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1. Introduction

The aim of the present paper is to show that there exists a new kind of relation between
the Galilean and relativistic field equations which is different from the relation discussed
in Ref. [1]. The material presented definitely contradicts the standard understanding of the
non-relativistic physics as the limiting case of the relativistic one. In our procedure the
Galilean covariant field equations are the primary objects and form a universal basis
for all other field equations. In particular, from the Galilean field equations we obtain
both the Poincaré and Euclidean field equations and this is true not only for free fields
but also for the coupled fields in the abelian gauge theory.

Needless to say, the considered problem is very important for a deeper understanding
of the meaning of the relativity principles in physics. After presenting the main results we
try to interpret them in a more general way using the modern language of fibre bundles.
In our formulation, various relativity principles are implemented by different maps from
a universal bundle space to the physical space-times and these maps in turn are determined
by particular choices of solutions of the Galilean field equations.

2. The “‘relativistic” properties of the Galilean field equations

In Ref. [2] we have introduced the most general Galilean invariant field equation
in the form
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where X, 1, 0 are the five coordinates of the extended Galilean space-time and «, f, y are
arbitrary dimensional constants which should be expressed in terms of some primary
parameters of the particle described by the field y. In Ref. [2] we admitted only the rest
energy 2 and the Planck constant # as such primary constants and this led to the choice

a=y=0
= 2Q 2.2
p=-2—. @2)

It turns out, that more interesting results may be derived if we include into the set of primary
constants also the mass m of the particle. With such set of primary constants instead of (2.2)
we may then make the choice

Q
6= — —
m
B=0
mQ
y =7, 23)

which improves the behaviour of (2.1) with respect to time inversion and also leads to the
usual Schrédinger equation when we pass from the one-parameter extension of the Galilei
group to the usual Galilei group. Indeed, taking in (2.1)

o im0 -
w(x,t,0) = exp ( 7) o(x, 1) 2.4)

we get for the wave function @(X, t) the Schrodinger equation with rest energy @ and
mass m.

The field equation (2.1) with the choice (2.3) besides the solutions of the type (2.4)
possesses many other solutions. In particular, let us consider the solutions of the type

el - 1
y(x,1,0)=u (x, t+ —20) s 2.5)
c

where u(x, 1) are twice differentiable functions. Substituting (2.5) into (2.1) and taking the
relativistic relation

Q = mc? (2.6)

we get the Klein-Gordon wave equation
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Similarly, considering solutions of (2.1) of the type

- N |
wix,t,0)=2 (x, = B) (2.9)
c

and taking (2.6) we get the Euclidean field equation

mce 2 )
[44— (77) ]z =0, (2.10)

where A, is the four-dimensional Laplacé operator
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c
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We therefore see that equation (2.1) leads to all free field equations used in physics
for scalar particles and we should somehow explain the physical meaning of this situation.

Before doing this let us show that the same situation is valid for other Galilean field
equations. As the first example, let us take the Dirac equation which in the exiended Gali-
lean space-time has the form (see Appendix)

F-V+ ’m ) — 6 Ve (x,1,0) =0 (2.12)
a —_— X, t, = i 4
Y v O o =7s /5 60 h ¥ )
‘where ¥ y " and y; are the usual Dirac matrices. Taking in this equatlon y in the form

{2.4) we get the non-relativistic Dirac equation for the spinor (X, 1):

. . I'm 0 o JmQ -
7 V+ \/wv (7 =vs) o i —U+ys) [o(x, 1) = 0 (2.13)
Q ot h

which, however, is different from the non-relativistic Dirac equation derived in Ref. [3].
The reason for such a discrepancy is that in Ref, [3] only the singular case Q = 0, m # 0
was considered. We shall not consider this singular case here because it has no relativistic
counterpart.

It is easily seen that taking in (2.12) ¥ in the form of (2.5) we get for the spinor u(x, )
the usual relativistic Dirac equation

mc
(w + -})u =0, (2.14)
where
1
0y = — —, (2.15)
[4

while taking y in the form of (2.8) we get for the spinor Z(x, 7) the Euclidean Dirac equation

SR | é im
(v Vi — 95 = ’f)z - 0. (2.16)
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This shows that the relativistic wave equations follow from the Galilean equations not
only for the case of scalar fields but also for the case of spinor fields. It is the choice of the
solutions of the basic Galilean field theory which determines the character of the wave
equation!

