1)

A first integral of this differential equation obtained by standard methods has the form

2
. — _ * — -1
A (Be"F2/2b-/6b) 3

5 , (22)
. B = oo Eztl
(B /2 b+,/6b) V3
where 7 is an arbitrary constant.
Any solution to this first-order implicit differential equation may generate a class of

solutions to the field equations. The solution obtained from Egs. (14), (19a), (19¢) using
Eqs. (15a) and (20) appears in the form

V=>bJePdt+ /2logr+a, (23)
4xb’ _
ec = jT rZ exXp (i‘2 \/2 b [‘G"Bdt—B) 5 (24)
a
2nb’ =
Fro=22, exp(iZ\hbJe"Bdt—ZB), 25)
a

where B is a solution of (22). The constant &’ appears when Eq. (20) and Eq. (15a) are inte-
grated to obtain ¢. The last equation is obtained from Eq. (12).

4. Nature of the scalar field

Eq. (23) shows that on the ¢ = constant hypersurface, the scalar field behaves loga-
rithmically with respect to r. If the negative sign in that equation is taken, V falls from
+ o0 on the axis to —oo at r = +00. In physically valid situations any scalar field should



18

fall off to zero at very large distances. This is achieved in the present case, by choosing
the constant a’' appropriately.
The lagrangian of the scalar fields given by

L=3VWV* (26)
may be found to be related to the curvature invariant R by the formula
L=-3R (26a)

as can be seen by contracting both sides of Eq. (2). The scalar invariant has the form

a* 12 2 —2m = -
R = ?(;2 —b%e P Jexp }‘2\;"2bJ‘e Bdt+B}. 27

It has a singularity on the axis. According to [2], an irrotational stiff perfect fluid character-
ized by p= 0 = V" (p and ¢ refer respectively to pressure and density) indicates the
same behaviour as R, even in the presence of the electromagnetic fields.

With the help of Eq. (20), Eq. (15) can be written as,

- b
Vy, = + V2 — e, (28)

r
which has a geometrical significance. The left hand side is equal to the scalar product of
the tangents to the curves r = ro, and t = 1, through the point (ry, 15, Vo = V(ro, 1,))
on the integral surface [5] of Eq. (13¢). The angle between the two tangents is given by [6]

- b
) + \/2 — g B
V.V, r
cos o = —= S S (29)

/.‘:’:*:ﬂ,,& T WY p— e ———
NOA+VH A+ V72 2 _
A+ A+ \/(1+—2>(1+b2e 25
p

The families of curves r = constant, ¢ = constant divide the integral surface into meshes,
each having the area [6]

~ 2
S =ﬁ \/1+ G +b%e”* drdt. (30)

5. Behaviour of the electromagnetic fields

The electromagnetic fields, given by Eq. (15) becomes in the rt-coordinates
4nb’ -
F,= rexp(iZV’Z bje"”dt+B) (1)
a

which vanishes on the axis and tends to o as r — oo, This is a non-radiating electric field
because the component of the energy-momentum tensor M,, corresponding to the Poynt-
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ing vector, obtained from Eq. (2b) using Eq. (31), vanishes. The energy-density of the electro-
magnetic field given by

M,, = 2nab exp (+2./2b e ®di—3B) (32)

is independent of the space coordinates, confirming non-existence of energy flow.
The dual [7] of the electric field considered above, defined by

F* = -3 (“’g)—”z“fsijkz (33)

has only one component i.e., F5, which is cqual to the const. g and represents a magncto-
static field. In the above equation, g;;, is the Levi-Civita tensor density. In the present case,
the nuility function [8] defined by

w = [(F;F7) +(F ;F*i)y*]'"? (34)
takes the form
aZ —2B
=5 (35)

which has a singularity on the axis and vanishes at infinity. Thus the field is non-null
at finite distances. That it is also non-uniform appears from the fact that the tensor Fj;,
has only two components given by

u . p. . Y - g )
Fion = — 41’2(1+rB)e BeC  Flya = e (1—rBye B*€, (36)

4

which are not in general zcro.

6. Conclusion

The geometry assumed in Eq. (1) describes a cylindrically symmetric spacetime with
reflexion symmetry which is capable of sustaining gravitational waves [9]. It has a single
degree of freedom represented by the metric potential B. The corresponding field equations
pertaining to irrotational stiff fluid distributions have solutions that are cquivalent to those
of massless scalar fields [2]. The resulting fluid pressure equal to energy density is physically
viable and therefore corresponds to the entropy level of the initial state of the universe
indicating that it is not chaotic but isotropic and queiscent [10]. It has been shown in the
present investigations that this pressure depends only upon the Ricci Scalar of the space-
time but is not affected by the presence of the non-radiating electric field considered here.
This electric field described by only one nonvanishing component of the field tensor, is one
of the two types admitted by the spacetime assumed here. The main purpose of our investi-
gations is to reduce the field equations to a single differential equation in B whose solutions
may generate all possible solutions of the ficld equations, and to relate all the physical
quantities involved, including the scalar and electromagnetic fields, directly to the single
degree of freedom of the spacetime represented by B.
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It turns out that the single differential equation referred to above is implicit and of
first order in B depending upon time alone. The electromagnetic fields, the scalar fields
and the equivalent irrotational stiff fluid pressure can be directly computed from B, once
the equivalent equation is solved. The electromagnetic field is non-null and non-uniform.
Moreover, it is satisfying to note that all the physical quantities involved are fully inherent
in the spacetime.

For an electromagnetic field, the parameter B satisfies the inequality (see Eq. (13d))

B+B 0. (37

Consequently, Eq. (21) shows that b = 0, W = 0 and V, = 0 if and only if B is constant.
When the electromagnetic field is set equal to zero, relation (37) becomes an equality.
Equation (21) then reduces to

B*F4 J2bBe P+2b% " =0 (38)
which has the solution
e® = 1+kt, (39)
where
k = (£2./2 +2./6)b. (39a)

Under this condition, Eq. (8c) reduces to the one that was considered redundant in [2].
Solution (39) also corresponds to the solution for B in {2]. Thus, the case reduces to that
considered in that work.

The authors’ thanks are due to Professor J. R. Rao and Dr R. N. Tiwari for their
constant encouragement. They also wish to thank the referee for the improvement of the

paper.

Editorial note. This article was proofread by the editors only, not be the authors.
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