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It is shown how to combine Monte Carlo techniques with methods based on spim
amplitudes in order to calculate radiatively corrected, integrated, andfor differential QED:
cross sections efficiently for heavy lepton = production in an electron-positron annihilation
process. A particular emphasis is put on those aspects which are potentially important for
future developments for this process, for applications to similar processes (production of
heavy quarks), and for other QED processes where mass and spin effects are also important
(in addition to the radiative ones).

PACS numbers: 12.20.Ds

1. Introduction

Over the last two decades, from the joint efforts of experimental and theoretical physi-
cists, a new picture of fundamental interactions and constituents in Particle Physics has
emerged, in which interactions are mediated by gauge bosons from a SU(3)¢g10ur ® SU(2)
® U(D).1ectroweas group [1-4], and elementary constituents are leptons and quarks, grouped
into three families.

Much of the experimental information which contributed to formulating this, by now,
Standard Theory of Particle Interactions (STPI) comes from electron-positron scattering
experiments. For example the first two members of the third family, the heavy lepton
7 and heavy quark b, were found in experiments of that type. See Ref. [5] and references
there for a review of ete~ experimental results.

Although STPI has in principle an enormous predictive power due to its renormaliza-
bility [6], at this moment however, even its basic assumptions, like universality of coupling
constants in the fermion sector and gauge nature of the intermediate heavy bosons, are
far from being fully tested, while verification of predictions based on its renormalizability
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is still confined to its quantum-electrodynamical (QED) sector!. The e*e- scattering experi-
‘ments are generally much cleaner than experiments with hadron beams or targets, simply
because the elementary constituents — quarks — are confined in hadrons. This is the reason
‘why experiments with e*e- intersecting beams are anticipated to be the best place for
precise tests of STPI in the future [7].

Currently, the experiments of this type are continuously supplying valuable data on
properties of quarks and leptons, on Z, coupling constants and on high energy behaviour
of typical QED processes. The data on QED processes ranging from the simple annihila-
tion process e*e~ — ff, f = quark, lepton, to such processes as ete~ — ffyy or e*e~ — fff'f'y
are analyzed in present experiments from two points of view. Either they are objects of
interest in themselves, or they are regarded as an unwanted background while analyzing
-data or looking for some other process.

In the first case, the agreement (until now) of the experimental data with the perturba-
tive QED calculations is regarded as a further confirmation of this oldest and most solid
sector of renormalizable STPI, and as a proof of the pointlike nature of fundamental
-constituents up to the shortest measurable distances.

In the second case, the QED effects play the role of the known and uninteresting compo-
nent which has to be subtracted from the data. For example the O(«*) QED contribution for
forward-backward asymmetry in eve~ — p*u~ process is subtracted from the data [5]
to isolate a pure Z, contribution. In searches for new exotic particles, the QED bremsstrah-
lung at large angles is considered as a background.

In any case, it is rather obvious that, for the purpose of present/future ete~ experi-
ments, there is a great necessity to calculate the differential cross sections (final state distribu-
tion), event rates etc. for a wide range of the QED/STPI processes, both at the three level
and with higher order radiative (perturbative) corrections.

There exist, of course, forty years old techniques for calculating QED distributions
which include Feynman rules, renormalization prescriptions for removing divergences
(order by order) and methods for summing over spins. They prove, however, when con-
fronted by the demands of present e*e~ experiments, to be incomplete and/or inadequate
quite often. The problems which arise are of a purely technical nature, and are generally
related to the presence of three and more particles in the final state. The inclusion of more
than two particles in the final state has two important consequences: first, a proliferation
of the Feynman diagrams; and second, a need to integrate exactly over five and higher
dimensional phase space.

The first problem may be seen by comparing the processes ete~ — efe~ and
ete~ — e*e~ere. The first one has two Feynman diagrams which yield 4 terms in the differ-
ential cross section. In the second case 36 diagrams yield 1296 terms. In this and other
processes, when standard techniques are used, one is faced with an avalanche of the long
algebraic expressions which are difficult to control and to understand. Without entering
into details, 1 indicate only that a solution of this first problem is found using spin amplitudes
and related methods.

! Usually I omit from discussion the SU(3)col0ur SECtOT.
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The problem of integrating exactly over a complete multiparticle final state, in the
traditional QED calculations, was somehow avoided by the use of all sorts of “effective
photon™, “soft photon™ etc. approximations [8]. The growing precision of experiments
and the interest in the large transverse momenta events created the necessity of taking into
account the complete final state phase space. Similar problems arose in late sixties in multi-
hadron production by strong interactions, and were successfully solved by a use of Monte
Carlo (M.C.) methods [9]. There are, however, important differences between multiparticle
production in the old days and present QED processes.

In the multihadron production one could use universal phase space integration pro-
grams [9] for a wide range of processes and final states. In QED the distributions are more
complicated, and they have very strong peaks and/or singularities in the phase space. An
efficient M.C. algorithm (program) has to be prepared individually for every QED process
and its construction may be rather laborious.

Another difference comes from the experimental side. Due to an evolution of experi-
mental techniques (electronic experiments instead of bubble chambers) there is, now,
a strong pressure to present the predictions of theory for a given scattering process not in
a form of formulae and tables, but rather in a form of a M.C event generator which simu-
lates the scattering process directly. The analysis of experimental data from modern
detectors relies heavily on an elaborate M.C. simulation of the detector. If the M.C. event
generator, based on a theoretical model, is available, then all the detector effects (triggers,
acceptance, resolution, etc.) can be taken into account, while comparing theory with experi-
ment, in a natural and simple way: the event generator (based on theory) is plugged in,
as a first step in a (usually larger) M.C. type program which simulates the detector behav-
iour. Also the additional selection criteria used in the data analysis (all sorts of cut-offs)
can be introduced in such M.C. simulation in the same way as in the real data analysis
i.e. by rejecting some of the M.C. events.

In this paper 1 review methods of calculating QED distributions and of the M.C.
integration over the final state momenta for the combined t production and decay process
[10, 11}

ete” » 1Tt (y), 1F - X*. 11

As compared with other QED processes, this process has its own specific character and
technical problems to solve which may be summarized as follows:

(A) Thelepton 1 is unstable, and is observed at present only through its decay products
[12]. The differential cross section for process (1.1) does not factorize into production and
decay parts, because the t decay is sensitive to its spin polarization. The above distribu-
tion, when calculated with traditional trace techniques, consists of rather long algebraic
expressions even in the QED lowest order, O(x?) [13, 14]. The situation deteriorates strongly
when radiative effects (keeping finite T mass) are included. Note that in this case the source
of the ‘““algebraic avalanche” is not in the multitude of Feynman diagrams, although this
will be the case when the Z, contribution is taken in its full form, but rather is in the spin
structure, the nonzero mass of the 1, and the necessity of including the decay of the 7.

(B) The use of the M.C. integration method for the final state phase space in (1.1)
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is practically unavoidable due to the presence of at least four (typically 5-8) particles in the
final state.

(C) There is no single dominant t decay mode [15]. The decay part in (1.1) should
be treated as exchangeable in the calculations, i.e. it should be easy to replace one decay
mode by another without any intervention in the radiatively corrected production part
in (1.1). This constraint is rather important, and in practice it means that the spin structure
in the calculations of the distributions for (1.1) (and in the M.C. algorithm) must be orga-
nized in such a way that the production and decay parts in (1.1) are separated as strongly
as possible.

The problems (A)-(C) were solved successfully in Refs [10] and [11]. In Ref. [10]
the O(@®) QED spin amplitudes for production process ete~ — t™1~(y) were calculated,
and methods of calculating the differential cross section for the combined process (1.1)
in a way assuring condition (C) were given. In Rcf. [11] the M.C. program for (1.1}
is described in every detail. Ref. [10] contains also the quantitative discussion of radiative
and spin effects for (1.1) in the energy range 2m, < \/E << 40 GeV based on numerical
M.C. results.

In this work, I do not attempt to reproduce all the results of Refs [10] and [11], but
I rather concentrate on those topics which were not fully covered in those papers, and
1 reformulate and generalize the techniques, developed there, which, in the future, may
find applications in other QED/STPI processes, or for (1.1) at higher energies.

I concentrate mainly on two subjects: (I) The techniques for calculating the differential
cross (d.c.) section for annihilation of polarized ete- into a pair of heavy unstable fermions
(leptons, quarks). (II) The general methods of constructing Monte Carlo algorithms
individually adapted (IAMC) to a given distribution and their applications to process
(1.1), and to other similar QED processes.

Elaborating on subject (I) I define all ingredients necessary for calculating the d.c.
section for process (1.1), i.e. spin states, techniques of calculating spin amplitudes and
methods of evaluating numerically the d.c. section out of spin amplitudes. Following Refs
[16] and [17] first, the spin amplitudes are calculated analytically and then also numeri-
cally for every Feynman diagram (or for gauge invariant groups of them), and afterwards
the transition from the spin amplitudes to the d.c. section (including summation over
Feynman diagrams) is done not analytically (as in traditional methods), but rather also
numerically. In this way, taking advantage of the relative simplicity of spin amplitudes,
one eliminates the source of the “algebraic avalanche” in the d.c. section, mentioned
earlier in that Section. This partly analytical and partly numerical method, based on spin
amplitudes (ANSA) was used in Refs {10], [11], for process (1.1) with polarized e¥ and
decaying t*. A similar method was also used in Refs [16] and [17] for the four lepton
production process ete~ — I+I-I+]-, with all leptons almost massless (! = e, p) unpolarized
and stable.