It is easy to see that the same is also true for interacting fields, provided the particular
choice of solutions of the Galilean field equations does not introduce constraints for the
fields. An example of the theory where such constraints arise is the Galilean gauge field
theory and we shall discuss this case in detail.

The field equations for the Galilean gauge theory are of the form [2]:

2 P s DA (i as &
e — - — ra v A+ —
2120 202 "¢ 20
NG - (2.17a)
—gra —— = Y ,!’ . a
Bt ar o0 ) = 8V
v av W raw+ L div A
e e Y — —m e - div
ool at? ot
T
—¢c“—divA = _— ¥ s 217b)
0 V/ 8Py (
W aws Zaivis [m ( ) (2.17c)
— _ v . 5 -_ ] 2.17/¢c
2120 20 20) =\ g SR iy
and
" p)
Voigh)+ |0 —igh
[w ( gA) \/Q (° m(m g )
Q b iJmQ
+\/ e[S —igw )+ YIR — o, (2.18)
m cf h

where ¢? is an arbitrary constant of the dimension of the square of velocity. In the relativ-
istic case we shall identify this constant with the square of the velocity of light.
For the solutions of the field equation (2.18) of the type (2.5) we have the identity

2 (2.19)

and in order to preserve this identity also for the gauge covariant derivatives we need the
following relation between the gauge fields

- 1 1 :
v (x, 1+ = ()) ='W (vc t+ -5 0). (2.20)
c 4

With this r¢'aticn the left-hand side of (2.17b) vanishes, while the right-hand side in general
dces not. We must therefore include the constraint relation (2.20) in the Lagrangian for
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the gauge fields by means of a Lagrange multiplier. We shall do this by introducing into
the total Lagrangian of the gauge theory a gauge fixing term of the form

AX, t, 0) (W +ngV —1 - ;1) (2.21)

where J(x, t, 0) is a Galilean scalar auxiliary field and (#, i,, 1) is an arbitrary constant
five-vector in the extended Galilean space-time. The expression (2.21) is then a Galilean
scalar and the theory with this term in the Lagrangian remains to be Galilean covariant.
The presence of (2.21) in the Lagrangian adds to the left-hand sides of (2.17a), (2.17b)
and (2.17¢) the terms — An, in, and in,, respectively, and the variation with respect to / gives
the gauge fixing condition

nW+nV—n-A4=0. (2.22)
Obviously, for the Galilean gauge theory we may always choose n = n, = n, = 0.
Now, choosing n = 0, n, = —c?, n, = 1 we get the constraint (2.20) and from (2.17b)
we get
g _
A= - ~ Prsy. (2.23)

Substituting this into (2.17¢) we get the equation

1o/, - oW o
OW-— — —{divAd+ — ) = cgipy’», (2.24)
¢t ot ot
which is the correct relativistic wave equation for the field W(x, 7). The remaining equations
(2.17a) and (2.18) also automatically take the relativistic form.

A similar discussion can be made for the Euclidean type of solutions. Here the ficlds

do not depend on r and therefore we need in the gauge covariant derivative the relation

V=0 (2.25)

We shall take into account this relation by chosing in (2.22) n = n,= 0, n, = 1. From
{2.17b) and (2.17¢) we then get

o
I

Yoy (2.26)

r\[%

and the Euclidean gauge theory is obtained.

3. The interpretation of the results

We shall now interpret our previous results in the modern language of fibre bundles.
As it is well-known [4], in order to define a fibre bundle we must indicate three objects:
the total space of the bundle P, the base space M and the projection 7: P — M. For our
purpose we shall define the total space P as the five dimensional vector space Rs with
coordinates (y,, ... ys) previously denoted by x, r and 0. We assume that each physical
elementary event p is represented by a point in P and the field phenomena are described
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by some fields y,(y;, ... ¥s), which satisfy the equations of a given Galilean field theory.
The space-time coordinates of the event p are represented by a point in the four-dimen-
sional vector space M with coordinates (x°, x!, x?, x*) which are linear combinations of the
coordinates y,. The projection 7 is implemented as the linear relation

