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The °Li nucleus is taken in the present work as composed of an alpha particle, a proton
and a neutron. With this structure, the °Li nucleus, it can be studied as a three-body problem.
Three-body integral equations for the three body system are obtained by taking separable
potentials for the nuclear interactions between the alpha, the proton and the neutron particles
in pairs. The ®Li nucleus is studied in the ground and the first excited states. In the ground
state of °Li nucleus (J™ = 1*), the nucleon-nucleon interaction is taken as the triplet 35,
potential, while for the excited state of the °Li* nucleus (J™ = 0%), these nucleon-nucleon
interactions are taken to act in the singlet 1S, state. The Pauli principle restricts the central
part of the niicleon-alpha.  interaction in the °Li nucleus to being taken only as a 1P,-
interaction. In the present work we have used Gaussian potential forms for the two-body
interactions. The various parameters of the two-body interactions are obiained by fitting
the corresponding two-body phase shifts. Numerical calculations of the resulting three-
-body integrab-¥quations give the different form factors for both the ground and excited
states of the °Li nucleus. The effective ranges for both states are also calculated. Solving the
obtained coupled integral equations numerically, we calculate the biuding energies for
the ground and excited states of the °Li nucleus. Good agreements are found between the
theoretically calculated values of the binding energies and the experlmcental valnes.

PACS numbers: 21.40.+d, 21.60.Gx

1. Introduction

The nuclear structure for light nuclei with mass number A = 6 has been constructed
as composed of two nucleons and an elementary alpha particle. This structure is based
on the assumption that thé alpha particle is treated as an elementary particle, in accordance
with two facts [1]: the first reason is that the first excited state and the first breakup channel
for the alpha particle lie at about 20 MeV above its ground state [2]; the second teason
is that the *He—H breakup channel of °Li lies at about 15.8 MeV above its ground state,
while the a-deuteron and np breakup channels lie only at about 1.472 and 3.697 MeV,
respectively, above its ground state [3]. Thus for excitation energies of °Li which are less
than 15 MeV, the *He—*H coupled channel in construction of °Li is weak and can be
neglected. In addition. to thesc assumptions, the internal structure of the alpha particle
may be approximately represented by a two level system [4], helping the alpha particle
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in the nucleus to maintain its identity although it may be either in its ground state or in
its excited state. According to this the structures of 4 = 6 light nuclei, each of which is
composed of three particles, help us in studying each of these light nuclei as a three-body
problem. Numerous methods of obtaining three-body models of the 4 = 6 system have
been introduced following different formalisms based on calculation fof deuteron-alpha
scattering [5], variational calculation [6], shell models {7]. dispersion theory [8]. resonating
group method [9] and separable potentials [4, 10].

The separable potentials for the two-body interactions in the three-body problem
have been found to be very useful in studying the three-body models of the 4 = 6 systems
because they greatly simplify extracting an exact solution of the Schrédinger equations,
or equivalently the Faddeev equations. This is done by following the separable expansion
formalism. The starting point of the separable expansion approach is by using separable
potentials for the two-body interactions in the three-body system. The different parameters
of the separable two-body interactions are obtained by fitting the experimental low-
energy properties and especially the phase shifts of the corresponding two-body systems.
With these separable two-body interactions and their defined parameters as input, the
binding energies of the He and °Li light nuclei can be calculated by solving the homog-
encous Faddeev-Lovelace equations [11]. Starting with the three body Schridinger’s
equation, Mitra and his co-workers [10, 12] succeed in reducing the three-body problem
to a set of coupled one dimensional integral equations by using separable potentials for
the different two-body interactions. These scparable potentials have been used [13] in
calculating such static properties of the triton as the binding energy, the radius, the Coulomb
energy, the form factor and also in calculating the neutron-deuteron scattering cross
section.