Subject (II) includes a systematic review of the IAMC methods. As was pointed out,
the problem of constructing a M.C. event generator for a QED scattering process is equiv-
alent to finding an efficient method of generating random points precisely according
to a given, multidimensional, complicated and strongly peaked distribution. The above
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task is known to be difficult, laborious, and cannot be done without a detailed knowledge
of all the properties of the distribution in question. Literature on this specific subject is
rather scarce, and one tends to believe that finding an efficient IAMC algorithm is entirely
a matter of art and experience. I shall try to show, however, that in a typical IAMC algo-
rithm one employs in fact only a few basic methods. They are used in a recursive way such
that, ultimately, the generation of a multidimensional complicated distribution is reduced
to a series of generations of less dimensional, often one dimensional, simple distributions.
This rather detailed discussion of the JAMC techniques is introduced for the purpose of
the process (1.1) and other QED processes, although they apply as well to many other
non-QED problems. It is shown in more detail how those basic IAMC methods were used
to construct the M.C. algorithms for process (1.1) and ete~ - pru-(y) (ete~ — qq(y)).

The outline of the paper is the following: In Section 2 I define spin states and density
matrix formalism for process (1.1) in a way assuring separation of production and decay
parts, and such that the calculations of QED spin amplitudes for (1.1) demonstrated in
Section 3 are relatively simple. In Section 4 I review IAMC methods in general terms (for
arbitrary distributions), and in Section 5 I describe how they were used for the T production
and decay process (1.1). Comparisons with other M.C. programs (e*te~ — p+p-(y)) and
future extensions are also discussed in Section 5.

2. From spin amplitudes to differential cross section

In the second part of ANSA techniques, which was sketched in the Introduction,
the differential cross section of the scattering process is calculated numerically out of spin
amplitudes. In this Section I concentrate on the question of defining spin states and spin
amplitudes for the t production process

et (p)+e(py) = TH(g) +17(g2) + (v(k)), 2.1

and then, on the problem of evaluating the final state d.c. section, taking polarized e* and
t* decays sensitive to their polarizations. Possible generalizations of the methods presented
will be also commented upon.

The a'gebraic complexity of spin amplitudes depends strongly on the appropriate
choice of the spin states and kinematic variables. A choice presented in this Section suits
best the process (2.1) with the s-channel annihilation photon, and other similar ones. This
will become more evident in the next Section where examples of practical calculations
of the spin amplitudes will be shown.

Calculating final state distributions in the case of unpolarized incident particles,
and spin-insensitive detection of outgoing particles, merely amounts to taking the sum
of modulus-squares of all spin amplitudes (summed over Feynman diagrams). In the case
of polarized particles, and spin sensitive detection, the standard technique is to use the
spin density matrices. In the second part of this Section it will be shown how to define
and to use spin density matrices for e* and, as well, for a decaying t*, in a way suitable
for the M.C. type calculations.
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Spin states

I define spin states of e* and ¥ in the rest frame of the corresponding fermion, denoted
by RS, (e*) and/or RS(t¥), as a state with a definite spin projection on the third axis. These
fermion rest frames are connected to an overall center of mass (laboratory) system CMS
by Lorentz transformations L(e*) and L,(t*), where t = 0 (¢ = 1) indicates that a hard
bremsstrahlung photon is absent (present). The transformations L, are parametrized in
terms of angles and boost velocities which also serve as the independent kinematical
variables parametrizing the spin amplitudes and the phase space integral simultaneously.

Definitions of spin states (polarization vectors) of the hard bremsstrahlung photon
(also connected to L,) will be given later in this Section.

The complete list of the definitions of the spin states for e* and t¥ in the process (2.1)
is the following:

le*s pis A = UL(e™)) le™; p, 41,
le75 P2y 22> = U(L(eT)) le™; p, 22D,
lt*s g1, 0> = UL It%5 4, a0,
€75 42, 42> = U(L(x7)) [t75 g, 02,
pr = L(e")p,  pr = L()p,
9 = L(z")q, 42 = L(")4,
p=(m0,0,0), ¢g=(M,0,0,0),
Lo(e®) = R3(#)Bs(£1.),
Lo(r*) = Ry(@)Ry(=0)B3 (1),
Ly(e*) = Ry(p)Bs(£n.),
Ly(v*) = R3(@)R1(—0)B3(—)R3(p2)R,(—0,)Bs(£1,). 22

The above definitions are, in spirit, quite similar to definitions of the standard helicity
states [18]. The states |e¥; p, 2> and |t*; ¢, &) represent, here, e* and t* in their rest
frames (RS, (e*), RS(t*)) with spin projections 1, « = +1/2 on the third axis. The unitary
matrix U(L,) represents the Lorentz transformation L, for e*, t* lepton. (In the calcula-
tions of the spin amplitudes from Feynman rules the states le; p, 4>, |t; ¢, a) will be

—
>

Fig. 1. Kinematics of the a) e*e~ - T+t~ b) ete~ — T+1~y processes. Boxes represent reference systems.

They are connected by Lorentz transformations marked on arrows. Most important reference frames are:

the laboratory reference system CMS, the rest system of the T+r— pair QMS, te rest systems of ¥ leptons

RS(x%) used to quantize & spins and to simulate < decays in the M. C. algorithm, and the e* rest systems

RS(et), where the et polarization vectors are defined. Other intermediate sysiems are used for calculating
spin amplitudes, to define polarization vectors of emitted photon, etc.
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effectively replaced by the corresponding Dirac spinors and U(L,) by matrix S(L,) acting
on spinors.) The transformations L, are shown in a graphical way in Fig. 1 together with
reference systems RS,(e¥), RS(t*), CMS, and other intermediate reference frames, which
are obtained by truncation of the chain of boosts and rotations in L,. The transformation
Bi(+n,) is a boost transformation along the third axis, where

coshn 0 O sinhypy
0 1 0 O
sinhy# O 0 coshp

and it relates the t* rest frame RS(t¥) with the rest frame of the ¥ pair denoted as QMS.
A similar role is played by B;(+#.). The velocities ., 7, are related to momenta products;

py - pp = m?cosh2n, q,‘q,=M?*cosh2y, 2.4

where m and M are masses of electron and t. In the radiative case (¢ = 1) the t* pair
rest frame QMS, and e* pair rest frame CMS,, see Fig. 1b, are related by a boost B;(—{)
along the photon momentum; note that k = p, +p,—¢q; —q,. The velocity { in this boost
may be obtained from

cosh{ = (q1+42) - (P1+P2) (P1+P2)* (41 +92)) 72 (2.5)

The meaning of the angles 0, ¢, 0;, ¢;, looking at definitions of L, and at Fig. 1, is self
explanatory. The angles 0, ¢ are angular variables of the t* in CMS (in the nonradiative
case). Since photon momentum is parallel to the third axis in CMS, and QMS,, the angles
1, @, are angular variables of the photon in CMS, 0, is an angle between photon and t¥in
7¥ pair system QMS, and ¢, is an angle between two planes; one spanned on vectors
(P1, P2 I-:c) and another on (q,, 42, I'E).

The momenta of e* and ©* can be expressed in terms of the angles and boost velocities
in any of the reference systems in Fig. 1 by taking p or g and applying the appropriate
transformations, read from Fig. 1. The momentum of the photon is parallel to third axis
in CMS,

{k}ems, = 27's"2(k, 0,0, k), (2.6)
where k = 1—exp (—2{) is the CMS photon momentum in units of the beam energy
E = 2152,

In CMS the photon momentum reads

kcms = R1(~01)R3((p1)kCMSY

= E(k, —ksin 8, sin ¢,, k sin 8, cos ¢,, k cos 0,). Q.7
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The CMS, frame is also used to define two transverse polarizations of the bremsstrahlung
photon as

CMS,:&ly, = 84, for B =1,2. (2.8)

This choice is particularly convenient for calculations of spin amplitudes for the initial
state bremsstrahlung. For the final state bremsstrahlung, another, analogous choice,
&y = 0 in QMS,, yields simpler spin amplitudes. The above two sets are related by a rota-
tion R;(¢,).

Finally, the phase space integral may also be expressed in terms of the same variables
which parametrize transformations L;;

d‘12

dt, = 8*(py+P2— 41— 492) ~—-——q 3 tgh 7.d cos Odg,
142
‘11 dsqz d’k
dty = 6%(py+p,— -k —=
T3 (P1+P2—4:— ) —o ‘11 qg ko
= L E? tgh 5, thg n.kdk d cos 0,dep,d cos 0,dp,. (2.9)

The advantages of the above choice of spin states and kinematics will become more
obvious in the following Sections, while calculating spin amplitudes and constructing M.C.
algorithms. Here, I indicate only some of them: Due to the fact that the reference frames
RS, (%) and RS(t*) are rigidly tied to particle momenta the spin amplitudes do not depend
on the azimuthal angles ¢, ¢,. This dependence is restored by rotation of the polarization
vectors from RS(e*) to RS,(e*) and of the photon polarizations from QMS, to CMS,.

Generally, the above choice of spin states simplifies spin amplitudes for the s-channel
ete~ annihilation process plus bremsstrahlung from every initial/final state fermion. The
important thing is that the leading singularities (from bremsstrahlung propagators) are,
with this choice of variables, easily detected and isolated for an individual treatment
(in M.C.). This is closely related to the fact that one of the boosts in L, (between CMS,
and QMS,) is along the photon momentum.

Spin amplitudes and differential cross section

In the following I define spin amplitudes and I introduce a density matrix formalism
using as an example, but without loss of generality, the nonradiative case of T production
and decay process.