5
x* =Y oy +at, (u=0,1,2,3). 3.1
K=1

Since the physical coordinates x* depend on the chosen reference system the projection 7
and therefore the coefficients o** and a* change with the reference system. We are therefore
dealing not with a single fibre bundle (P, n, M) but with a collection of fibre bundles
{P, n(0), M) with fixed total and base spaces and variable projections, and the notation
m(0) indicates the dependence of the projections on the observers or rcference systems.
If the observer O’ with coordinates x’* is related to the observer O with the coordinates
x" by a given relativity principle described by a symmetry group of the base space, we must
have

x'* = I x"+ad", (3.2)

where L¥, represent the homogenous part of the symmetry group and &" describe the
translations. Combining (3.1) with (3.2) we see that the coefficients o’** and a'* of the
projection m(0') are related to the coefficients «** and o* of the projection n(0Q) by the
formuiae:

at = I* o™,

o = I* o'+ a" (3.3)

and these formulae show that in order to specify the projections n(0) it is sufficient to
specify the coefficients «** and «* in one arbitrarily chosen reference system. The coefficients
of the projection n(O) are fixed by the choice of some special solutions of the field equations
satisfied by the fields y,(y,. ... ¥5). We assume that these special solutions are of the form

YalV1s oo Vs) = PO (30, LX), (3.4)

where the phase function f and the wave functions ¢, are chosen in such a way that the
resulting equations for ¢, are invariant under the given symmetry group of the particular
space-time. The examples considered in the previous Section show that for the Galilean
symmetry group we must have

m
=2,
a =0,
ot = 5%, (a.6=1,2.3)
= o® =0, (3.5)
o =1,
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For the Lorentz symmetry group we have

B=0,
o' =0,
aab = 5ab
a® = a"® =0, (3.6)
a’ =1
1
o0 = =,
o2
aOa — 0’

while for the Euclidean group we have
a® =0 3.7
with the remaining coefficients being the same as for the Lorentz group.
The fact that the combination y,+ ;1? ys is indeed the relativistic time immediately

follows from the interpretation of the fifth coordinate of the extended Galilei group as the
first relativistic correction to the non-relativistic time [5]. The present paper shows that
an infinitesimal indication how to go from non-relativistic space-time to a relativistic one
is sufficient for achieving the global passage.

4. Conclusions

Concluding our paper we should like to comment on two aspects of presented model
of abelian gauge theory. The first one is connected with the classical version of the theory
while the second with its possible quantization.

The classical theory discussed has solutions with a definite kind of transformation
properties for the space-time coordinates and these properties are not assumed a priori
but are determined by the field equations. The theory represents therefore a model which
unifies all models of flat space-time used in physics. Each particular space-time may be
considered as some four-dimensional subspace of the universal five-dimensional manifold.

The situation may change in the quantum version of our model. If the quantization
is understood in the sense of a path integral formulation we must integrate our model
over all possible field configurations. In this integration we should also take into account
field configurations which do not satisfy the classical field equations. In particular, we may
violate the constraint equations (2.20) and/or (2.25) which just choose one possible sector
of the classical theory. Since the theory without equations (2.20) or (2.25) may have a differ-
ent kind of space-time symmetry, we may expect that quantization may lead to new
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models of space-time with symmetry groups different from the Galilean, Poincaré or Eucli-
dean ones. We enter therefore into the exciting problem of quantum corrections to classical
relativity principles. We shall come back to this problem in the future.

APPENDIX

The Galilean Dirac equation

Since the equation (2.12) is quite new, we sketch here its short derivation. According
to the general philosophy of Dirac equations we look for the equation of the type

. o i) 7
AV+B—+4c—+D)y=
( Py 066 )tp 0, A1)

where A = (4., A,, A3), B, C and D are matrices to be determined. For each type of the
equation (A.1) we should find a differential matrix operator of the type

- = G 0
A V+B — +C' — +D’ .
ot 06 (A-2)

which being applied to (A.1) will give equation (2.1). It is then easy to see that the
corresponding matrices should satisfy the relations

AB+B'4; =0,
AC+C'4; =0,
AD+D'4; = 0,
B'B =0,

B'C+C'B = 2I,
B'D+D'B =0,

Q
CC=~-—1,
m

C'D+D'C =0,
, mQ
D'D = b3 I, (A.3)

which have the following solution in terms of the Dirac matrices
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, Q
C = C = \/_“'Ys,
m

, J/mQ
D'= D= -, (A4)
where
s = yy'y%y?

and this leads to equation (2.12).

I am sincerely indebted to Dr A. Horzela for many discussions and especially for
suggesting the use of the gauge fixing term.
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