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NON-RELATIVISTIC PARTICLE OF ARBITRARY SPIN IN THE
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Exact solutions of the equations of motion for the non-relativistic arbitrary spin particle
in the Coulomb field are obtained. Galilei-invariant two-particle equations for spin-;— particles
are proposed.
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1. Introduction

It is well-known that relativistic wave equations run into serious difficulties when one
tries to describe the interaction of a particle of spin s > } with external electromagnetic
field. There are paradoxes connected with causality violation [1], the absence of stable
solutions of the Coulomb problem [2} and others (see c.g. [3]).

Therefore i1 is interesting to study an alternative possibility of describing the spinning
particle, one that makes use of Galilei-invariant wave equations (GIWE). Such equations
were first proposed by Levy-Leblond [4], and generalized by Hagen and Hurley [S, 6] to
the case of arbitrary spin. An extensive discussion of the Galilei invariant approach in
classical and quantum mechanics is given in [7]

In the papers [8-12] GIWE (Galilei-Invariant Wave Equations) for particies of any
spin are obtained which unlike those of Levy-Leblond and Hagen-Hurley, deseribe the
spin-orbit and Darwin couplings of a particle with a field. The equations in [§-12] do not
pretend to a complete description of the interaction of a charged particle with electro-
magnetic field, but they describe adequately the main properties of such an interaction
for non-relativistic energies and predict the same physical effects as the one-particle Dirac
equation,

In the present paper the GIWE found in [12]are used to describe the motion of a charged
particle of arbitrary spin in the Coulomb field. Exact solutions of the corresponding
motion equations are found and the energy spectrum of coupled states is discussed.
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Together with one-particle equations the motion equations for interacting particle
systems are of great interest for physicists and mathematicians. The interest in these equa-
tions has grown considerably in recent years owing to the successes of meson spectroscopy.

Describing two-particle system one usually uses either the covariant Bethe-Salpeter
(BS) equation or a semirelativistic equation of the Breit type [13]. The solutions of the BS
equation depend on an additional parameter, viz. proper time of the particle system,
the physical meaning of which is not clear. As to the Breit equation, it is not invariant
under either Lorentz or Galilei transformations and so does not satisfy any relativity
principle accepted in physics.

In the present paper a two-particle equation is proposed which is invariant under
the Galilei group and leads to the same fine and hyperfine energy spectrum structure as
the Breit equation docs.

2. Equation for radial wave function

GIWE for a charged particle with arbitrary spin s in an external electromagnetic field
has the form [12]

[ﬁ”n"+(1—ﬁo)2m+ E,i S,,,F‘":l Y =0, 1)
am
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A, is the vector-potential of electromagnetic field, 7 is (2s+ 1)-row unit matrix, S, are
(2s+1) x (25 + 1)-dimensional generators of irreducible representation D(s) of O(3) group,
K, are matrices of dimensionality (2s—1) x (2s+1) which are determined up to a phase
by the relations

KaSb'- Sl')Ka = ieachc’
Sasb+K:Kb = issabcsc+326ab’ (3)

where §; are the generators of the representation D(s—1) of the O(3) group. The explicit
form of the matrices, S,, K, and S, (which is not used here) is given e.g. in [6].
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Eq. (1) may be considered as a generalization of the Levy-Leblond-Hagen-Hurley
-equations to the case:of a particle with anomalous moment [12]. If ¥ = 0, Eq. (1) reduces
to the one obtained in [6].

Here we consider Eq. (1) for the case of the Coulomb field, i.e. where 4, = — —gi

x
A, = 0. It is convenient to go on from (1) to a second-order equation for the (2s+1)-
-component wave function. Multiplying (1) by 8, and 1—f, and expressing (1— f,)¥
by Bo¥, one obtains from (1) the following equivalent system [12]

b4

ek . . £ | w— 0
ﬂo**mﬂxﬁ —5,;(5 ) | Be¥ =0, (42)
1. .
(A=Bo)¥ = o B-mpo¥, (4b)
- " Zex .
where E = —i[ng, #] = — —— is the vector of electric field strength.
X

We see that Eq. (1) reduces to the Eq. (4a) for the function ¢, = f,¥, which has
25+ 1 non-zero components. The vemaining 4s components (i.e. (1~ f,)¥) are expressed
via @, according to (4b).