Spin amplitudes in this case (¢ = 0) are constructed using spin states from Egs (2.2)
as follows

"llgxlzmaz = <a1a21M0(e+e~ i t+t—) 111’12% (210)
where
12442> = le¥; 1, 41D ® le7;5 pa, A2,
g0ty = !‘5+§ 41, %10 ® T35 g2, %2

With this choice of spin states, they are Lorentz invariant in the same sense as the conventio-
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nal helicity amplitudes. This is due to the fact that the reference frames RS,(e*) and
RS(t*) are rigidly attached to particle momenta.

The d.c. section for polarized particles may be expressed in terms of spin amplitudes
and density matrices,

— (1) )(2) (1) o(2)
do =4 Z Z Q)xingﬂzlz 7»1/1zzxaz("”ixlzamz)*namz a;azd‘fz: (211)

2327 a3

where

3
10 =3U+e 1) =% Y 0Ty (2.12)

and ¢', i = 1, 2, 3 are Pauli matrices supplemented with ¢° = I. The spin density matrices
o are, in a standard way, parametrized by spin polarization vectors ¢; defined in e* rest
frames (RS;(e¥)). The vectors y;, defined in RS(x*), are not strictly speaking the polariza-
tion vectors of the t*, but rather they characterize an experimental device (a polarimeter)
measuring polarization of the t%. The meaning of ¥; will become more clear later, when
the decay of the t*, playing a role of such a polarimeter, is included in the discussion.
Vectors E(;) = (1, &) and o= (, ¥;) are introduced to make the notation more compact,
and they are only defined in the corresponding fermion rest frames.

Vector parametrization for o and 7 is introduced because of the known advantages
of the polarization vectors. They transform more easily under rotation, the case of unpolar-
ized particles is defined in a simple way (¢ = 0), and they are more directly related to experi-
mental measurables (angular distributions). Their properties are also useful in the M.C,
calculations. The concept of a polarization vector, preserving all the above virtues, may
be generalized to higher spins, see Appendix A and references there.

The distribution (2.11) in a vector notation reads as follows

do = Z &1y Ravead(0T(2)4%25 (2.13)
abed=0
where
b o] 0 d
Rabcd = Z 12)' ag1):102.212'/”).1lzaxaz('//ll1125;&2)*0-;1(110&1&2‘ (2'14)
@@y Aiky

The elements of tensor R have a direct physical meaning; Reo0o is the spinless d.c. section,
A0 4npldtz = Roooo, the polarization vector of t+ (for unpolarized e*) is given by
5; = Ryoio/Roooo, the spin correlation tensor for t* pair is found to be 7, = Ryous/Roooo
[10] etc.

Let us, now, include in the discussion the decays of the 1*. The normalized (to unity)
decay probability distribution dp®® for polarized 1+ (i = 1) or T (i = 2) reads

dp® = oD M, (M;)*dT, (2.15)
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where @' = 2-1(I+ ¢ - w,) is the spin density matrix of the =¥, and w, is its polarization
vector. Spin amplitudes
M = (XEM(E* > X*) [t*; g, 0 (2.16)

describe the decay of the 1. The phase space e'ement dz{’, is assumed to include informa-
tion on momenta and spin of decay products and an energy momentum conservation
S-function.

The distribution (2.15) in vector notation reads

3
dp? = ¥ WH{dE, w=(l,w), (2.17)
a=0
where
Hy = Y ool (MDY (2.18)

For the combined production plus decay process ete~ — 1+1-, T* - X* spin amplitu-
des multiply directly

b 1 2
i(:Tz = Z ﬂl;i;z;ug”if’”i) (2'19)
agan
and the d.c. section reads
= ol1) p(2) gcomb b (1) 3.2
do = 01}, 08%% AR (M) dTdei L. (220)

In M.C. calculations, the formulae (2.19), (2.20) are not very handy, because produc-
tion and decay parts are not clearly separated. This separation becomes more manifest

in vector notation [11]
3
do = z 3(1)5(2)RabcaHu)H(z)d'fszdec égc) (2:21)
abed=0
By comparing Eqs (2.13) and (2.12) we may see the meaning of the vectors ¥; for the
decaying 1*. They should be identified with the vectors ﬁ(i) defined as

hy = H/H®, k=1,2,3,

and they characterize the efficiency of a given 1 decay as a polarimeter. In Ref. [10] vectors
h are listed for typical one prong 1 decays.

A few remarks on the presented spin formalism are in order. First is its relation to the
standard QED technique based on spin projection operators [7]

A1(p, s) = (Z+m)I +757"s,)[2. (2.22)

As expected, see also Ref. [10], they are equivalent. Tensors R, and H(;, may be calcu-
lated either from spin amplitudes, as in (2.14) and (2.18), or using operators (2.22). For
example the v decay probability distribution in its rest frame, calculated using (2.22),
may be always written in form (2.17), with a term linear in s and a constant. The correspond-
ing coefficients are identified with H and H°. In principle the same method may be used
to calculate R, and in fact was used in Ref. [10] to obtain Rq. for certain numerical
tests.
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The inclusion of the radiative photon in the presented formalism is rather trivial.
Since one is not interested in its polarization, a summation over two transverse photon
polarizations should be included in the formula (2.14) for R,,,, and the phase space element
dt, in (2.21) should be replaced by dr; if necessary. The infrared divergences do not cancel
out for spin amplitudes, but rather in the tensor R, and the contributions O(a*) in (2.14)
are neglected.

Generalizations

The above formalism generalizes easily to more particles in the final state, to higher
spins and to sequential decays. It applies in a rather straightforward way to t-quark pro-
duction process ete~ — tt(y), Tt — jets. Spin effects in the final state may not be negligible
in this process.

An interesting application of this formalism is the W* pair production process
ete~ - W+W-(y). As in the t production case, W* are visible only through their decay
products, and W* decays are strongly sensitive to W* polarizations. Radiative effects,
mass effects and spin effects will be of similar size. The formula (2.21) generalizes in this

case as follows:
3 2 Jy
' ~a b Ji J
do= 3 3 Y &R M dTpr0d
ab=0 J;=0 M;=~J;
x H 1yt delH ), d76els (2.23)

where the tensor R is calculated out of spin amplitudes ., ;,,,,5 for ete~ - WHW-(y)
as follows:

JiJz a b
Rupii: = 2 2 06,1000 105008
Audy @B

X ('/”Illzaiazﬁ) ZM1 11alez,azaz ’ (2‘24)

see Appendix A for definition of Z3 Moae
The tensor H(,)M characterizes the decay probability distribution

dp(W* —» X*) = Z tarH ym A8 (2.25)

see Eq. (2.11), where W* is polarized according to tensor #y, see Appendix A.
The example of the sequential decay ete~ — t+t-(y), T+ — X¥, T~ = vg~, ¢~ = 7'
will be discussed in Section 5 and in Appendix A.

3. Calculating spin amplitudes

In this Section I show a few examples of practical calculations of the QED spin ampli-
tudes for the t pair production process (without decay). These methods apply directly to the
production of other heavy fermion pairs, ete~ — ff(y). They may also be generalized to the
case of the double bremsstrahlung ete~ — ffyy, production of four fermions e*e~— fff'f’
etc., if necessary.

It should be noted, however, that there exist specialized techniques {19, 20, 21] for



1019

calculating QED spin amplitudes for almost massless fermions which, in this particular
case, may be more efficient. Here I consider methods which apply to a more general case
of fermions with finite masses, but a limit of small masses may be easily taken.

The methods advocated in this Section consist of eliminating from spin amplitudes,
as given by Feynman rules, Dirac spinors for external fermions and strings of y matrices
at the early stage of the calculations. This is accomplished by cutting off the amplitude
of pairs of external spinors by means of the Fierz identity. The external parts are calculated
in the rest frames of the fermion pairs and the rest of expression includes rather short
y traces, easily calculable?. The resulting expressions consists of components which are
tensors with only Lorentz vector indices. The individual component tensors are calculated
in convenient reference frames and the appropriate Lorentz transformations are then
applied, before the contractions are affected.

The resulting, Lorentz invariant spin amplitudes are expressed in terms of the same
independent variables, angles and velocities, which were used to parametrize spin states,
momenta and the phase space.

First, I shall introduce a notation with a simple example of the lowest order spin
amplitudes. Then, I shall demonstrate more involved calculations of spin amplitudes with
examples of the box diagrams and hard bremsstrahlung.

Lowest order

The lowest order, one photon exchange, amplitude for the process et(p;)+e (p;)
- t(q,)+1(g,), as obtained from Feynman rules [22], reads:

M® = ie*qq'(p, +p2)”b(e™ ' u(e )i(x ")y, (xt), (3.1)

where eq and eq’ are the charges of et and t*. If, for the external fermions, the wave functions
le¥; pi, 4> and |t¥; g;, @) defined in Section 3 are being used, then the following spinors
enter in (3.1)

v(e*; pis &) = S(Lo(e "), 4,),
u(e”; pa, A3) = S(Lo(e™))u(p, 42)s
(1" gy, 0,) = S(Lo(z*))e(g, ),
u(t”; g2, %3) = S(Lo(17))u(g, %5), (3.2

where S(L) represents Lorentz transformation L, see Ref. [22] for its explicit definition.
Spinor u(p, A) (v(p, 4)) represents a fermion (antifermion) in its rest frame, p=(m0,0,0),
with spin projection 4 on the third axis. These spinors, with y matrices defined as in Ref.
[22], are the following:

i = (1), o0 = cathn = () ).

