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them to experiment. The present experimental upper bound on 6y (£9£°) are roughly as
strong as the upper isospin bounds we obtain. The lower isospin bounds imply o, (Z020°)
> 2 ub at a p-momentum around 3 GeV/c. No violation of isospin symmetry is observed.
We also obtain the isospin bounds on differential, polarized and unpolarized cross
sections. The consequences ot saturation of these bounds are derived.

PACS numbers: 13.75.-n

Strong interactions are assumed to be almost isospin invariant. In this paper, the
experimental consequences of isospin invariance are derived for pp — BB’ with p the proton
and B, B’ baryons. Some experimental information on the reactions we consider already
exists [1]. Our main motivation derives from the fact that detailed experimental results
on these reactions are expected from LEAR (the low-energy antiproton machine at CERN);
P. D. Barnes et al. in Ref. [1]. Near threshold, the experimental cross sections must be
Coulomb-corrected before the isospin bounds can be applied. Direct application will be
possible to data to be obtained well above threshold using the pp-collider version of LEAR
(which is planned to be built at CERN).

Our results are straightforward extensions of the isospin bounds valid for nN-scatter-
ing [2, 3]. We believe our method to be more general than any to be found in the literature.
In particular, it holds with modifications concerning Clebsch-Gordan coefficients only
for any hadron-hadron reaction with two outgoing hadrons. It yields bounds not only
on cross sections but also on the expectation values of positive functions of the kinematical
reaction variables. This will be seen below.

In nN physics, elaborate tests of isospin symmetry have been performed [2, 3] with
the result that no indications of a violation of this symmetry remain once the different
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masses of p and n and of A+, A+, A% and A- are properly taken into account (compare
Ref. [3] for a more detailed discussion). To perform similar tests for reactions other than
7N — nN, in particular for strange particles, is of obvious interest. In view of the experi-
mental possibilities at LEAR, the reaction pp »ZX we consider is a good candidate for
such a project. Presumably, as is the case in nN physics, it will turn out that isospin is
a good symmetry to be used mainly as a constraint on cross section data.

We consider pp — NA, X and AA. The results for X also apply to T*Z and T#X*.
Furthermore, the amplitudes for the charge-conjugate final states (i.e. AN and ZX*) obey
the same relations.

We denote the amplitude of a reaction pp — BB’ by T(BB': j,) with j, a set of variables
specifying the reaction completely. A possibie choice of variables is j; = V"E, Jj2 = tand
Jas ---s jo the helicities of p, p, B and B’. We use the customary definition of /s and 1 as
total energy in the c.m.s, and momentum-transfer squared, respectively. The scattering
angle will be denoted by Q: a well-known relation connects these three quantities.

Another choice of the j, would be j, = \/s, j, = t and js, ..., js the components of
the spins of the p. p, B and B’ normal to the scattering plane. Evidently, there is an infinity
of possible choices for the variables j,. Since all possible measurements can be performed
by measuring cross sections, all possible experimental information can be derived from
measuring the cross sections for all possible choices of j,. For example, even though the
completely polarized differential cross sections ocppi/S, 75 P(js)p(ja) — B(js)B'(js)) for
any particular definition of the j;, ..., j, do not imply the complete experimental information,
measuring these cross section for different definitions of the j, exhausts all possible measure-
ments at fixed values of /s and 7 (i.e. no “‘wave packets” in /s and Q).

Choosing j; = \/5, Ja = t and js, .... J¢ polarizations in an arbitrary, however fixed
basis, the completely polarized differential cross section (i.e. for polarized p, p, B and B’)
is given by

do o
ocen(BB'; j)) = — o (BB';j,) = v, T(BB i’ (1)

with w;, (the phase space) a positive function of j, = \/s. We shall work in the limit that
all members of any baryon isospin multiplet have the same mass. Thus ©;, only depends
on the isospin multiplets of B and B’ (and not on the members considered).

The results we obtain will be valid for the expectation value o,(ﬁB’) of any non-
-negative function f;, of the kinematical variables j,,

o - =% s 1 .
a,(BB’) = 7 Ji.9cep(BB’1 ;)
Ju
with f a sum (integral) over the discrete (continuous) variables j,. This may or may not
Je
include an integration over 5. For the special case that o, denotes a cross section, there
is no s-integration. In that case, f}, is constant for a subset of (values of) the j, and zero for
all other. To be able to treat f as a sum, we assume that the continuous variables (at most
B Ja
+'§ and 1; with the choice j, = total angular momentum only summation would be involved
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in computing cross sections anyhow) are collected in bins and summed over. Choosing
fi. = 0., with &;_; the unit kernel of ?, the o, in Eq. (2) would be acpp(BB’; j,).