Using the explicit form of matrices (2) and taking into account relations (3), one can
write equation (4a) in the form

_(’(p p2 a  ika S-X o 742 s
i—, =|-- - — -~ o, o= Ze
ot 2m  x  2sm x5 g ¢ ©)

The solutions of Eq. (5) which correspond to the states with energy & have the form
@, = exp (—iet)®(X). Taking into account the symmetry of Eq. (5) under the O(3) group,
it is convenient to tepresent ®(X) as a lincar combination of spherical spinors

(ps(i’) q)v(x) Jita—vm> (6)
v=20,1,2,...,2n, ng=mn(,j), )

where {©%;,,_,,} is the complete sct of eigenfunctions of operators J2, [2, and J3 (J = X
x p+8 = L+8), corresponding to the eigenvalues j(j+1), i+ 1) ({ = s+j—v) and m.
Substituting (6) into (5), one obtains the following equations for radial functions

Dg(x) = x_zbw’q)v‘a (8)
where

. . . ika
bvv‘ = [S(.S+,)+2]9—2V(‘]+?)+V(V—])]()W"f' = Qyys
§

N (9)



S-x

X

a,, are matrix elements of the operator S - X = in spherical spinor basis, determined
by the relation

S % tsoum = G ismvm
The values of q,, for arbitrary s and j are [14]

1,¢ .
Ay = —?(Ovv’+lav+5vv'-lav+l)'

[ vd;=vd,—v)d;;—v) T2
o= [(djs—2v—1) (djs-—2v+1)] ’

F =2+l dy=2s+1, d =d+d, (10)

So the problem of describing the motion of any spin charged particle in the Coulomb
field is reduced to the solution of Eqs. (8)—(10) for the radial function.

3. Energy spectrum of an arbitrary spin particle in the Coulomb field

The matrix ||b,,.{] commutes with operator D (9) and is diagonalizable. So the system
(8) can be reduced to noncoupled equations of the form

Dy = x"*b"lp, (€3))
where D is the operator (9), b are the matrix ||b,,|| cigenvalues. Each of the equations

(12) in its turn reduces to the well-known [15]

dzy dy z q°
Z—t 4 — 4 - — - —]y=0, 12
4z ' dz (ﬁ 4 42)) (12

where

P P ——

/ /
v=Nze@, z=2v-2mex,

m .
B = \/—_—2; o),  q° =d}+4b, 13)

The solutions of Eq. (12) for coupled states (¢ < 0) are expressed in terms of Laguerre
polynomials, and parameter § takes the values [15]

B=3(@+D+n’, n' =012 .. (14)
According to (13), (14)

2
P i U— (15)

NG+ '+
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As a result one obtains formula (15), which determines the energy levels of an arbitrary

spin particle in the Coulomb field. Parameter b* in (15) takes values which coincide with
the roots of the characteristic equation for matrix (9)

det {|b,, — b5, || = det

[s(s+ 1) +2js—2v(j +5)+v(v—1)

. ika
—-b16,,+ — a,v'“ =0 (16)
5

where a,, are coefficients (10).
Formula (16) determines an algebraic equation of order 2n,;+ 1 which can be resolved

in radicals for 5 <L 2 or j <C 2 only. To analyse the spectrum (15) for any s and j it is con-
venient to represent the solutions of Eq. (16) in the form

b = s(s+ 1) +2js—2v(j +3) + v(v = 1) = (ka)?b% + o(ka)* an

where b¥ are unknown functions. Then using (10) and neglecting terms of order a* one
obtains

aV
B d,j—Zv'

. 1
bfrl = ZS‘E(BV—BM‘ 1)1 Bv (18)

Representing (16) as a power series in a2 and using (17), (18) one obtains the rela-
tions

ma mk2a*b® +o(a®)
E= — — — - o(a®),
n? n(1+%)
n=n+j+s+l—-v=1,2,.. I=j+ts—v=01,..,n-1 (19)

Formula (19) determines the fine structure of the spectrum of an arbitrary spin non-

2
relativistic particle in the Coulombic field. Besides Balmer’s term — —— formula (19)

n
contains an additional one, which is caused by the existence of particle spin. It follows
from the results of paper [12] that this additional term may be interpreted as the contribu-
tion of spin-orbit, Darwin and quadrupole interactions.

According to (19), any energy level corresponding to a fixed value of the main quantum
number a. is split into n—1 sublevels with different values of /. Each of these sublevels
in its turn is split into 2n,;+ 1 sublevels corresponding to possible values of v, ny; = min (s, j).

For s = 4 spectrum (19) is not degenerated, contrary to the relativistic case. According
to (13), (18) one has

2 2 4
L ma Amk L .
= 3! == —5 — , A=v—3 =143 20
TTE T T TR neah mimE @




It is interesting to compare spectrum .(20) with the corresponding one for the Dirac
electron. Denoting Dirac energy levels by & it is not difficult to show that formula (20)

may be rewritten in the form
4
p
e = ep—m— <8_m_> @

where averaging is made with Schrédinger wave functions. So spectrum (20) contains
contributions predicted by the relativistic Dirac equation (neglecting the mass term and
relativistic correction to a kinetic energy) — i.e. spin-orbit and Darwin interaction.