1 0 ,
P12 = (0) s P-12 = <1> s Xa = 102Q,. (3.3)

2 The author acknowledges helpfui discussion with dr. R. Kleiss on this point.




1020

Putting all this together one obtains for lowest order spin amplitudes
M e = €209 (P +P2) ViV oesae (34)
where
Vi, = R3(q))“vl7([;, AI)S-(B3(11e))y"S(B3(-ne))u(ﬁ, 42),
Ve = [Ry(PR(— 01014, 0)S(B3(— 1" S(By(n:))v(q, a),

and § = y°S*+°. Note that ¥ and V are defined here in CMS. The standard transformation
properties of spinors were used to isolate the rotation outside ¥ and V. The rotation Rs(¢)
cancels, however, out in the product V,,f/“, and the resulting spin amplitudes

‘ﬂgllzamz = - iezqql(pl +P2)_2YA“;12(’Ie)R( - B)uvl/avlaz(nt) (35)

do not depend on ¢ but only on 6.

The vertices ¥ and i/ are defined in the rest frame of the corresponding fermion pair,
i.e. in CMS, and QMS, where fermion momenta are opposite to each other and parallel
to the third axis. They are easily calculable taking spinors (3.3) and the boost transforma-
tion S(B(n)) = exp (5 yoy.n)- I shall list, however, for the purpose of other applications
later in this Section, not only them but all possible Fierz vertices defined as

F(m)ep = 5(p, )S(Bs(M)I ;S(B3(—n))u(p, B), (3.6)
where
ry,=1Lys,y, vy [y 7v], for J=S8P, VAT

The analogous vertices

Fy()ep = #(q, BYS(Bs(—m)I;S(Bs(m))v(q, @) (3.7)
are related to the former ones as follows
FyMap = L(FA1)p)*, (3.8)

where a minus sign should be taken for J =P, T.
All Fierz vertices, and later also spin amplitudes, are spanned on four simple real
tensors
balﬂ = 2“6”;, b:ﬂ = 6aﬁ’ bzﬂ = 2&5,,-11, b:p = 51’_p,

and omitting indices o, f they read:
Fs = —sinhnb*,  Fp = —coshnb?,
F% = cosh n(b'd" +ib*6%)— b*54,
F% = sinh n(b*6% +ib'6%)— b8},

1P = —plel’ —ib%h, +cosh nb*ehy — i sinh nb>543, 3.9

where &, = 0,0, — 0350,
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Substituting V* = Fy and 17“ = FJ} into Eq. (3.5), and m. = 0 wherever possible,
one obtains:

4] 1 1 2 2
Jllllzawz = ‘/V(blllzbalaz_*-cos Gblllzbalaz

. -
+iM sin 0b3 ;. b4..) = A Y Tybiia,b5 0 (3.10)
i,j=1
where A = —ie?qq'(p,+p.)- cosh n, cosh 7.
The components of tensor T7; are (also in the hard bremsstrahlung case) usually given
by algebraic expressions about four times shorter than the original .#-amplitudes. In this,
lowest order, case its only three nonzero components are

T =1, T =cosh, Ty, =iMsind. (3.11)
Virteal corrections

Most of the O(«?) virtual corrections to the lowest order spin amplitudes (3.11) are
in a sense trivial, because their amplitudes, as obtained from Feynman rules, are directly
expressible in terms of the Fierz vertices F; and F, (as in the lowest order). I omit them
from discussion referring the reader to Refs [10] and [11], except for the interesting case
of the box diagrams3. '

Let us take one of them i.e. a box with two uncrossed photons in a loop. Its amplitude
reads:

M= (eqq" ) 2n)7* | (et WK+ m)yule”)

x a(t )y, (K + M)yo(z), 3.12)
where

kjf(k) = | d*kf (k) [(k} —m®) (k} — M?) (k+p)* (k—p)*]7 ",

- - +
k1=k——p1 Pz, k2=k——q1 ‘12’ zP1 Pz.
2 2
Here, in order to isolate the external spinors and to get rid of y* matrices, I have to use

twice the Fierz identity

6ap5ya = i‘z ri"r],.’.ﬂ, (3.13)
J
where the matrices I/, J = S, P, V, A, T are equal to I'; except for two: I T=—-r,.8
and I'* = —I',. The contractions over all vector indices are understood implicitly, for
instance

F;rﬂrT.W’ = —% [’)’“a 'yv]aa['yu’ 'yv]yﬂ‘
The result is

‘l‘.ulzalaz = Z ﬁ(e+ 5 P1» A’l)rfu(e_ 5 p2’ A’Z)KIJ

I
XF(t7; g, )T 0(T" 5 gy, 1), (3.149)

3 Another virtual contribution with nontrivial spin structure comes from the magnetic part of vertex
correction [10].
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where
K" = {2 (e*qq')? Qn)~* §Tr (F'y* (¥ +m)y”) Tr (p,(¥, +M)y,,I'J).
k

The kernel K may be calculated using standard trace theorems, see Ref. [10] for more
details. Let us note only that in this shorthand notation it contains up to four vector indices
(in k™).

Proceeding, then, in the same way as in the case of the lowest order 1 find

M3 raie; = IZJFI(’7=)MA;K”[R1(‘g)FJ](’I:)a,az, (3.15)

where F; and F ; are listed in (3.9) and the rotation R;(—#0) acts on all vector indices in F 7.

The rest of the calculations and the resulting tensor T;; for two box diagrams may

be found in Ref. [10]. Here I only want to point out that the above calculation algorithm

is quite general, and it applies to all virtual corrections and to hard bremsstrahlung as well,
leading to a decomposition

M~ Y Ky FU L F (3.16)

Iidp

where every F,; corresponds to an open fermion line in the Feynman diagram.

Hard bremsstrahlung

The calculations of spin amplitudes for the process ete~ — t*1~y are, on one hand,
less complicated than for box diagrams, because the Fierz identity has to be used only
once, i.e. for the fermion line to which the radiative photon is attached. However complica-
tions arise, as compared to the nonradiative case, from more complex kinematics.

From Feynman rules the bremsstrahlung scattering spin amplitudes read:

;e
(p1+p2)

Agd2B 7 pasaz

M iaya8 = iezqq' { Vulxlzﬁ:m;ﬁ} (3.17)

(@1 +42)°
Vi, = 6(e"; py Ay'u(e™; pa, A7),
Vi = 8(r75 42, 2200(7 5 41, 2,
HY 5 = (e 5y ) [— (K- py)” 'ép(— oy + K +m)y"
—Q2k - p) Y (#— K+méglia(e ; P2y A2,
At g = 875 45 25) [k 40) 7P (— g — K+ M)y
+(2k - q2) " '¢g( g2+ K+ MY Jo(T ;5 g4, ay).

Note that the two terms proportional to eq and eq’ represent bremsstrahlung from the
initial and final state.
Let us concentrate on the calculations of spin amplitudes for the hard bremsstrahlung
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from the final state t* fermions. In that case one finds that the QMS, reference system is
quite convenient for calculations, although any of the systems between CMS; and QMS
in Fig. 1b might also be used.

The Fierz vertex V};, for an e* pair may be taken from Egs (3.9) in CMS,; and
transformed to QMS,

Vl“lﬂ.z = [Ra( —@2)B3(OR 1(91)]”\;1’":1(%)1112- (3.18)

The calculations of H* in QMS, proceed as follows. First, the Fierz identity is applied
in order to isolate 1* external spinors

Ay = ;Tr {[Q2k - q))""y"(— g1 — ¥+ M)y

+(2k - 4;) gp(g 2+ KM IS g, )07 5 gy, ), (3.19)

The trace with up to five y* matrices is expressed in terms of vectors &, ¢,, ¢, &. The 1 * Fierz
vertices are taken from (3.9) in QMS and transformed to QMS,

Bt 5 42, )T ,0(7" 5 g, 00) = Rl(_BZ)FJ(Uc)axaz'
As usual, R,(—0,) acts on all implicit vector indices in F).
QMS, is rather convenient for evaluating all tensor algebra in Eq. (3.19), because
in this system k is parallel to the third axis, g, and ¢, are anticollinear and placed in the

y-z plane. Furthermore, photon polarization vectors are given simply by ¢, = 85. The
resulting tensor H in this frame is given by

HY = M7 (1+5252) " { —b's.c,s,04 +ib?s.c.5,¢,0"
+ib%c,85+b*s,c384},
HY = M7 (1+5253) 7 sy H{b  ers5.6,5,04 +ib%s,c [ — 520,85 + 53(c, 04 +5:08)]
—ib’s,c,0% + b*s.[ (s~ ¢;55)0% — s2¢5(c; 04 +5,88)], (3.20)
where indices 4,4, in H 12,5 and b',‘h 1, were omitted, s; = sinh {, ¢, = cosh {, s, = sinh #,,
¢, = coshn,, 5; = sin 0; and ¢; = cos 0;.
Finally, the spin amplitudes for final state bremsstrahlung are obtained by contracting

V* from Eq. (3.18) with H x from (3.20) in QMS,. The result is conveniently parametrized

by coefficients 77 ,’j in the decomposition [11]

M im0 = N kZlT,b;,zzb:,a, (3.21)

The calculation of the spin amplitudes for the initial state bremsstrahlung is quite
analogous, and it is most tonveniently done in CMS,. The combined result for both types
of bremsstrahlung in terms of tensor T# reads

T = (cg+s9sg "(m* +sD) 7 gt +s; (1 +s7s3) ™ q'tid, (3.22)

where the two complex tensors ¢ and ¢’ are relatively simple and their components are
listed in Ref. [11].
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4. Individually adapted Monte Carlo algorithms: Summa technologiae

In this Section I review the elementary methods of constructing efficient Monte Carlo
algorithms individually adapted to a given multidimensional distribution (JAMC methods).
As was pointed out, such methods are of great interest for M.C. integration over the multi-
body phase space in many QED/STPI processes. Here, 1 shall discuss them in general
terms, not specifying a distribution to be generated. The discussion will be restricted to the
methods which provide, as a final result, events with constant weights (direct M.C. simula-
tion).