Ja'Ju
J=

We shall explicitly treat below four more types of cross sections: the polarized differen-
tial cross sections opp(BB’) obtained from ocpp by summing and/or averaging over some
of the polarization variables js, ..., Js; the differential cross section op(BB';j; = /5,
j, = t) obtained from opp by summing over the remaining polarization variables; the
polarized (angle-integrated) cross sections op, obtained from opp, by integrating over an
Q-interval; and finally the total cross section o{BB’;j, = ./s) resulting from o}, by
integrating over the polar angle Q (or by summing op over the polarizations variables
it contains).

The baryons B and B’ are members of isospin multiplets {B} and {B'}. Allowing any
pair of members of these multiplets as our B and B’, the amplitudes T(BB'; j,) can be
expressed as linear combinations with Clebsch-Gordan-coefficients as coefficients of at
most two amplitudes 7°(j,) and T1(j,), correspondig to total s-channel isospin 0 and 1,
respectively. (The 7° and T of course depend on the multiplets {B} and {B’} considered.)
This follows since the isospin of p is 1. Since A has isospin 3 in case of pp — NA only T*
can be nonvanishing and one finds, suppressing the variables j,;

IT(A%)| = |T(pA™)l, (2a)
such that
0,(nA°%) = o,(pA™) (2b)

for x = f. CPD, PD, D, P and T, i.e. the expectation value of any non-negative function
and thus any one of the cross section introduced in the above.

In case of the X or AA final states, both T° and T* can contribute. Since three (i.e.
I+3+, 080 and T-%-) and four (i.e. ATA™, A*A*, AOA°, A-A-) different final states are
possible in case of X and AA, respectively, there is one linear relation between the three
$Z-amplitudes and there are two such relations between the four AA-amplitudes. Using
standard Clebsch-Gordan-coefficients these relations are (suppressing the variables j,;
Egs. (3) and (4) hold for any choice of the j, and all values of these variables)

TEEH+TE Z7)+2T(EZ%) = 0 (3)
for X and
TAT AT ) +2T(ATA* )+ T(A’A%) = 0 (4a)
and
T(A*FA* *)—3T(A°A%)—2T(A"A7) = 0 (4b)

for AA. There are many equivalent forms to Egs. (4a) and (4b). We can, for example, elimi-
nate any one of the four AA-amplitudes from these relations and obtain

2T(AT A D) +3TATANHY—T(A™A™) = 0 (4c)
and

T(ATA*)+2T(A°A%)+ T(A"A™) = 0 (4d)
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in addition to Eqgs. (4a) and (4b). It will be most convenient to treat any member of the
set of Eqs. (4) independently. We remark that these relations for any choice of variables
J. imply the same relations for any other choice. Thus all observable implications of isospin
symmetry are implied by sufficient conditions for Egs. (3) and (4).

In particular, therefore, the inequalities in Eq. (8) and (9) below for cross sections
with a certain fixed definition of the polarization variables jj, ..., j¢ are nevertheless complete
expressions of the observable consequences of isospin symmetry, including those conse-
quences that can only be measured by cross section resulting from a different definition
of js, ..., js. These statements are easily derived by noting that changing the definition
of ji, ..., je yields amplitudes that are linear combinations of the previous amplitudes with
coefficient that do not depend on the particular channel (i.e. T+Z+, X0%° or T-X-; etc.).
Any such set of three complex numbers thus forms a triangle for all values of the arguments
if one of them does.

Any one of Egs. (3) and (4) states that a set of three complex numbers, if represented
by vectors, forms a triangle. This triangle can also be degenerate, meaning that the three
vectors are parallel to each other. We remark here that, if one of Eqs. (4) describes
a degenerate triangle, so do the other three.

The restriction on the amplitudes in any one of Eqgs. (3) or (4) can be written as

A+B+C =0 (5)

with 4 = T(Z*XZF), B = T(Z-Z) ard C = 2T(E°X%) in case of Eqgs. (3); etc. The completely
polarized differential cross sections a¢cpp In Eq. (1) are in this case

P 2
GCPD(Z z ".Ia) = W;d;.,

gepp(E L7 1)) = wjlb.?a’
and

[ w "
Oern(Z°2"1 o) = - ., ©)

where we have mentioned again the dependences on j, and introduced the abbreviation
a;, = |A(jl, and similarly for b and c.