For s <3 or j <3 Eq. (16) can be solved in radicals. The corresponding solutions
for s<{1 and j <1 are

k
b = o, b’*=%-(d:—3)i%\/"2 (a>
S

b = s(s+1)—2+3d+2 /- dcos[ (f’Hl n)]

=0 +1, s#0, (22)

where

o

cosy = =2 (ka)*+3di—45, ¢ =(ka)’—3%—b,

=

__Jt 2 (ke 2 (kN
cosé—\/‘_ds, S 3(5)+ ds— f—(b) L

Formulae (15), (22) give the exact spectrum of nonrelativistic particles with spins

5= % and s = 1 (and with any spin for j< 1) in the Coulomb field.

I

4. Two-particle equations

One-particle GIWE admit an immediate generalization to the case of a system of
two arbitrary spin particles. Consider the example of such equations for two spin-} particles.
Let us denote by ¥(¢, X, )?2) a 12-component wave function, where x, and X, are
the sets of spatial variables (coordinates of first and second particle), and by L a first-order



differential operator of the form
L = L(po, 51, ;b V)
= ﬁoPo—Bx “Py—B2 - P2+2Bam, +2fsm,

-

(Po+W)M &' p, & " P2

-

¢l-p, 2md 0O , (23)

W

-

o’ p, 0 2m,l

where ' and 2 are two commuting sets of Pauli matrices, i.e. matrices of dimensionality
4 x4, satisfying the relations

[6:9 aﬁ] = 2i6aﬂsabcaz> (6:)2 =1, a=1,2 (24)

I and 0 are 4 x 4 unit and zero matrices, p, = — , Vis scalar function of ¥ = X,

i
0x,

- 0 . o . . . .
— X2, 5 Then the two-particle Galilei-invariant equation can be written in the form
r

L(po, P1» P2, VI¥(1, X, X;) = 0. (25)
Galilei invariance of Eq. (25) follows from the fact that for any Galilei transformation
X, XL = Ri,+Vt+a, t—1 =t+b (26)
one may collate the following transformation of a function ¥(1, X,, X,)

2

Y(t, X, X,) = Pt X1, X5) = UT (L, Xy, X5),
U = exp[if(t, )] (1 +ii - V) exp (iS - 6), (27
where 6 = (0,, 0,, 6,) are spatial rotation parameters,

%) =mV X+t mV2%, m=m +m,,
I | -~ - w a2
X = —(mX;+myx;), S=1I®S,
m

S=3("+3), 1=30-p) (B +5),
I is the three-row unit matrix.

Transformations (27) realise representation of Galilei group and retain Eq. (25)
invariant, in as much as

U™ L(po, p1» P2 V)U = L(p§, Pys Pas V),
where

t . .
Po=iz;, Pi= —i= -
ar’ * Ox,

& ., F
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Denoting ¥ = coulomb (¥, ¥,, ¥;), where ¥, (@ = 1, 2, 3) are four component
functions, one obtains from (23)~(25) the following equation for ¥,

d i . P
i—Y, =—+ —+V)¥,, 28
at ! <2m, 2m, ' 28)

which coincides with the two-particle Schrédinger equation. It is not difficult to demonstrate
that Eq. (25), (23) is the simplest first order GIWE which leads to Eq. (28) for four-compo-

nent wave function.
Choosing interaction potential V" in the form

and turning in (28) to c.m. frame, we arrive at an exactly solvable equation of type (5).
The choice

R 1 - 1. U R
V=—Ze| -+ ———|kip-—~pt+tkp-rS5r-p
r 2mgm, r r
s s o3 - r
ifo c r 1 S-L 2 . -
+ 5 (—-— - ~——) - = - (SZ—%w(r)} 29)
m, m,/ r mmm, r mn,
- i . L . o
wherep = —i P L=rxpk, =1-38ky,=1+35,0 = (m+m3) [mmy(m, +my)l,
r

leads to an equation which is Galilei invariant and predicts the same energy spectrum
of coupled particles as the semirelativistic Breit equation [L3] does. To verify this statement
one may substitute (29) into (28) and calculate the Hamiltonian eigenvalues using the
standard perturbation technique.

Equations (23), (25) can also be used for the description of a particle system in an
external electromagnetic field. Indeed, the minimal substitution p, — p,—e,A(t, X,
Do = Po—e1do(t, X )—e, Ao(t, X,) keeps these equations Galilei invariant and automati-

e, 5 - H(t. X . . .
cally leads to the appearance of Pauli terms - — ( _i) in the Schrodinger equation

m,
(28). Another possibility is to introduce into (23), (25) anomalous interaction terms, as
is done in [12] for the Levi-Leblond-Hagen-Hurley equation [6] (sce also Section 2 of the
present paper).

So two-particle GIWE can serve as a suitable mathematical model for the description
of a system of interacting particles with spins }. Egs. (23), (25) and two-particle GIWE
for arbitrary spin particles will be considered in greater detail in future publications.

The author thanks Professor V. L. Fushchich for his constant encouragement and
very helpful criticism.

Editorial note. This article was proofread by the editors only, not by the author.
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