The alpha particle model has been found to be successful especially in describing the
structure of light nuclei. With this alpha particle model, the °Li nucleus is well described
as consisting of an alpha particle, a proton and a neutron. This structure of the SLi nucleus
is very useful since it helps in studying the ®Li nucleus as a three-body problem. A detailed
study of the ®Li nucleus has been made by Wackman and Austern [6]. In their study, they
solved the three-body Schrédinger’s equations by using the Rayleigh—Schrédinger variatio-
nal technique. Shanley [10] considered the problem by studying the deuteron-alpha particle
scattering. In his study. Shanley applied Amado’s formalism [14] in solving the three-body
problem using separable two-body potentials. In the framework of the Faddeev formalism,
Osman [15] solved the °Li nucleus as a three-body problem. The Faddeev equations are ob-
tained by using the separable expansion. In this approach, the nucleon-nucleon and nucleon-
alpha interactions were taken as non-local separable potentials. Using the obtained Faddeev
equations, Osman calculated the binding energies for the ground and excited states of the
°Li nucleus by solving the resulting coupled integral cquations numerically.

In the present work. the SLi nucleus is taken to be composed of a structureless alpba
particle, a proton and a neutron. With this structure, the °Li nucleus will be solved as
a three-body problem. We use separable type potentials for the nucleon-nucleon and
nucleon-aipha interactions. The SLi nucleus is considered in two different states: the ground
state (J* = 17), and the first excited state (J™ = 0+). The wavefunction of the J = 1 level
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of the ground state of the ®Li nucleus is taken as a combination of the !3S,, 1P, and
13D, wavefunctions, while the wavefunction of the J = 0 level of the first excited state
of the ®Li* nucleus is a combination of the 3'S, and 3P, wavefunctions. However,
‘Wackman and Austern [6] found that the admixtures of the 3°P, and '3*D, states are
of the order of 0.059, — so small as to be negligible. This result means that all the tensor
force matrix elements could be neglected and so the two-body forces are effectively spin-
-independent [16]. Then, the form factors and the binding energies of the °Li nucleus are
calculated by solving the resulting three-body integral equations.

In Section 2, the three-body equations for the Li nucleus are introduced. Also, the
nucleon-nucleon and nucleon-alpha interactions are given. Numerical calculations and
results are introduced in Section 3. Discussion and conclusions are given in Section 4.

2. Two-body interactions and the three-body integral equations

The dominant part of the neutron-proton interaction for the ground state of the SLi
nucleus (J* = 1+, T = 0), is the triplet 35, potential. This potential is taken to be of a sepa-
rable form and could be defined in the momentum space as

Voo, 4') = —(@&/27°)g(9)g(d')s (1

where g(q) and g(q’) are well-behaved functions of 2g = |P,—P,| and 29’ = |P;—P5|.
%, = h*/m, where m is the nucleon mass, and the subscript ¢ refers to the triplet state. This
potential can take different forms with parameters which, in each case fit the corresponding
neutron-proton phase shifts. One of these forms is the Gaussian potential form. In the
present work, the function g,(q) is taken to have the Gaussian potential form. The Gaussian
potential in space representation is represented as

V(r) = —Voe ®", 2

where V, is the depth of the potential. If the interaction range is ro, then a* = 1/r2. This
Gaussian potential form as expressed by equation (2) can be transformed to be expressed
in momentum representation as

V(@) = —Ae™I, 3

‘where
A = n3?V,yad. “4)

The nucleon-alpha interaction is also taken as a separable potential. This potential
consists of a central term and a spin-orbit term. Imposing the Pauli principle on the nucleon-
-alpha interaction, the central term is taken only as a P-wave. Thus, the P-wave function
of the nucleon-alpha interaction is represented by a form given by Mitra [10] as

Va4, 4) = — —gl(q)gl(q ) Z 7M@) [1+ ]Yf’( p) (5)
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my is the nucleon-alpha reduced mass given by
mg = mmyf(m+my), (6)

where m, is the mass of the alpha particle. In equation (5), g is the Pauli spin vector for
the neutron and L is the relative orbital angular momentum. The function Y}'(g) is the
normalized eigenstate of the orbital angular momentum L. In the case of *'P; wavefunction,
the momenta of the case considered are given by J =1, T =0, L = 1 and S = 0, which
means that the second term of equation (5) is canceled. Therefore, the nucleon-alpha
interaction 1s given by

—2 ' . R
I«Amqv==7;fz$«qmm¢) § Y@ Y™ (). 0
R
M

Equally, the separable nucleon-alpha potential introduced by equation (7) can be given
in a suitable form as

A 3 "o "
VNm(qa q ) = - Im Augl(q)gl(q )q “q, (8)

2myg

where A, stands for the interaction strength and the function g,(g) can be expressed to have
the Gaussian potential form given by equation (3) but with parameters which fit the cor-
responding nucleon-alpha phase shifts.

