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The classical Yang-Mills field equations in presence of static electric and magnetic
sources have been studied. By means of a second potential the problem of obtaining the
solutions has been reduced to the initial value problem in the temporal gauge. The solutions
to the field equations have been described in ternx of the interaction energy and total isotopic
charge.

PACS numbers: 03.50.—z

1. Introduction

Because of the important role that Yang-Mills theories are playing today, there is
a current interest in the classical solutions of the Yang-Mills field equations. One of the
reasons for such an interest is the belief that some hint of confinement should be seen in the
classical sector of exact Yang-Mills theories [1]. The investigations on the classical theories
have already brought forth the existence of Wu-Yang monopole [2] and the Coleman’s
[3] non-Abelian plane wave. Based on the purely classical treatments, the topological
properties of non-Abelian gauge theories have come through the discovery of t"Hooft-
-Polyakov monopole [4] and the instanton [S] and meron [6] solutions of Yang-Mills
theory. Recently, an attempt [7] to provide a classical formulation for a quantum theory
of the gauge fields interacting with external sources has been made and smooth solutions
associated with a smooth non-Abelian source have been obtained [8]. Jacobs and Wuduka
[9] have obtained the solutions to the gauge field equation in the presence of classical
time independent electric and magnetic sources and classical static solutions of the Yang-
-Mills equations have also been studied [10] for spherically symmetric solutions.

An important contribution to such theories has been made by Sikivie and Weiss [11]
through the study of the solutions of classical Yang-Milis field equations in presencé of
static external sources and discussing the Yang-Mills equations as an initial value problem
in the temporal gauge. The convenience of the temporal gauge in the initial value problem
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has also been indicated by Joe Kiskis {8]. However, the external sources in such theories
have been purely electric ones. In the present paper we consider the static sources as both
electric and magnetic. We study the classical Yang-Mills field equations and attempt to
formulate them as an initial value problem in the temporal gauge. In order to avoid the
string variables associated with the magnetic charges, a two potential approach has been
adopted. The initial value problem has been applied to discuss the Y-M fields produced
by a system of point dyons and it has been observed that solutions differing in their total
energy and isospin exist.

2. The field equations

We consider the following non-Abelian field tensor
F8, = 8,45~ 0,A5+ef " ADA; ~ % 8,,,,(0°B**— 0°B* + g f*°B®B*°), 6))

where 4 and B; are the “two” non-Abelian potentials, which we require to include both
the non-Abelian electric and magnetic sources without the use of string variables, ¢ and g
are the corresponding gauge coupling parameters, f*° are the structure constants of the
gauge group SU(2) and 6,,,, is the antisymmetric tensor. The dual of equation (1) is

Fa, = 0,B8—8,Bo+gf "BLBL +% 8,,0(0° A%~ 0" A% + ef P24 A7), )

In terms of field tensors (1) and (2) the Lagrangian density for the system of non-Abelian
dyon may be written as

L =~k F P =y B Az + 2B, ®

where j; and kj are respectively the electric and magnetic source densities. It can be observed
that the field strength tensors (1) and (2) are covariant under the usual non-Abelian gauge
transformations of A4; and B, and correspondingly the free field part of the Lagrangian
density is gauge covariant. The Euler-Lagrange variation of the Lagrangian density (3)
gives the following field equations

D,F* = j (4a)
and
D,F* = k", (4b)
where
D, = d,+ef*™ A4}, (5a)
and
. = 0,+gf" B} (5b)

are the covariant derivatives. The gauge covariance of these derivatives as well as those
of j* and k' makes the interaction part of the Lagrangian density also gauge covariant.
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Thus the Lagrangian density (3) is gauge covariant. The conserved but not gauge covariant
Noether currents can be given by

Jva — jva__efabcAzFuvc (68)
and

Kva — kva_ gfach‘l:Fvuvc, (6b)

where j** and k™ are gauge covariant but not conserved.
From the Lagrangian density (3), we can calculate the energy momentum tensor
and hence the total energy as

H = [ad’xT 0]
= [ [3 (FaF°“+ Fe.F*) +ji A] + ki B{ Jd’x, ®)
where the surface constraints
[ dsFa,Af = 0 = [ dSF&,B 9
have been used. The F&;, and F4, have the following forms:
8 = OpAf—0,A%+ef AL A; —(V x B*),— g[2f *(B® x B°), (10)
and
Fo = 0oBI~0,B3+ gf "BL B +(V x A%+ e[2f *(A° x A°);. (11)

In these equations the cross product of potentials is in gauge group [SU(2)] space and
i=123.