As has been already stated, Eq. (5) says that the vectors described by the complex
numbers 4, B and C form a triangle. This is the case if and only if the triangle inequality

aj,~bj;| < ¢;, < a;,+by, (7a)
or, equivalently,

—2a; b; < ai+bi—ci < 2a;b, (7b)

Ja Ju Ja  Jx

holds for the moduli of 4, B arnd C. Due to Egs. (6), the relations have direct observable
consequences for the completely polarized differential cross sections. It will be seen that
the same relations hold for o, opy, 0p, 6p ard oy introduced above and thus we write
them already here in terms of o, with x still restricted to CPD

(Vo .72 = Vo2 27)) < 40,35 < (Vo &' 2%) + Yo & =" Y. (8a)
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There are many equivalent forms of this. One of them is Eq. (7b), i.e.

2B (ETEN0 (EET) < 0 (ETEN) 40 (T ) —40,(2°2%) < 2 Vo BT 2o (EX0)
(8b)

and others obtained by exchanging 4¢,(Z°X°) with ¢, (Z*Z") or 6 (Z-X-) in Egs. (8a) or (8b).
In complete analogy to the above we obtain for AA

(Vo 3™ A ") = Vao 37 A")) < 0.(8%2% < (Vo (AT FA* ™) + Vao (A7AT)), (9a)

(Vo A7) — Vao (A A7)) < 96,(8°A% < (Vo A" A ) + Yo (A-AT)),
(90)

j——— 2 e =12
(Vao (A" A™ ) — Voo (AT A")) = o a~ A7) <« (Vo (AT A ) + Voo (A7 AT)),
(9¢)

and

—— S ——— —_— t" v P S 2
(Vo (A" A"y — Vo (8"AT)) < 40.8%A%) < (Vo (aTA™) + Vo, (A-a7)).  (9d)
Since any two of Egs. (4) imply the other two. the same holds for Egs. (9).
To derive Egs. (8) and (9) for x = f, PD. D, P and T, we use Eq. (7b) as an example.
For x = f, we multiply this relation by f;, and sum over all j,; for x =PD, D, Pand T

Eq. (7b) is summed over the appropriate values of j,. For generality. we write out the result-
ing formula containing f;_

—2 % 100,55, < 0,(F L) 40 TTET) 40,22 < 2% fwja by, (10)
Ja Ja

To preceed, we note that the quantities

ka = \/-f.}zwjl aju and lju: = \/f.‘i“wjl bja: (11)

are real vectors k and I with non-negative components in a space with the scalar product
kl=2k 1. (12)
Ja
Thus the Schwarz inequality is valid with the result that
k-1<JE 12 13)
and the equality sign holding if and only if either
k=21 or 1=k (14)

with 4, and A, non-negative numbers. (Of course, if e.g. 4, # 0, then both relations are
equivalent with 4, = 1/4,.)
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Since
2 =0, (Z7EY) (15)

k : k = ?f}ﬂwjlaja

Jx

etc., Eq. (10) implies

(16)

Thus we have derived Egs. (8) and (9) for x = fand an obvious modification of the
argument implies these relations for x = PD, D. P and T. too. An equality sign can be
valid in any one of the relations for a, only if

Vi0;, 8, = i NF0, b, (17a)

or

V/fj,wn bj, =4, \f/}},wjl ai,. (17b)

Thus, if any one of the two inequalities in Eq. (16) is saturated, we may conclude that
either

[ico(EY 23] = A 0025 ), (18a)

or
f},aCPD(FZ_;jz) = i.%j},acpn(i:2+;j,). (18b)

These relations are equivalent if neither f;, ocpp(E7E7;j,) nor f;, ocep(E-Z ;) vanishes.
It is seen from Eq. (8b) that vanishing of f;, oepp(E-X; j,) implies

fiocen(EYE 10 = 4f,.0cop(E°E%; o), (19a)
whereas

[10ceo(E7E73 ) = 4£;.0co0(Z°2°; j,) (19b)
from vanishing of f;, oeon (BT ZH; 7). Summing over j,, the result

G (ZTEY) = 40,(2%59), (20a)
or

GHZTET) = 40,(2°5") (20b)
follows. If both Egs. (18a) and (18b) hold, introducing Eq. (18b) into Eq. (8b) yields
=24, f.00p(ETEY;j) < +/:~%)fj,0' cpx)(:iq;z+ s J2) *4_f},ach(Z_°Z°) i)

<24, £5,00(E7E" 5 ). @n
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Assume for definiteness that the lower inequality in Eq. (16) is saturated. It is then easy
to see that the lower inequality in Eq. (21) must be saturated, too, Namely, if this were
not the case, Bq. (21) summed over j, would yield