Let us start by deriving the °Li threc-body bound-siate equations for 38, and 'P,
state from the Schrédinger’s cquation. In this case the Schrodinger’s equation for the present
case can be written in momentum representation as

(H0+E)W(Pl" PZ) = —(ynp-l_ l/;lm+Vpu)q’(Pl’ PZ)’ (9)
where E is the °Li nuclear binding energy. The Hamiltonian H, is given by

O T .
HO - 2“"; (P1+I 2)+ 7"1— P3, (10)

where P,, P, and P, are the momenta of the neutron, the proton and of the alpha particle,
respectively, This Hamiltonian H, can be expressed in the center-of-mass system as [17]

Ho = P}2M;+q}i2u;, 1D
where g; is the relative momentum of the (j, k) subsystem and is given by [18]

q; = pP;/m;—P[m,) (12)
with
ut = mytem (13)
i, j and k denote the three particles and are given in cyclic permutations. The momentum
P, stands for the momentum of the particle i relative to the (j, k) subsystem and is given by
P, P ,-+Pk]
m;  m;+my

P, = M,-[: (14)
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with
MY =m H(m+m)Tt 15)

and
3
L Pi= (16)

Therefore, equation (9) can be rewritten in the center-of-mass system as

BP, )¥(P,q) = —(Vyp+ Vi + Vo) V(P 9), amn
where
B(P, q) = PLa (18)
’ 2M; 2y

Y(P, q) is the three-body bound state wavefunction, which forms a coupled set of integral
equations in two variables (p, ). Introducing an integral notation [19] for the right hand side
of equation (17), we can rewrite it as

B(P, )¥(P,q) = — [{ dP'qd'(Pq|V,,+ Voo + Vol P'a DY(P', 4'). (19)

Using these separable potentials [20], the two-body interactions can be simplified in the
form

(PqiiViPiq) = o(P,—P;)(q;!Viq)). (20)

The separable (g;]V|q;) potentials stand for the different nucleon-nucleon and nucleon-
-alpha interactions which are represented by equations (1) and (8). Then. we have for
equation (19) an expression

h , ,
B(P, )¥(P,q) = ,;&iz jdqég.(%)gf(qs)?’(l’s, 93)

-

I ~ 2 ’
+ ;““ qu 21(42)81(45)d> * 45 P(P1, 45)
2mg |

32, ,
+220 [dais(ae i - 0Py 0D @)
mg

The structure of Y(P, q) can be expressed in the following form
Y(P, q) = B™ (P, q) [29:)0(P) +8:(42)d2 - P2o(P2)+£1(d1)d1 - Prd(P)],  (22)
where P is the sum of the momenta of two of the particles given by

P=P1+P2='—P3. (23)
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Introducing the wave function structure ¥(P, q) as given by the expression (22) into equa-
tion (21), we get the following integral equations

h , ,
H(P) = ;r%quégr(qs)?’(l’s, q3), (24)
3 , ,
412 P,¢(P,) = _;IJ dqsg,(q> )fIz Qz'll(Pz,‘Iz)s (25)
R
1 PPy = — (dqxgl(Q1)41 g (P, qY). (26)
R

Then, we are teft with the wavefunctions ¢(P),p(P ) and ¢(P,) instead of the wavefunction
Y(P, q). These wavefunctions can be solved since equations (24)-(26) are given in one of
the following general forms

(&7 '-F(P)]o(P) = j deK(&, P)p(&), (27

[4a ' = GAP)]P,$(P;) = 3 [ dEW(E, P)§(&). (28)

We have a third integral equation in the function$(P,) which is similar to equation (28), but
with the variable P, replaced by variable Py. In equations (27) and (28), we introduced
the foliowing expressions

)