3. The static sources
The static electric and magnetic sources may be described by
e = oy (12)
and
k** = §*ok0e (13
where a = 1, 2, 3. The gauge covariant sources j** and k*® satisfy

D,j* =0 (14)
and
Djk* = 0, (15

from which it may be implied that

00j°" = —f "™ A3 (16)
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and
0ok = —f*°Bgk . (17)

The energy of the static source comprising of both electric and magnetic charges will
be given by
H = 1 [ (F8F° 4 F3,F)d’x. (18)

4. The initial value problem in the temporal gauge

We assume that
Ap = AT =0 (19a)
and
By = BiT* =0, (19b)

where T are the gauge group generators of SU(2) algebra, constitute the temporal gauge
condition for the system of both electric and magnetic charges. Then considering equation
(4a) in the gauge 4, = 0, we obtain

50F8,- = aJF;'i‘*‘e(Aleﬂ)a (20)
8:F 5+ e(A4; x Fop)* = jO(X) 03))
o A3(%, 1) = F4,(X)+{V x BY(%, D)}, + g/2f **{B'(X, t) x B%, D)}, (22)

Similarly, in the gauge B, = 0, the following equations may be obtained from Eq. (4b)

00F5; = 0;F5+g(B;x F)* (23)
aiﬁ 0i+8(B; x F o) = koa(i) @
8oBI(X, 1) = F3(X)—{V x A%(X, t)};— e[2f {A%(X, 1) x A°(%, )} (25)

Thus in the gauge 4, = 0, B, = 0 Egs. (21) and (24), with j° and k°® as static, are con-
straints for finding the minimum of energy (Eq. 18). If the constraints (21) and (24) are
satisfied at the initial time they will be preserved in the time evolution, just as the value
of energy (Eq. 18) is preserved. It may be observed from equations {(4a) and (14) that in
the gauge 4, =0

do(D;F°) = 0. (26)

Similarly in the gauge B, = 0 equations (4b) and (15) give
0o(D}F%%) = 0. X))

These equations suggest that equations (21) and (24) are the ¢ = 1, (initial time) constraints.
It will therefore be sufficient for our purpose to study the energy of a certain initial configura-
tion. Substitution of Fg; from Eg. (22) into (20) tells us that Eq. (20) is a second order
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equation for the time evolution of A%(x, t). Similarly, using Eq. (25), a second order time
evolution equation for B{(x, t) may be obtained from Eq. (23). Thus, when potentials
Ai(x, 1), BX(x, t) and the fields F3,(x, t), F5,(x, t) are given at some initial time ¢ = t,, the
Yang-Mills fields with electric and magnetic sources are specified for all times through
Eqgs. (20), (22) and (23), (25). The initial values of the potentials 4(x, #) and BX(x, t) at the
initial time ¢ = ¢, may be obtained from Eqs. (22) and (25) respectively. For this purpose
we consider that [12]

AYX, 1) = Aj(X)+af(x) e (28)

and
Bi(x, 1) = Bi(x)+bi(x) e, s= -1, 29
where af(x, t) and b{(x, t), which may be complex, are the small perturbations on the
potentials; w, and w, are the frequencies of eigenmodes which determine [13] the Abelian
and non-Abelian character of potentials 4%(x, t) and Bi(x, t) respectively. Substituting

equation (29) into equation (22) and then integrating it from the initial time ¢, to the time
t, we obtain (see the Appendix)

AP = AIG, Dliay, = 0. (30)
Similarly, the substitution of equation (28) into equation (25) gives the initial value
Bi* = BY(X, t)l,=,, = 0. (31)

That is the initial values of both potentials employed to describe the fields associated with
electric and magnetic charges are vanishing. These zero initial values will help to eliminate
the non-linearity from the Yang-Mills field equations.

5. The point dyons

Now, we consider the Yang-Mills fields produced by a system of two point dyons.
Let n® and n% be the unit vectors giving the orientation of two dyons separated in the gauge
space through a distance r = la, —a,| and let (z,e, z,g) be the electric and magnetic charges
of one dyon and (z,e, z,g) be those of the other, e and g being the usual electric and magnet-
ic coupling parameters. The electric and magnetic gauge source distributions of the system
may be written as

PUX) = zenfd(Xx—d,)+z,ensd(X —ay) (32)
and

K°%(x) = z,gnid(x—a,) +z,gn56(x —a,). (33)
The time independent conserved isocharge may be written from equation (6) as