~2, 3 fuopal, = —2N G000 G f.o,b%)
j j’l jﬁ

Ja

= 2 Vo (BTN, E7) < (1420, (Z L") — 40 ,(E°5%)
= 6 (E L) +0(T7Z7)—40(2°L), (22)

i.e. the inequality in Eq. (16) that was assumed to be saturated would turn out to be not
saturated. Thus

(L+4,)°
4

[1.06e0(Z°2°; jo) = f1.9ceoETE3 ji). (23)
If — rather than the lower one — the upper inequality in Eq. (16) is saturated, 2, is replaced
by —4, in Eq. (23). If f;, # O for a particular set of values j,, it is possible to conclude
from Egs. (18), (19) and (23) that the corresponding results hold for the cross sections, i.e.

oern(EYE11,) = Aocen(E 2737, (24a)
or
O'CPD(E:Z_ijx) = 'Z-io'cm(_i;z)r;ja), (24b)
and
<oeo .. U+ e,
Tern(EE%: jo) = 2 oen(ETEY 50 (25)

if 4, # 0, etc.

If sufficiently many values of j, actually occur in the sum representing o, i.e. f;, it is
possible to derive Eqs. (24) and (25) for cross sections such as ¢pp, 6p, 6p and o by summing
over the corresponding values of j,. Since our main interest is in cross sections, we will
spell out the consequences this has for o, with x = CPD, PD, D, P and T if o, itself is one
of these cross sections.

It is obvious that vanishing of a cross section o,(BB) for a particular set of its arguments
implies vanishing of all cross sections summed over to obtain 6,(BB). Thus, vanishing
of 61(BB’) for a certain s implies vanishing of all o (BB’) for that value of s. If 6,(BB)
vanishes for certain values of s ard 1, ocpp(BB’) and opp(BB’) both must vanish for that
s and 1.

Vanishing of ¢p(BB’) for a certain s and certain values of the polarizations occurring
as free variables in op(BB’) implies vanishing of ocpp(BB’) and opp(BB’) for these values
of s and polarizations and all the values of variables (such as t and polarizations) summed
over in obtaining ¢,(BB’) from gcpp(BB’) and opy(BB’), respectively. Likewise, if
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opp (BB ') vanishes, so does o¢pp (BB’). We denote by 0yx) the cross sections that have to
vanish if o, vanishes.

For definiteness, we consider in what follows TX-cross sections. Vanishing of all three
0 (Z*2), 6,(X92° and o,(E-X°) for a certain x has obvious consequences for ay(x)(f)).‘.).
If — as an experimental fact — any two of the three 6,(XX) cross sections vanish, due
to the inequalities in Eq. (8a) the same must be true for the third and as a consequence for
all 6, (£X). Thus isospin would be violated if, for example, 6,(£°2%) = O and 6,(Z-£-) = 0
and not o,(E*X+) = 0 for certain values of the variables the cross section o, depends on.

The notation 3(x) introduced above is useful if at most one cross section of the three
0,(EZ) vanishes. Namely, if 0,(F-X-) = 0 then 0,,(Z-Z") = 0 and thus, from Eq. (8a)
for oy(x)(f.}.‘.),

0;»¢x)(-f+z+) = 4o y(x)(go—z‘e)‘ (26a)
Likewise, ¢,(ZVZ%) = 0 implies

Gy ET) = 0,0 (ETEY) (26b)
and from o (Z+X+) = 0 follows

0yE E7) = 40,,(Z°20). (26¢)

We finally consider the possibility that one of the inequahties in Eq. (8a) (or. equivalently,
(8b)) is saturated with all three cross sections (X 2+), 6,(2Z92L%) and ¢, (X -) nonvanishing
for certain values of the kinematical variables of o,. Then

ay(x)(itz—) = izaym(i;f), (27a)
and

0,(Z°2%) = L (1 £12) %0, (E72%) (27b)

for those values of the kinematical variables of o for which the inequality for g, is satu-
rated. The possibility that 6(Z-Z-) = 0 is included in Egs. (27) ard corresponds to ~ = 0.
If the Iower (upper) inequality in Eq. (8a) is caturated, the mirus-(plus-) sign in Eq. (27b)
applies.