P m, 2 el P n,
¢+ mm, glig+3 P(lg, m-{-ma
K(E.P) = S - ., (29)

(C2+ M M *pig- P+mE)
m,
P-&+ ——¢& ) g g
m+m,

P+ m,,
&1 m+m
41 (

m mg
S P+ e
m+- ma m+tm,

(§2+ :m | SEWR P+mE)

“~ 2

P+
m+m, m+m,

)g:(55+% P

m-m,
E+ T P*4+& - P+mE
m

X

x ;’}; J‘ dé[i;t_ I_Ft(P)]_ 1K(§’ P)s (30)

F( )= _J gt(q) ’ 31)
“P2+mE
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and
£(C))
2m+m )
>+ —=P*+mE
im

G(P) = —3 J dq (32)

a

In equation (27), ¢(P) is used instead of ¢(P) since the nucleon-nucleon interaction is
considered in its S-state interaction and therefore it depends only on the magnitude of
P and not on its direction.

Let us consider the case of the first excited state of the °Li nucleus. This excited state
of the °Li* nucleus has momenta and parity defined by J™ = 0t and has only 315, state.
The nucleon-nucleon interaction is taken as a single separable potential and can be expressed
in momentum space as

i
Vap(4:4) = — 52 g(D)ea). (33)

The nucleon-alpha interaction has been introduced by Mitra [10] in the form

' '1'0 ’
Va5 4') = — S 8o(9)go(q)
Mg
2 . L- .
- migmq)gl(q’) E Y7 (q) [1+ *t—a] YA(Q). (34)
R
M

The nucleon-alpha interaction as given by equation (34) consists of two terms. The first
term on the right hand side represents the S-wave, while the second term stands for the
P-wave. Since in our present case of the first excited state of °Li* (J™ = 0*) nucleus we are
concerned only with the S-state, then the nucleon-alpha potential is given by

A
Ve, €) = ~ 2—n—1; 20(@)20(a")- (35)

These expressions for the nucleon-nucleon and nucleon-alpha interactions as given by
equations (33) and (35), respectively, are introduced in equation (9) resuli in the following
integral equations

[A™'—F(P)]$(P) = n—"ﬁ f dEK (&, P)o(%), (36)

[40 '=G(P)]d(P,) = 1 [ dEW(E, P)g(8). (37
In this case the kernels K(&, P) and W(¢&, P) in equations (36) and (37) have the expressions
m,
P+ - 4

gs(l€+7PI)go< m+ma>

K@, P) = ———— ; (38)
§2+ ——2“‘JP2+§'P+mE

o
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and

" )

i m m,
P+ & P+ 4
m+mel | m+m, m+m,

W, P) = — R
2, m +m, .,
(f T — 2 PEyE- P+mE)
ma -
g(1&+3 P))go ( P ¢ )
+ |11+ g m4 my

+m
(§2+ Ti——’ PP té- P+mE)
n,

x ;2— j dE[27 = F(P)]'K(&, P). (39)

Also, F(P) and G(P) present in equations (36) and (37) have the folowing integral forms

F(P) = = f AU — (40)
2m+m,, 2
P*+mE
and
a 2
G(P) = —-}*dq« L mla) (1)
J 2. 2m4m,
— P°+mE
4m,

The coupled sets of integral equations given by equations (27), (28) and (36), (37) have
to be solved in order to calculate the different form factors and °Li nucleus binding energies
based on a three-body problem.

3. Numerical calculations and results

We have considered the °Li nucleus in iwo dificrent states. The triplet ground state
and the singlet first excited state. In the previous section, sets of couplet integral equations
have been obtained for these two different cases of the ®Li nucleus studied as a three-
body problem. In the following, we intioduce numerical calculations of the different
form factors. In ‘he present calculations, a Gaussian potential form is used for the two-
-body interactions. This Gaussian potential form is introduced by equation (3). Thus,
for the triplet ground state of the °Li nucleus, the set of the coupled three-body integral
equations is given by equations (27) and (28). In this case, the form factor is given by
equation (31) as

2mA® [ g™
F(P) = d : 0
B =" J i (42)
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where

P24+ mE.