It is known that the most efficient M.C. algorithms are those which are individually
adapted to a generated distribution and are based on the detailed knowledge of its proper-
ties. The general purpose programs [23, 24] which do not require such knowledge and
adjust automatically a generation procedure to properties of the distribution are rather
time-wasteful in comparison with IAMC algorithms, especially for distributions with
strong and complicated peaks (the QED case). They may be useful, however, in solving
quickly some problems by brute force. On the other hand, IAMC algorithms, although
efficient, are rather laborious in preparation and tests.

It seems, at the first instance, that there are no systematic ways of constructing IAMC
algorithms, and the invention of such algorithm is only a matter of art and experience.
‘One learns, however, from inspection of a series of such algorithms, that they are built
up using a rather limited set of basic methods in a recursive way. These elementary methods
may be grouped as follows; analytical partial integration (API), rejection technique (RT),
branching method (BRM), and the change of the variables (CHV).

In this Section I shall describe the above basic methods, and I shall also address the
question of how one should assemble them into an efficient IAMC algorithm.

Analytical integration

The first of the elementary methods, analytical partial integration (API), may allow
the problem of generating a positive, integrable, n-dimensional, unnormalized distribution
o{oy ... a5 X, ... X,) to be divided into a series of less-dimensional generation problems.
Variables «, ... a, are constant parameters in the problem, but if the generation of ¢ is
a part of some larger M.C. algorithm, then they may include the variables of this external
M.C. problem (which have been already randomly generated).

If one is able to integrate analytically over a subset of x-variables x, ., ... x,, k < n,
or the result of integration is known from some symmetry principle, then the variables
x, ... x, may be generated in two steps; first, x, ... x; are generated according to a partially
integrated distribution

ooy ooy xy X)) = [ dxpaq o dXa0(ay oo 83 Xy ol X,), 4.1
and afterwards x,.¢ ... x, are generated according to the original distribution

Py ot gy Xy e X3 Xy oe Xp) = 00y en O Xy oee Xp), 4.2)
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where x, ... x; are now treated as constants, along with a, ... a,. This method has a simple
graphical representation as a split along the generation chain, see Fig. 2a.

Example 1. Let us take as an example the distribution
o(o; x4, x3) = (1—x; —x)0(1 —x;—x,), 0<x; <1, 4.3)
In this case
eP(w; ;) = (1+a) 7 (1—x)' 01 —xy),
0P(a, x1; x3) = (1—x; —x,)"0(1 —x; —x;). (4.4)

For certain distributions this procedure may be repeated n— 1 times ultimately reducing
the original n-dimensional problem to a series of 1-dimensional problems, see Fig. 3a,
with the following subdistributions:

oa; xy) = [ dx, ... dx,0(a; x),
e, x13 X3) = [ dx; ... dx,0(x; ),
Q("—l)(a! Xq oo Xp—23 xn—l) = I dan(d; X),
Q(")(aa xl xn-—l; xn) = Q(a9 X), (45)

where o(a; x) stands for g(a, ... o,; X, ... x,). In this way the problem is solved almost
to the end because, as will be shown later in this Section, there exist many methods of
generating 1-dimensional distributions. The example 1 also demonstrates such a situation.

Ern IR —

c)

Fig. 2. Graphic representations for three basic IAMC methods: a) analytical partial integration API, b) rejec-
tion technique RT, c¢) branching method BRM
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Fig. 3. The examples of the multiple (recursive) use of: a) API method, b) API and RT methods

Quite often, however, the use of the API method for any subset of x-variables is either
impossible or very difficult. In this case the second of the elementary methods (RT) may
be employed in order to replace the distribution g(x; x) by a simpler one, before a new
attempt of the use of APl is made.

Rejection technique

For this second method to be used one has to find a distribution gp(a, ... %, X; ... X,)
which is as close to g(a; x) as possible, but simpler than g(«; x), and obeying an inequality
gp == 0. 1 shall refer to ¢, as a dominant distribution (DD) with respect to ¢.

The method consists in generating raw points x, ... x, according to distribution
op (simpler than @) and then in rejecting some of the raw events in such way that as a result
the accepted events are distributed according to .

More precisely the weight

w = glep 4.6)

is compared with the uniform random number r € (0, 1) for every raw event and the event
is accepted if r < w, otherwise it is rejected.
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The efficiency of the method, i.e. the rate of the accepted events

e = Naccepted/(Naccepied + Nrejected)’ (47)

which measures the closeness of the functions ¢ and gy, is also equal to the ratio of the
corresponding integrals

e = | o(a; x)d"x/f gp(a; X)d"x = {(w), (4.8)

and to the average weight {w), calculated using the total sample of the raw points. Ideally
this efficiency should be as close to unity as possible, but in practice e = 1/10 is acceptable.
For smaller e one should look for a better gp.

Eq. (4.8) is also often used to calculate numerically the integral j' od"x from
e = {w) ({w) calculated from a finite M. C. sample), provided that the simpler integral
f ep(a; x)d"x is known.

At this moment, a natural question to be asked is whether there is any systematical
way of finding the g, distribution. The simple answer is that one has to guess it. In the
case of a mild variation of g (logarithmic, polynomial etc.), simply a constant equal to the
maximum value of g can be used as gp. This choice will lead, however, to excessive rejection
for strongly peaked distributions g. Quite often, a good hint on gp, may be learned from
inspection of some approximate, even crude, method of calculating (or merely estimating)
the integral

o(a) = { o(x; x)d"x. 4.9

Usually such a method is founded on some approximation (simplification) made on g. This
approximation, or sometimes its modification assuring gp > ¢, may be used as a good
candidate for gp in RT.

The new distribution gp effectively replaces the original distribution ¢ in the genera-
tion problem. Hopefully, if ¢p, is simple enough, the API method may be used successfully,
replacing the generation of gp with a chain of less-dimensional subgenerations. Then, in
turn, the RT may be applied again, to simplify the subdistributions resulting from API,
and so on.

The art of constructing an efficient IAMC algorithm consists in a skilful alternate use
of the two above methods (API, RT) until one is left with only a chain of 1-dimensional
subgenerations. This recursive use of the API and RT leads to an algorithm which in
a graphical representation has a single generation chain with nested rejection loops, as in
an example in Fig. 3b.

The RT may be used, in particular, to simplify the 1-dimensional distribution before
some other method for its generation is used.

Example 2. For distribution (4.3) with 0 < a < 3 the simplest possible gp is
eo(a; X4, x2) = 0(1—x,)0(1 —x,). (4.10)

In this case w = ¢ and the x,, x, of a raw point are generated independently in the (0, 1)
range.
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Branching method

It may easily happen that the generation problem cannot be solved with the two
elementary methods (API, RT) described so far. In this case, the third method, leading
to a branching of the algorithm into two or more parallel generation chains (BRM) may
appear to be helpful.

It applies when the distribution g(e; x) in question can be split in a natural way into
a sum of two (or more) positive subcomponents

o(a; x) = ¢V(a; x)+ 0 P(; x). (4.11)

Without any loss of generality, I allow here the already generated (up to a branching point)
x-variables to be hidden among constants o, ... o,.
At the branching point the ratio

R(®) = ¢'"V(@) /(e (@) + P (),
) = | 0¥(a; x)d"x, 4.12)

is compared with the uniform random number r € (0, 1). If » < R then x-point is generated
according to o'V, otherwise (r > R) according to o'®, see also Fig. 3c for a pictorial repre-
sentation for BRM. A generalization to 3 or more branches is straightforward.

BRM is also quite often used for 1-dimensional distributions, for example in the simple
case of the distribution g(a, f; x) = x*+x*, x € (0, 1), x-points are most easily generated
separately for x* and x* components.

A particular example of BRM is the symmetrization procedure. If o(x; x) is a sum
of terms which are obtained one from another by a certain symmetry transformation,
then the generation may be done using only one of such components and afterwards a ran-
dom symmetrization with the adequate probabilities, is performed.

In certain cases, the generation procedure has to be constructed in a different way
in two (or more) separate subdomains @ and Q@ of the integration domain
Q = QM (JQP, This can also be treated using BRM with

e(a; x) = 6(x)e(a; x),
¢a; x) = (1=0(x))e(; %), (4.13)
where 0(x) = 1 for xe Q") and 6(x) = 0 for x ¢ Q.

The very important property of BRM is that the generation in every branch is totally
independent, and in every branch one may separately use the API and RT exploring further
properties of the component distributions o?(a; x).

In a graphical representation, the IAMC algorithm exploiting API, RT and BRM
may have rejection loops on the branches and the branched subgenerations nested in some
larger rejection loops. This structure may be seen in one of the examples discussed in the
next Section (see Fig. 7).

The change of the integration variables (mapping)

The role of a good choice of the integration variables cannot be underestimated. In
API this often solves the problem of the partial analytical integration.
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In RT the appropriate choice of variables may reveal the structure of the most im-
portant singularities (peaks) in g, allowing a simple g;, possessing the same singularities
as ¢ to be found.

The real power of BRM unfolds, when it is combined with the change of variables
(CHY). This comes from the fact that one may use in every i-th branch a different set of’
integration variables x{" ... x{ adapting their choice to properties of o (a; x).

The change of variables x(y) introduces the Jacobian factor in g(a; x),

o(a; x)d"x = |0x[dyle(a; x(»))d"y = o'(a; y)d"y. (4.14).

In principle one could even solve entirely the problem of generating ¢ by finding such
x(y) that [0x/dy| = o1, i.e. o'(o;y) = 1.