I = [ (IO 4+ K°)d’X = [ (6;Fo;+0,F%)Vd®x = [ (Foi+Foy)ds. (34)
surface
at w
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Considering the gauge transformations U(x) obeying the condition [14]

U(x)—>1 (35)
[x] =

the gauge covariance of isocharge may be observed. Our aim is now to characterize solu-
tions of equations (4) with electric and magnetic gauge sources (32) and (33) respectively
in terms of their energy and total isotropic charge, as these quantities are gauge invariant
as well as conserved. The total isocharge means the isocharge of source plus the isocharge
carried by Yang-Mills fields. Since equations (21) and (24) are the constraint equations
obtained from equations (4) in the temporal gauge, we solve these constraint equations
at t = t, for the source distributions (32) and (33) respectively. At t = t,, the constraint
equations may then be written as

Bixf+ [P ARYE = z,6n%0(X —d,)+z,en38(X — d,) (36a)

and
X+ B = z,gn$0(X —d ) +z,gn50(x —ay), (36b)

where ¢ and ¥! are the t = t, values of F4; and F§; respectively. Using equations (30)
and (31) the non-linear terms in these equations vanish and equations (36) may then be
solved to obtain

zye ., (Xx;—ay) +ze n5(x;—ay)

= —n{ s - 37
X 4n ' |x—a,® 4n  x—a,)’ (72)

and
~ 2,8 ., (xi—ay) +z,gn5(x;—ay)
? W m——- na oy p— pry = 5 37b
x 4n )x—a,® 4n  |x—a,) (376)
where
, 1 -
V® =—= =—4né(x—a) (38a)
[x—al
and
x-a § (38b)
x—aP®  [|x-al
have been used.
The energy of the configuration may be obtained as
1 a.a, ~aTay 337
W = 87 G+ aDd x (39)
T

from which the interaction energy may be obtained after subtracting the infinite self energy
of each dyon. That is
z,2,(e* + g*)ning

W, =
int 167%r

(40)
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The total isocharge may be obtained from equation (34) as
I° = (e+g) (z,n% + z,n3). 41)

Therefore, the solutions for the system of point dyons may be characterized by the interac-
tion energy (40) and the isocharge (41). The solutions will be static when

Boxi = Ooffi = 0 (42)
which requires

zn§ = +z,n5. (43)

Using equation (43) the following solutions corresponding to the Yang-Mills field equations
in terms of the interaction energy and the total isocharge may be obtained

. z3(e* +g7%)
= 2ot W= LS (442)
nir
2,2 2
—zi(e"+g%)
1" = 0, l/Vin = = ST 44b
' 167°%r (44b)
. z2e?
1“ = 2zent, W, = —s-, 44c¢
rerh ' 16n3r (44¢)
zig’
I* = 2z,gn%, W = ——r. 444
18 Y16nr (44d)

Due to the presence of both electric and magnetic charges the solutions (44a) and (44b)
are admissibie.

6. Discussion

We have obtained the solutions to the static Yang-Mills fields in presence of both
electric and magnetic charges. Unlike the magnetic charges of topological origin [4], we
have assumed that the point particles carry both electric and magnetic charges. This assump-
tion is similar to the one [15] used to formulate non-Abelian classical Lagrangian for point
electric and magnetic charges, where however, the string variables have been used to describe
the magnetic charges. We have instead introduced a non-Abelian field tensor Fj, in terms
of two potentials. A similar two potential quantum mechanical Abelian formulation
of electron monopole interaction without string has been given by Barker and Graziani [16].

APPENDIX

In this appendix, we derive the equations (30) and (31). Substituting equation (29)
into (22) we may obtain

o Ai(x, 1) = P(X)+Q(X)e*™ + R(X)e™*™, (A1)
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where

PG) = Fa®)+ (Fx B@}i+ 5 (B x B},

06 = (Fx @i+ 5 (B x b+ x B,
and
R(x) = {b"(x) x b(X)}.
Integration of Eq. (Al) from the initial time ¢, to the time ¢ gives

Ux, t) = P(X) (t—to)— ._g(__)( sopt

Wy

—_— escobto)’

_ SR()C) (ez.vwbt__ez:wbto)
2w,

which for t = t, gives the equation (30) viz.

A?("x” t){t=to = 0

(A2)

(A3)

(A4)

(AS)

It may be noted that even if equation (28) is time dependent similar to equation (29)

or just Fiu(x,t) = Fg(x)e*" equation (30) shall still be valid.

Similarly, the integration of equation (25) after substitution of equation (28) will lead

to equation (31).
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