2m+m,
b=1/2a*h? and Z = ——— "

my

This form factor for the nucleon-nucleon interaction is calculated for different values
of the ®Li energies. The different parameters of the Gaussian nucleon-nucleon interaction
is used as determined by Osman [21]. The results ot these calculations are shown in Fig. 1.
Calculations for the 'S, siate have the same shape shown in Fig. 1. This is clear from the
mathematical formulations presented in Section 2, by comparing the two form factors
given by equations (31) and (40) which are the same in the case of using a Gaussian type
potential. For the first excited state of the °Li nucleus at calculated value for the energy
of E = 0.563 MeV, the agreement between the singlet and triplet states occurs only for
values k& > 3 fm~'. It has been found from these calculations that the value of the form
factor of the singlet state is about 3/2 its value for the triplet state at k = 0.

Now, for the nucleon-alpha interactions, we can calculate the form factors using the
integral given by equation (32). This integral for the Gaussian type form given by equation
(3), can be written as
2 ,—(Q14%+PaQ3W)

— qe
G (P) = —61A% 7" | 4q e 43
Q€ ) q2+Z ’ ( )
6, .
L
x702 /
2 NN Interaction
351f1/:’7 and 150
28| —— E-0.563 MeV ('sy)
——— E=4.0MeV
2% - —— F=5812MeV
e £26.5 MeV
201
N\
3
™
3
t
-~
&
I-L*-
L L 1 1 ‘e - 3
0 2 4 6 8 10 12 14
Kifm™1)

Fig. 1. The form factor F(k) for nucleon-nucleon interaction for different SLi energies
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where

m, \? 2m+m, \} m,(2m+m,)
= kol — y = i 5 p -~~-u————-—§ N ”’r = CO 8 .
! (m+ma) 2 (2(m+ma)> 2 (m+my)* S Yap

The form factors G,(P) given by equation (43) are calculated for different values of
the SLi energies and the results are given in Fig. 2 for the triplet state and in Figure 3 for
the singlet state. At the value k = 0, it is noticed that the value of the form facior for the
singlet state (Fig. 3) is only one third of its value for the triplet state (Fig. 2). A very inter-
esting form for the Gaussian potential is that suggested by Leung and Park [19] and applied
by Osman {22} is

fo(@) = a(g2 —q*) (a+bq?) exp (—dq?). (44)

This potential is represented as a repulsive potential surrounded by an attractive potential.
It is zero at g, = ¢ which corresponds to an energy value given by E, = 83 g2 and the value
of E, is taken by Tabakin [13] to be equal to 240 MeV. Or in other words, the value of the
crossing point of the zero potential is g, = 1.70046 fm~*/c. The form factor G,(P) is calcu-
iated for the potential form given by equation (44), for different values of the °Li energies
and the results are shown in Fig. 4. It is noticed from Fig. 4 that the form factor G,(P)
vanishes at a value of k = 17.56 fm~!, and then it reappears with increasing k but its
values of the form factor are negligible for large values of &. We also notice that the value
of G,(P) changes rapidly for the region of k = 0 -— 17.56 fm~*.

i
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kffm™)

Fig. 2. The form factor Gu(k) for nucleon-alpha interaction for different SLi energies
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Fig. 3. The form factor Gu(k) for nucleon-alpha interaction for different °Li energies
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Fig. 4. The form factor G4(k) for nucleon-alpha interaction (Tabakin form) for different °Li energies
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Since the nucleon-nucleon interaction is the dominant part in the SLi nucleus, the
effective range can be calculated using the formula [23]:

_ 2 K ! 45
Fo = K2 al’ 45)
where a is the scattering length and K is the wave number and is given by [24]
M8 1/2
K (;-) , (46)

M is the nucleon mass and ¢ is the binding energy. The scattering length a has been calcu-
lated by Tabakin [13] and has been found to have the values g, = 5.396 fm and
a, = —23.68 fm for the triplet 35, and the singlet 'S, S-states, respectively. Introducing
these calculated values of the scattering length into equacion (45), the effective range can
be calculated as a function of the wave number k for both the triplet and singlet S-states.
The results of the calculations are shown in Fig. 5. The experimental value [25] of the
SLi binding energy, which is 4.53 MeV, corresponds to a wave number k = 0.33 fm~'.
This value from figure 5 extracts the effective ranges for the triplet and singlet S-states
as rg, = 2.66 fm and ro, = 5.83 fm, respectively. The values of the scattering length and
effective range for the triplet and singlet S-states obtained and calculated here are compared