Although, in a multidimensional case, finding such x(y) (in analytical form) is usually
impossible, the above method is applied often in the 1-dimensional case. For such distribu-~
tions o(a; x), x € (a, b), one has to invert the cumulative function

F(o; x) = _J[‘g(oc; x')dx'/f o(a; x)dx’, (4.15)

with respect to x and x = x(¥) = F-1(3), y€(0, 1), is distributed according to g(a; x)
provided that y is generated uniformly.

Unfortunately only for a limited number of simple distributions like x*, ¥, sin x,
(1—x2)~! etc, which are derivatives of the elementary functions, the cumulative functions.
may be inverted analytically. A numerical inversion of the cumulative function is relatively
easy if there exists an analytical expression for F(«; x).

In practice the best method of generating 1-dimensional distribution is to use RT
and BRM so long as one is finally left with a set of simple 1-dimensional distributions
which can be generated by an analytical inversion of their cumulative functions.

In example 1, the two subdistributions ¢”, i = 1, 2, may be generated by inversion
of their cumulative functions

x; = 1—exp ((a+2)"' Iny,),
x, = (1—x,) (1—exp ((a+ 1)~ In y,), (4.16)

where y; € (0, 1) are generated with uniform probability. If, in the n-dimensional case,
the generation of ¢ may be replaced by a chain of # 1-dimensional distributions as in (4.5)
(API method), then the problem of finding x(3) such that ¢’ = 1 can be solved by numerical
or analytical inversion of the cumulative functions for all ¢”, i = 1 ... n in (4.5), similarly
as in (4.16).

Evaluation of the integral

Quite often, one is also interested in the value of the integral
o(a) = § o(a; x)d"x. 4.17)

It should be noted immediately that the problem of the numerical evaluation of the integral
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(4.17) using the M.C. method and the problem of generating x-points according to g(a; x)
are practically equivalent.

If the M.C. algorithm is built using the elementary techniques of this Section, then
a set of simple rules tells us how to calculate the value of the integral (4.17).

In the case when there is no branching in the beginning of the algorithm then

o(@) = [ < J o®a; xp)dx,, (4.18)
j=1

where (w?) are the average weights for all j = 1 ... p rejection loops (if there are any)
surrounding the generation point of the first variable x; in the generation chain, For
instance for the algorithm of Fig. 3b

a(@) = W) W) [ oW, (4.19)

The value of the integral | o!*’dx, is usually known in the M.C. program as a byproduct
of the ¢! generation.

In a general case, the generation chain may start with a branching. In this case Eq.
(4.18) is applied in every branch, and the results should be summed up over the branches.
Then, the sum should be multiplied, as in (4.18), by average weights from all rejection
loops surrounding the branching point (i.e. the branched part of the algorithm).

Summary of the TAMC methods

Usually there exists a sizeable freedom in a final form of the IAMC algorithm for
a given distribution. The efficiency of the corresponding program may be improved by
a good choice of the integration variabies and good choices of the dominant distributions
op in all rejection loops. Rejection loops surrounding large parts of the algorithm should
be avoided.

An optimisation for efficiency may lead, however, to a complicated topology for the
algorithm, as viewed in the corresponding graph, with many branches and loops. Preparing
such a program may become laborious. Usually a reasonable compromise between the
simplicity and the efficiency may be found.

Keeping these remarks in the mind, the following prescription for finding an efficient
IAMC algorithm may be formulated: try to find natural integration variables (CHV)
which unfold properties (peaks) of the distribution; and try to perform as many analytical
integrations (API) as possible, thus reducing the generation of g to a series of less-dimen-
sional subgenerations.

If the above possibilities are exploited then try to simplify ¢ with the rejection technique
(RT), ¢ — gp. This applies both to the original distribution ¢ and to subdistributions result-
ing from APIL

If any subdistribution, or g itself, splits naturally into a sum of positive components,
then use the branching method (BRM), especially if there exists a possibility of adapting
variables (CHV) to a distribution in every branch separately.
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By recursive use of these methods (API, RT, BRM, CHYV) one is ultimately left with
a series of 1-dimensional distributions which can be generated by inverting analytically
their cumulative functions or some other simple methods [25].

This Section does not, of course, exhaust all possible M.C. methods. For some other
reviews on M.C. techniques see Refs [26], [27] and [28].

5. Monte Carlo simulation of the t production and decay process

The process ete~ - t+1-(y), 7+ — X * at highest PETRA/PEP energies is at present
a main source of the valuable information on the T lepton properties and on the 1 coupling
to the Z, boson [5]. As compared to a similar process ete~ — pp~(y) the t pair production
process is much more complicated from the point of view of data analysis: the t lepton
is unstable and visible only through its decay products (with two neutrinos always escaping
detection), furthermore the main decay modes 1= — e*, p=, o* nn+ (18%, 18%, 23%,
109;) [15] are of a similar strength and are rather different from the detection point of view.
Finally the background problems aie also more severe than in muon production.

The emission of the radiative photon in the T production process is known to change
the total cross section and particle distributions {29, 30} by up to 309%,. That, of course,
makes the t pair data analysis again more involved. The M.C. program of Ref. [11] which
simulates the process ete~ — t+1(y), T — v,u*(e=, u* ¢ *) is aimed to serve as a tool,
for eliminating the influence of the trivial QED, spin and mass effects on the measurements
of the interesting physical quantities like © branching ratios, coupling constants, mass
of v,, etc. It takes into account: order o> QED radiative effects including hard bremsstrah-
lung from the initial and final state fermions; arbitrary e+ spin polarizations (longitudinal
and transverse); the decay of each t in its rest frame including all spin effects (polarizations,
correlations); the exchange of Z; bosons in the low energy approximation suitable for
PETRA/PEP energies including polarizations of 1’s due to Z, exchange.

The above program is described in a complete and detailed way in its long-write-up
[11]. Here, in this Section, I shall characterize the IAMC algorithm used in [11] in terms
of the elementary techniques listed in Section 4. I shall comment on the way in which spin
effects are introduced pointing out some possible future generalizations and developments.
The algorithm for the production part ete~ — t+t-(y) will be also compared with the
corresponding algorithms for ete~ — ptp-(y) process in Refs [29], [31] and [32].

Spin and Monte Carlo

As was pointed out in the Introduction, a good separation of the production and decay
parts in the calculations (M.C. algorithm) is a very desirable property. So far, I have derived
in Section 2 a compact formula for the d.c. section of the process ete~ — T (y), 1= —» X*
which may be rewritten as follows:

3 .
do(x, y,2) = 3}, o82’1)efz;Raaca(x)dfpmd(x)Hfl>(y)dfﬁii(y)H‘fz)(Z)dfﬁii(z), (GRY

abed =
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where dt,,q = dt,, dry depending on the presence of the bremsstrahlung photon and
variables x, y, z denote collectively the corresponding phase space variables.

The separation of the production and decay parts in the JAMC algorithm for the above
process is achieved by using a combination of RT and API methods (see Section 4). I discuss
two options:

(A) The API is employed using the integral

§ HG(x) = § drfd(x)HGy(x) = dco- (5.2
X
The moments of 1*t~(y) are generated first, according to a partly integrated distribution

do'V(x) = | [do = ZI;52’1)Ef’z)Raboo(x)d‘cpm(x). (5.3)
Xy a

START

Y

e*e e THTIX)

Tt - x* ~>

! EXIT }

Fig. 4. Schemes of implementing spin effects in the M.C. algorithm for the T production and decay process

In the second step, for fixed x, a double decay distribution do‘®)(x;y, z) = do(x, y, z)
is generated by means of RT with a dominant distribution and the weight being:

3
dag)(x; y,z)=2 bz—:o 8?1)5?2)Rab00(x)
x H(»)dt{d(0)Hy(2)d75e)(2), 54

2 2 1 za b
wy = doP/deP = 7(2 €(1)E(2)T abed
abed

d ~a ~b -1
x kfl)h(z)) ( 2; €1 ) ab00) s
a
where
0
Yaved = Rapcal Roooos hfi) = H(ci)/H(i)-

This method is illustrated graphically in Fig. 4, see rejection loop marked with A.
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(B) Here, RT is used first:
dop(X, ¥, 2) = 8Roooo(X)dTprea(X)H ?1 >(y)dr§i3(y)H ?2)(2)‘375:2(2),

w, = do/dop = %}';ME(‘II)E:,Z)rabcdh(cl)h:Z)s (5.5
and then API based on Eq. (5.2). The momenta of trt~(y) are generated according to
dag)(x) = _H.d"'o = 8Roooo(x)d'5prod(x)- (5.6)

yz

This option is also depicted in Fig. 4, see rejection loop marked by B.

In both methods, see Fig. 4, the momenta of t+1~(y) are generated first, assuming
polarized (A) or unpolarized (B) beams, and then the decays of t* are simulated in the
t* rest frames RS(t#), as if the t’s were unpolarized. All spin effects in the final state (in
option B also in the initial state) are introduced by the RT. Finally, the 1# momenta are
transformed from RS(t*) to CMS using transformation L(t%).

The rejection rate in option A is 509, precisely, and in option B varies from 0% to
1009, depending on the longitudinal polarizations of e*.

The solution B is simpler and this is the reason why it was used in Ref. [11]. The solu-
tion A, due to the fact that the production part is outside the rejection loop, is more efficient
(factor ~ 10) and it should be kept in mind for future developments. In fact it is also used
in Ref. [11] for unpolarized e*.

