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Gauge fields of arbitrary tensor type are introduced. In curved space-time the gravita-
tional field serves as a bridge joining different gauge fields. The theory of second order tensor
gauge fields is developed on the basis of close analogy to Maxwell electrodynamics. The
notion of tensor current is introduced and an experimental test of its detection is proposed.
The main result consists in a coupled set of field equations representing a generalization of
Maxwell theory in which the Einstein equivalence principle is not satisfied.

PACS numbers: 03.50.Kk, 11.15.—q

In abelian gauge theory in curved space-time the field equations for charged matter
fields contain the covariant derivatives

D, =V,~id4,(x), €))

where V, are the usual geometric covariant derivatives and A,(x) are the electromagnetic
gauge fields fixed up to gauge transformations

A, A, = A,+V, ], 2

where f is an arbitrary differentiable function of space-time variables. When higher order
derivatives are considered the symmetric products of the first order differential operators
(1) are used and the resulting theory is called the minimal coupling theory.

It is easy to see that the minimal coupling theory is not the only possible one. In fact,
we may admit a more general procedure in which instead of using symmetrized products
of (1) we shall use the most general differential operators which'are generally covariant
and covariant under arbitrary phase transformations of matter fields. For example, the
second order derivatives 0,0, in the presence of gravitation must be replaced by the generally
covariant ones

Vi =7 (V,Y,+V,V)), ©))
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which in the minimal coupling theory are further replaced by the operators
Dy = 3 (DD, +D,D)). C)
In our more general approach we replace (4) by differential operators
D, =V,—iAV,—iAdV, —AA ~iA,, &)

where 4,(x) are the usual electromagnetic gauge fields with the transformation property
given by (2) while the symmetric tensor gauge fields 4,,(x) transform under gauge trans-
formations according to the rule

Auv - A;w = Auv+V,uv.f' (6)
Comparing (5) with (4) we see that the minimal coupling theory arises if
AR = 3 (V,4,+V,4,). Q)

In our more general approach the fields 4,,, will be treated as independent from the fields 4,.
In field theories with higher order field equations we may similarly introduce symmetric
tensor fields 4, . (x) which under gauge transformations behave as follows:

A“-lv"'“n - A;‘l""ﬂn = A”Iy"‘l‘n+ SyZ:.“ Vu: Vﬂnf ®8)
and in this way we get an infinite sequence of gauge fields of arbitrary tensor type. Inde-
pendently from the field equations for matter fields we may postulate the existence of such
tensor gauge fields and develop a complete theory for them. For practical reasons we must,
however, restrict the attention to a finite number of gauge fields and the aim of the present
paper is to describe the simplest case which goes beyond the minimal coupling theory.
It is the case where apart from the vector gauge field 4,(x) we have only one tensor gauge
field A4,,(x).

The fields equations for the tensor gauge fields 4,,(x) we shall find in close analogy
to Maxwell electrodynamics. As a first step we shall look for a gauge invariant third order

tensor field F,,(x) which in our theory will play the same role as the electromagnetic
tensor

F, =V,A4,~-VA, ®
plays in the Maxwell electrodynamics. The apparent candidate for F,,, taken in the form
Fouy = aV, A, + BV, A, +7V,4,, (10)

must, however, be rejected, since it cannot be gauge invariant. It turns out that in curved
space-time the correct generalization of (9) is of the form

Fow = t(VAy =V, 4y, — R, 4y)
+ﬁ(VuAvg - VvAan - RneuvAn)’ (11)

where R",,, is the curvature tensor of the considered space-time. The appearance of the
curvature tensor in (11) is caused by the non-commutativity of the covariant derivatives
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V, and shows some fundamental difference between the gauge fields 4, and 4,,. In the
case of A, its relation to the gauge invariant tensor field F,, given by (9) is not influenced
by gravitation, because

F,, = 0,4,-08,4, (12)

as the consequence of the symmetry of Christoffel symbols. In the case of 4,, the relation
between 4, and F,,, explicitly depends on gravitation, because (11) contains the curvature
tensor. In addition, the tensor F,,, depends not only on 4,, but also on 4,.

A similar situation appears for all higher tensor gauge fields 4, , . The gauge
invariant combinations formed from these tensor fields always contain different gauge
fields and the curvature tensor. Our generalized approach to gauge fields reveals therefore
a new role of the gravitational field since it is now the bridge joining various gauge fields.
Only for the minimal coupling theory which uses solely the vector gauge fields 4, there
are no interrelations between different gauge fields and the indicated role of gravitation
is invisible.