We remind the reader that a triangle inequality is saturated if and only if the
corresponding triangle is degenerate, i.e. forms a line. The strongest consequences of satura-
tion follow from saturation of the weekest inequality, the one for a1. If Eq. (8a) or (8b)

. . do
is saturated for oy for a certain s, the consequences obtained above hold for 7 (s, any

t, any polarization of p, p, Z, £) ard thus for any cross section at energy § = 8. This
obviously includes all possible cross sections, i.e. also those involving a different definition
of js, ..., je. Extension of the above consideration to AA has to take into account that
(1) there are four (rather than three) final channels and (2) the Clebsch-Gordan-coefficients
are different. The second difference has already been built into Egs. (9) and it is easy to
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read off the changes implied by it for the final formulas to be derived from saturation of
Egs. (9). In particular, Eqs. (27) are replaced by

ay(x)(ZFA+) = Ajlzay(x)(A++A++)a (283)
and

Gy(,\‘)(FAO) = (_1i25/111)20y(x)(A_+¥A++) (28b)

if (9a) is saturated; they arc replaced by

Gy(x)(/vAi:A“) = )":’Zzo-y(x)(ATIA-F-*)a (293)
and

Gy A°A%) = & (11214, %0,,5(ATFAT ) (29b)
if Eq. (9b) is saturated; they are replaced by

Gy(ATAT) = A3o, (AT TATY), (30a)
and

Oym(AAT) = QT34 20,0ATTATY) (30b)
if Eq. (9¢) is saturated and by

Gyl B A7) = Aoy o(ATAY), (31a)
and

Gy(A°A%) = 4 (1= 12420, (ATAT) (31b)

if Eq. (9d) is saturated.

The first difference between I and AA implies that two and only two of the inequali-
ties in Eqs. (9) are independent. We have seen that (compare remark after Eq. (4)) if two
( or more) of the incqualities in Eq. (9) are saturated, this implies that all four isospin trian-
gles are degenerate and thus all four inequalities in Egs. (9) are saturated. This in turn
implies validity of all Egs. (28)—(31) for nonvanishing cross sections. How to generalize
the result valid for vanishing cross sections from XX to AA is obvious.

We conclude by deriving the consequences of isospin for 6(X°%°) that can be obtained
from present data [1] on o(Z7Z+) and o-(Z-X-). They assume of course that the electro-
magnetic contributions to ¢(XX) can be neglected at the energies considered. At a p-mo-
mentum between 2.5 and 3.5 GeV/c we read off Fig. 5 of Barnes et al. in Ref. [1] that
o(EFZ+) is approximately constant at 35 pb and ¢(Z-X") is also approximately constant
at 10 pb; both with large errors. One data point o(Z*Z%) at 3.5 GeV/c is considerably
higher at 70 pb. With o¢(Z+Z*) = 35ub and o(Z-%7) = 10 ub Eq. (8a) implies
2 ub < 61(TOX°) < 21 pb. The upper limit approximately coincides with the experimental
upper limit on 6-(Z92°) in this momentum range. The data point mentioned above yields
7 ub < a(ZO%°) < 33 pub.
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At a p-momentum value of 2.25GeV/c, o((Z+Z+) %~ 20 pb and o(T-Z)~ 3 pb
is known implying 2 ub << a(Z92° < 10 pb, to be compared with the observed o{Z°X%)
=~ 10 pb at ~ 2.4 GeV/c. Since these momenta are near threshold and the cross sections
are rising, no conclusion concerning saturation can be drawn from this. Finally, around
5.8 GeV there is a point for each cross section, namely, o (Z*Z") ~ 30 ub, o(T-Z°) =~ 2 pb
and o (Z°Z°) = (8+2) ub. The limits implied by o(Z*E) and o (ZT-Z-) are 4 ub
< 64(Z°%°) << 12 pb, in agreement with the experimental value.

It should also be remarked that models such as the one-boson-exchange models or
the model of Ref. [4] imply that 6 (Z-Z-) = 0 and 6(A-A-) = 0. The consequences of
this for the remaining IX and AA cross sections easily follow from Egs. (8) and (9). In
particular, this implies for X Egs. (27) with 1 = 0 for y(x) = y = CPD, PD, D, Pand T,
i.e. 0,(Z¥E%) = 46,(E°Z°), and furthermore for AA the cross section relations o, (A A*)
= 95,(A°A°) = 3 6, (A*A*) with the same y.

For application, our main results are Eq. (2b) and the inequalities in Egs. (8) and (9 ).
These are valid for o, the total as well as any type of partial cross section. The discussion
of consequences of saturation of the isospin bounds has furthermore been carried over
from nN scattering (Ref. [2]) to pp — BB’ by developing a method that can be applied to
any hadron-hadron interaction with two outgoing hadrons.
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