A comment on the treatment of the almost massless spin 1/2 fermions is here in order.
Although, at present energies (\/E < 45 GeV) the mass of the T cannot be neglected (at
1% accuracy level), at higher energies m, < /s will be a good approximation. In this
case, in QED and other gauge theories, spin projection may be effectively replaced by chira-
lity, and a left/right handed 7 lepton (or any other light fermion) preserves its identity in the
scattering process. In this case the spin density formalism is not really necessary and spin
amplitudes, or rather chirality amplitudes, may be treated in a purely probabilistic way.
In the M.C. algorithm the chirality configurations may be chosen randomly [26] according
to modulus-squares of the corresponding amplitudes. Also the decay of almost massless
unstable fermions in flight may be taken as an incoherent superposition of the decays of the
left and right handed components. All this should be done, however, in a consistent way;
i.e. one should not attempt to control a relative phase of the left and right handed compo-
nents. For example one should not measure directly or indirectly the transverse polariza-
tions, for instance by measuring an azimuthal asymmetry around the beam or by measur-
ing the transverse momenta of the decay products with respect to the momentum of the
parent fermion.

Aithough techniques described in this work apply to a more general case of genuinely
massive, possibly transversely polarized fermions, the above chiral limit may be taken,
if necessary, by setting R, = 0 for a, b, ¢, d = 1, 2.

Production part

The production part of the M.C. algorithm used in Ref. [11] and described briefly
in the following, is to some extent similar to that of Ref. [32]: Centre of mass photon
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momentum E, = k\/ s/2 plays a central role in both algorithms. The distribution da/dk
can be calculated explicitly by an analyt1ca1 integration over the angular variables [30]
and, therefore, the generation of £ may be detached from the rest of the generation chain
(API method) as shown in F1g 5.

The d.c. section for ete~"— t+1-(y) process is lnfrared divergent in the E, — 0 region
of the phase space. This region has to be isolated from the rest of the phase space and,
inside, the divergent contribution from the soft bremsstrahlung is cancelled in a known
way [33, 34] by the virtual contributions.

% @
ete 1Tl
l > YES Jﬁfmno
S ] R
8, 7 Gy £

6 73 8, ¥2
ete - T T e T Ty

2

Fig. 5. The general structure of the IAMC algorithm for the t production process

There exists a certain freedom in choosing a boundary for the infrared domain Q,
which may be used in the M.C. type calculations, in order to simplify the hard brems-
strahlung part of the M.C. algorithm [35] andfor to minimize the algebraic complexity
of the ¢(2,) contribution from the infrared domain.

There are, however, some restrictions on the choice of Q,. In a real experiment any
measurement of an integrated cross section, of the content of a single bin in a histogram
or some asymmetry etc., is equivalent to convoluting the QED distribution with a smooth
“effective acceptance” function which for any such measurement summarizes the effects
due to apparatus acceptance, resolution, triggers, selection criteria, etc. It makes sense
to compare the experimental result with a QED prediction, only if the result of convolu-
tion does not depend noticeably on the variation of the 2, boundary i.e. the “effective
acceptance” of the measurement should be constant all over 2, and in its close neigh-
bourhood. Unfortunately this cannot be achieved by simply taking €, indefinitely small,
because at a given perturbative order, taking Q, too small may yield a nonsense result,
for example a negative cross section. Reducing €, usually costs taking the next, higher,
order in the perturbative expansion.

In the M.C. calculations the positiveness of a(€,) is also necessary because the prob-
ability p, = 0(£24)/6,, is used in the beginning of the M.C. algorithm, see branching
point in Fig. 5, to decide whether a hard photon (outside ©,) was emitted or not.

In Refs [11], [29] and [32], and in many other QED calculations, €, is defined by
taking an upper limit on the photon CMS energy, k < ko. In the- energy range 2m, << \/ s
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< 45 GeV, the ‘‘effective acceptance” of a typical measurement in an e*e~ experiment
may tolerate ko, up to 0.05. On the other hand a positivity of ¢(Qy(k < k¢)) requires
ko > 1073,

In the calculations for other QED processes, for example for the z-channel exchange
process, it may be profitable [35] to take another choice of €.

The photon spectrum for T production process was calculated in Ref. [30] and it has
the following form

dojdk = (qq')*4na’(3s)™ " (8(k)e, +0(k —ko)e(k)), (5.7

where g, collects contributions from the lowest order, virtual contributions and soft brems-
strahlung, see graphs a—e and h-k in Fig. 6, and the function g(k) combines contributions

i

H\ EI
ISOE
IOO¢

: u,d,s.

ok,

f) h)

<

1 k)

X

Fig. 6. Feynman diagrams of O(«®) calculations for e*e~ — t+7~ process. Diagrams with self energy loops
on the external fermion lines are omitted

from the hard bremsstrahlung, graphs h-k in Fig. 6. The explicit formulae for ¢, and g(k)
may be found in Ref. [11]. In the limit \/s > m,, m,and k < 1 it has a familiar form [8, 36]

124 2 3 3
gy A Rem+ 2 S, 4 qln—s 5(K)
3s 2n m? 2n m?

1\ 20q9 s 1\ 2aq s
+ | In —] —Ilhh— 7, 5.8
<k>+ o om? <k>+ n nm,z} (>8)

where (1/k)+ = (k) In (ko) + 6(k— ko)/k. Now, it is explicitly seen that k, is merely a dummy
parameter introduced to regularize the (1/k). distribution for the M.C. purpose.

A more detailed scheme of the event generator for ete~ — t+1-(y) process [11] is depic-
ted in Fig. 7. Photon momentum k is generated first (API). Its distribution at a little cost
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is simplified, do/dk — (do/dk)p, by a rejection, depicted in Fig. 7, by a loop with weight
wy = (do/dk)/(ds/dk)p. See Ref. [11] for a definition of (do/dk)p, and a method used for
its generation. After generating k the algorithm branches into soft and hard parts.

®

|

Fig. 7. The detailed scheme of the IAMC algorithm for the v production process [11]

In the soft branch, k < k,, variable ¢ € (0, 2r) is chosen with a uniform probability
and cos 8 € (=1, 1) distribution is obtained by a two-step rejection starting from a flat
distribution. In the second rejection, with weight wj,, the contributions from graphs
b, f, g in Fig. 6 are added.

In the bremsstrahlung part, k > ko, the d.c. section:

do = (qq")e*(47°5)” *(Aai + Apia+ Ain)dTs, (5.9)

with A;n;, Agins Aine [10, 11] representing hard bremsstrahlung from initial electrons, final
t* and their interference, is simplified using a rejection based on

dop = (992’ (4n’s)” *(2A;n; +241;0)dTs. (5.10)
This is represented in Fig. 7 by a rejection loop with the weight
Whae = 7 (14 Ao/ (Aini + Aria))- (5.11)
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The generation of the raw distribution (5.10) is done separately for 4,,; and 4;, (BRM).
The choice of the branch is done by a comparison of the random number with

Rini = 0ini(B)/(ini(K) + 05:a(K)),  k = ko, (5.12)

see Fig. 7, where 0., 0f1,, are the contributions from A4,,; and A4y, to (k) (4, does not
contribute), see Eq. (4.12).

The above branching is done because A4;,; and A¢;, have peaks in different variables:
A;y; is singular in 6,, but mildly dependent on ¢, ¢, and 6,, while 4;;, is singular in 0,,
but weakly dependent on ¢,, ¢, and 6;. These properties serve as a basis for generating
0;, p; by a RT in every branch.

For example A4;,;(k, 0;, ¢;) is replaced by:

Ainin(k, 0, @) = const (k)/(1—(1—m?] cos® 0,), (5.13)

and for raw points ¢,, ¢, and cos 0, are chosen with a constant probability, while cos 8,
is generated (using again branching and inversion of the cumulative functions) according
to 4;,;p. A proper dependence on 0;, ¢; is recovered by a rejection with the weight

Wini = Aini/Aini,p- (5.149)
The variable ¢, is excluded from the rejection loop, see Fig. 7, because 4;,; does not
depend on ¢, at all (API).

The generation of Ag;, is very similar, only the roles of #, and #, are interchanged,
see Ref. [11] for more details.

How does the above M.C. algorithm look in comparison with those of Refs [29]
and [32] for ete~ - ptu-(y) process? The M.C. method used in Ref. [29] is almost entirely
based on API with four 1-dimensional distributions of the type (4.5), generated by numeri-
cal inversions of their cumulative functions. Branching was used only to separate hard
and soft parts.

The algorithm of Ref. [32] has a similar structure to that of Fig. 7. The main difference
is that, in the hard part, it has four branches instead of two and, furthermore, in every
branch the kinematical variables ¢;, 0, are defined in a different way. Although this method
is elegant and finds a nice probabilistic interpretation [31, 37], a necessity of keeping four
chains of kinematic variables should be regarded as a disadvantage. In addition, this method
does not generalize easily to the case of heavy fermions (only at the cost of introducing
even more branches).

Finally, the value of the total cross section for the production and decay process
is calculated using the average weights from the M.C. generation (summarized in Figs

4 and 7) as follows
1
do
A:o= — | dk,
4 <Wk>j <dk>D
0

B: o = (w) (W '[ <Z—z) dk. (5.15)
D
0
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The two formulae correspond to methods A and B of implementing spin effects and they
result from general rules given in Section 4.

Other applications

The methods presented in this Section generalize to higher spins and to sequential
(cascade) decays. For example the presented IAMC methods of dealing with spins of e * and
7 * generalize easily to efe~ > W+W~(y), W# — X = process. In this case a straightforward
extension of the method B may be based on a dominant distribution

00 04 (1 04 (2
dop =~ Roo0odTpreall (1)odT§egH (z)odf.(iez (5.16)

and a generalization of the method A to this process is also possible.
Another example is the process

efe" s tttT(y), 1T X', 1T -ovwT, o - nnf (5.17)

comprising a sequential decay of t~ [14, 38]. In this case the d.c. section may be written,
see also Appendix A, as follows:

2 J

~a ~p
do=3% % Y &0 RapcalToroa
abed J=0 M=-J

(ggd J 2 J 3
X H(cl)drdecH(Z)MdtdezWMdtgez’ (5.18)

where H(g);', is obtained from spin amplitudes for 1~ — v~ similarly as in Eq. (2.24), and
W3, from spin amplitudes for ¢~ —» n-n® as in Eq. (A.8).