From (11) it is seen that the tensor F,,, has the following symmetry property:

FontFrpet+F =0 (13)
as the counterpart of the electrodynamical symmetry
F,+F, =0 (14)

satisfied by the electromagnetic tensor. In addition, from (11) we see that F,,, consists
of two parts with different additional symmetries. The first part, multiplied by «, satisfies

Fouy = —F (15)
while the second part, multiplied by S, satisfies
Fquv = —'quu' (16)

The natural requirement of irreducibility or maximal symmetry of physical tensors suggests
that we should choose in (11) either & = 0 or § = 0. In order to make the correct choice
we shall again refer to Maxwell electrodynamics where the tensor F,,, satisfies the Maxwell-
-Faraday equations

VFuu+V,F,+V,F, =0. a7n
Using the antisymmetry of F,, these equations may be reduced to the equations
0, Fyu+0,F,,+0,F,, =0 (18)

which show that the Maxwell-Faraday equations are independent of gravitation. We also
note that equations (18) are identically satisfied if we use the representation of F,, in terms
of the gauge fields 4, as given by (12). Taking all this into account we require that in the
absence of gravitation the tensor F,,, should satisfy the equations

OaF gy + 0, F 43 +0,F ;0 +0,F 4, = 0 (19)
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and these equations should be satisfied identically if F,,, is represented in terms of the gauge
fields A, as given by (11). A simple calculation then shows that such requirement can be
fulfilled only if we choose in (11) § = 0 and up to normalization we get the gauge invariant
tensor F,,, in the form

F

ony

= V4,,—V, 4y~ R"uavAn’ (20

as the counterpart of the electromagnetic tensor. It is clear that in the presence of gravita-
tion we must suitably modify equations (19) in order to make them generally covariant,
but we shall not need such modification here.

The field equations for the gauge fields and the matter fields ¢; will be obtained from
the Lagrangian

1 A\ 1 v
L = - 5?2 F o, F* — EF’"F"
+’g’matter(Duv¢i’ Du¢i’ ¢1) (21)
where f and e are appropriate coupling constants. Extremizing the action integral
S=[2V-gd (22)

with respect to the variations of 4, and 4,, we get the following generalized Maxwell
equations

\4 ez v 5gma er
V. = — =R e —€* —5—2:4 , (23)
530\3 er
Vo +F™) = —f? =22 24

uv

We are now ready to give a physical meaning to the fields F,,,,. From (24) we see that
matter fields may produce a new type of sources, the tensor currents
0%
juv o= e 2 ___ﬂx_aﬁe_r 25
J 7= A (25)
which serve as sources for the fields F,,,. These tensor currents, in addition to the usual
vector currents

. 2 5‘g’matter

P 26)

1"

describe new yet unknown electromagnetic characteristics of matter. They lead to the
following modification of the Lorentz force

Floteaz = FUJ, +(F* + F) . @7

1t is obvious that if the given matter does not exhibit any trace of tensor current this expres-
sion reduces to the usual Lorentz force. A careful and precise investigation of the Lorentz
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force may therefore serve as a direct experimental test of our theory and as an operational
definition of the tensor fields F,,.
In the absence of tensor currents the field equations (23) admit the solution

Fppy=0 (28)

and the whole theory reduces just to Maxwell electrodynamics. This will be the case if we
take the usual gauge invariant matter Lagrangian

Loaiee = —(D,$)* (D"§)+m*¢*¢ (29)

for a matter described by a single scalar field ¢.

In the absence of gravitation the field equations (23) always reduce to the Maxwell
ones regardless of the presence of tensor currents. But in the presence of gravitation and
non-vanishing tensor currents we obtain an essential modification of Maxwell electro-
dynamics in curved space-time. This is so, for example, with the following Lagrangian
of scalar matter

Lonatier = A(D,$)* (D*9)—b(D,$)* (D"$)+cd*e (30)
which leads-to the currents
J* = 2ia[(D,§)* (D™$)—(D"¢)* (D,$)]
+ib[(D"¢)*¢—*(D"¢)], (31
j* = ia[¢*(D""¢)—(D*$)*$] (32)
and the fourth-order wave equation
aD,D*"¢—ia(V,A,+V ,A,—2A4,)D"¢+bD D¢ +cd = 0. (33)

In the presence of tensor currents the field equation (23) and (24) represent a theory
for which the Einstein equivalence principle is not satisfied. In fact, the field equations (23)
remain generally covariant, even if we neglect the term with the curvature tensor, and in
this case we get the usual Maxwell equations in curved space-time. However, there is no
way to obtain equations (23) from the Maxwell equations in flat space-time through the
equivalence principle, because in the conventional formulation of this principle the possibil-
ity that the curvature tensor may couple different fields is not taken into account. Our
model thus shows that the formulation of the equivalence principle must be modified.