12 g &,
10 + \\ NN Interaction
8+ \ Effective Ranges
6 N\ — ot
4 \\ —= fos
2} = —
0 i H H i i 1 i
- 0.4 04 12 6 20 24 28
£ -2
N %L / k(fm™1)
_6 b
_8 —
=10
_72 L
-14
_’6 -
_]0 -

Fig. 5. The effective-range r(k) for nucleon-nucleon interaction in the °Li nucleus for the triplet and singlet
cases
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with other previously obtained values from low-energy nucleon-nucleon scattering experi-
ments and from different data analysis. All these values are given in Table I

The value of the °Li binding energy is evaluated by solving the °Li three-body integral
equations (27), (28) and (36), (37). These three body integral equations represent an eigen-
value problem, which can be solved in the normal way. To solve this problem, the value
of the binding energy is taken as a parameter. In this method, a value is suggested for the
binding energy, and then the value of the quantity Z is calculated by using the standard
method. The obtained value of the parameter 4 is called the three-body value of A. This

TABLE 1
Effective-range and scattering length for nucleon-nucleon interactions

o T N

References ; as (fm} ’ a; (fm) ! r; (fm) rs (fm)
Tabakin [13] ; —23.68 1 5.396 1.737 2.7
Preston [24] L —23.71+£0.07 i 5.38+0.03 1.71 +0.03 24+0.3
Lehman et al. [25]) 54 1.747
*Noyes [26] | —23.678 . 5.396 Y1726 | 2.51
*Shull et al. [27] . =235 i 52 1.6 2.7
*Wilson [28] i 5.42540.004 1.749 £ 0.008
Blatt and Weisskopf {29] - 237 . 5.39 1.7 1.5-3.5
Segre [30] b —-23.677+£0.029 ¢ 5.4+0.011 173240014 | 2.46+0.12
Bohr and Mottelson {31] . =237 . 5.39 ' 1.703 P27
Lomon and Wilson [32] { —23.719+0013 © 5.414+£0.005 : 1.75+0.005 [ 2.76+0.05

* Refers to the experimental values,

value must at the same time match the two-body value of 4 obtained from the two-body
equations. If there is no matching between the obtained three-body and the two-body
values of 4, then the input suggested parameter of the ®Li binding energy value should
be adjusted until we get an accurate matching. Using this method, the SLi binding en-
ergy is calculated as a three-body problem for both the ground (1*) and the first
excited (07) states. Also, the Coulomb corrections are added and taken into account [3, 17].
We have obtained the following values of Coulomb-corrected binding energies for the °Li
nucleus

(§) for ®Li ground state (triplet),

E(1%) = 5.163 MeV;
(ii) for SLi* first excited state (singlet),
E(0%) = 0.428 MeV.

These values are close to the previously obtained values.
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4. Discussion and conclusions

In the present work, we study the L nucleus. The ®Li nucleus is considered as com-
posed of an alpha particle, a proton and a neutron. With this construction, the °Li nucleus
is studied as a three-body problem. The different two-body interactions are taken in the
separable form with a Gaussian dependence. The three-body problem is solved by means
of a set of coupled threc-body integral equations, which are solved numerically to yield
the value of the ®Li binding energy. The 6Li binding energies are calculated for the °Li (1%)
ground state and also for the ®Li* (0%) excited state. The obtained values of the binding
energies are corrected to include the Coulomb corrections. The theoretically calculated
values of the binding energies are in good agreement with the experimental values. They
are also comparable to the previously obtained values. Furthermore the different form
factors, effective ranges and scattering lengths are calculated. We can conclude that our
present construction and model of the structure of °Li nucleus, successfully describes the
static properties of the nucleus. The three-body study of the nucleus provides accurate
theoretical calculations for the nuclear structure of light nuclei.

Editorial note. This article was proofread by the editors only, not be the authors.
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