A possible IAMC algorithm for the above process may be designed using an integral
f &2 Wyt = 810040 as a basis for the API method. First, the process ete~ — t+1-(y),
1t - X+, T~ = p~v is simulated according to a partially integrated distribution

do'V = > ZEfx)gfz)Rabcdd'fpde(ct)drélgH‘(iZ)nggg, (5.19)
abed M
using any of the two methods (A or B) discussed earlier in this Section, and then the decay
of ¢~ is generated using RT based on a dominant distribution obtained from (5.18) by sub-
stitutions J = 0, M = 0.

In the production part ete~ — 171 (y), a possible future development will be the use
of spin amplitudes in generating do/dr,,4. So far it has not been necessary (only w, is
calculated using the ANSA method), but it may appear to be necessary (or profitable)
when the Z, is included (at higher s) in a full resonance form.

6. Summary and conclusions

In this paper I review the techniques used in analytical and numerical calculations
of the O(«®) QED distributions for the combined 1 production and decay process in e*e-
scattering at the PETRA/PEP energy range. A particular emphasis is put on spin effects
and on Monte Carlo techniques in the numerical calculations.
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This work may be treated as a useful supplement to Refs [10] and [11], elucidat-
ing many technicalities there, but its other aim was to prepare the ground for other
future applications and extensions of the methods which have been used in those
works.

In practical terms, the M.C. program of Ref. [11], where most of the technical develop-
ments discussed here were used, may be used for the following process:

(A) The process ete~ — t+t=(y), 1+ — X =, from 1 production threshold to the highest
PETRA energies (/s ~ 45 GeV); With some caution (no Z, exchange in the hard
bremsstrahlung part), it may also be used for ete~ annihilation into u, d, s, ¢, b quark
pairs.

The possible future developments and applications may be grouped in three classes
as follows:

(B) The processes ete~ — t*1~(y), 1+ - X* and ete~ — qq(y), qq — jets; m,, m,
</5/2, 40 GeV < ./s. The Z, exchange has to be included here, both in soft and hard
bremsstrahlung parts, in a full resonance form. The smallness of the t or quark mass
simplifies here the calculations of spin amplitudes and distributions, and the spin structure
in the JAMC algorithm.

(C) The process ete~ — qq(y), qq — jets, q = b, t,...; 40GeV S /s (2m, < /3);
Here in addition to Z, exchange, one has to keep the finite quark mass which includes
a significant algebraic complexity for the O(¢*) QED d.c. sections. The production of
a new heavy, spin 1/2, lepton pair also falls into this class.

(D) The production of other heavy, unstable, and (possibly) spin-carrying, particles
in ete~ scattering processes not far from threshold. A good example is the process
ete - WHW-(y), W= - X =,

Which of the discussed methods may find applications to what processes ? The general
methods of constructing IAMC algorithms described in Section 4 apply to processes in all
classes, A-D, and to any other QED/STPI processes, especially if there are three or more
particles in the final state. The specialized IAMC methods of Section 5 (for the t produc-
tion part) will find a direct application to processes mediated by the s-channel annihilation
i.e. in class B and C.

The presented methods of dealing with spin are also quite general. The techniques
of implementing spin effects in the IAMC algorithm discussed in Section 5 apply to the
production of any heavy unstable spin-carrying objects i.e. in class A, C and D. The simpli-
fications due to the small mass of spin 1/2 fermions discussed briefly in Section 5 may be
used in class B and generally for initial state e*e~ beams (in the absence of the e * transverse
polarizations).

The use of spin amplitudes was advocated in order to reduce the algebraic complexity
of the calculations; this is achieved by a numerical evaluation of the d.c. sections from
spin amplitudes (ANSA technique, see Introduction). That method was used indeed, see
Section 5 and Refs [10, 11], for processes of class A ; it will also be useful in classes B, C, D
and for other processes. Using ANSA techniques is necessitated either by the presence of
spin effects in the final state (spin sensitive decay of t =, W %), or by mass effects, and a multi-
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tude of Feynman diagrams, class C and D. If such methods, for any reasons, are al-
ready used then introducing spin polarizations for incident (¢ *) beams becomes rather
trivial.

The methods of defining spin states and calculating spin amplitudes demonstrated
in Sections 2 and 3 apply directly to classes A, B and C and they generalize also to other
QED processes.

One subject, the discussion of the numerical results from the M.C. calculations illustrat-
ing the importance of the QED O(«?®) radiative corrections and of spin effects, was omitted
here. It was discussed extensively, however, in Ref. [10] and a short review of these results
may also be found in Ref. [39]. As expected, the O(«®) radiative corrections to the e*e-
-» 17~ process are rather similar in character to those in e"e~ — p*p-. They modify the
integrated cross section by up to 309 and the angular distributions by typically 10%
(depending on cut-offs). The QED induced polarization of the 1 is rather small (< 1%).
The effects due to spin correlations (even for unpolarized e ) are present also in the lowest
order [13], and they produce effects of order 5-259%, (depending on cut-offs and t decay
mode). These spin effects remain essentially the same when radiative corrections are
switched on. It is clear, from these results, that spin and radiative effects are of similar
order, and should be taken into account simultaneously. Z, exchange induces an angular
asymmetry and small t polarization which, when measured, may provide valuable informa-
tion on the Z, vector coupling constant to the lepton t.

The exchange of the electroweak boson Z, was taken in Refs [10, 11] in the low energy
(far from the pole) approximation, suitable in the /s < M region, and in Refs [29, 31]
it is added to QED, somehow ad hoc, as an additional massive vector boson with coupling
constants and a mass being free (adjustable) parameters. The main effort in those works
went into mastering the QED hard and virtual bremsstrahlung effects. This approach is
justified by the fact that genuine “non-QED” radiative effects coming from the complete
calculations of the O(«?) radiative corrections in the Standard Electroweak Theory [2, 6]
are usually rather small [40, 41, 42]. If later the calculations of such corrections are
available, in a form suitable for M.C. calculations, then they may be implemented in a M.C.
program including pure QED effects rather easily, by an additional rejection. In fact
a program of this class would be very helpful in extracting such interesting effects from
the precise experimental data, providing eventually experimental evidence for the renormali-
zability of the Standard Model.

Summarizing, I believe that this work, together with results of Ref. [10] and the M.C.
program of Ref. [11], will be useful in data analysis of the t pair (and heavy quark)
production data at the PETRA/PEP energy range. On the other hand it provides a good
starting point for many applications to other processes in e*e~ scattering at higher
{SLC/LEP) energies.

The author is grateful to prof. F. A. Berends for encouragement to start the investiga-
tion of the radiative corrections to heavy fermion production, to dr. Z. Was for invaluable
assistance and cooperation in many stages of this work and to dr. R. Kleiss, dr. C. Kiesling
and prof. A. Kotanski for useful discussions.
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APPENDIX A
The decomposition of the density matrix, for spin s = 1/2 particle
0 =140 W), (A1)

where w = 2<§) = 2Tr(g .§) is the polarization vector, generalizes to higher spins as
follows [39]

2s

J
Omm' = Z Z TL.;'ZJM,mmB (A2)
J=0 M=-J

where
Zagmme = (=) 7°7"s, —m, s, m'|IM, (A.3)

and the polarization vector is closely related to T
To = ¢<S.),
Tiy = Fe 275, £iS),
s = 3Y3((2s+1) (s+ 1))~ 2, (A.4)
The elements Ty characterize ¢ in a complete way similarly as w for s = 1/2.
Double spin indices may be converted to <J> notation also for any unstable inter-

M
mediate particle. The differential cross section

do =~ Y M (M) T(Ty)*d lips, (A.5)
AR
where .#;, A = —s ... s are spin transition amplitudes for the production process and T,
for the decay process, may be rewritten using a completeness identity
Z Z,{,,M:Z}J‘,,W. = 5lu5ﬂ-’u” (A-6)
iM
as follows
do = Y Ry Wyd lips, (A.7)
JM
where

RJM = gl: ﬂl(//z')*zzlu,u'a
WAJ{ = /g TA(T).’)*Z;{,M" (A-S)

Let us take the example of ete~ — t+t1~, 1+ - X+, 1= > ¢g7v, ¢~ - n°n~ process. In
this case

J J Jy Ja I3 J + .- +,.—-
da- ~ Z 7"(1)3{117-‘(2)5122121‘;1ﬂlzzb;3524(e € -1 T (’y))dtpﬂ)d
JiM;

X Hi (7" = X" NadtelHoy(t™ = 0 Vi adtidWale™ - n™n%)degl. (A.9)

The above formula is almost identical to that of Eq. (5.17). The only difference is that for
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s = 1/2 fermions the Cartesian indices @ = 0, 1, 2, 3 are used instead of polar ones

J 0 1\/1 1 . . .
(M) = (0)(_ 1)(0)<_ 1). The relation between them is easily deduced from th¢

expansion

0 =2""gy, Z4=2""2, Z.\,=2"YFo,+ic,), (A.10)

see also Eq. (A.4). The angular distributions W;; (¢~ — n~n°) are in fact proportional to
spherical harmonics Yy(6, ¢), where 6, ¢ are the polar angles of the - in the g~ rest frame,
for more details see Refs [18, 43, 44]}.
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