Vol. B16 (1985) ACTA PHYSICA POLONICA No 12

TRANSVERSE MOMENTUM IN e"+e” - A+B+X*

By I. C. CoLLins
Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
AND D. E. SOPER
Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403, USA
( Received July 29, 1984; final version received April 2, 1985)

We review the predictions of Quantum Chromodynamics for the inclusive production
of two hadrons in electron-positron annihilation at high energy in the ‘back-to-back”
region. This cross section is sensitive to gluon bremsstrahlung effects. We discuss, in partic-
ular, the energy-energy correlation function and the two particle correlation function using
higher moments in the particle energies. New results for the higher moments and for higher
twist effects in the energy-energy correlation function are reported.

PACS numbers: 12.35.Eq

1. Introduction

In this paper, we discuss the predictions of Quantum Chromodynamics for the process
e*+e- — hadron A + hadron B + anything, where the momenta P, and Py of the hadrons
are in nearly opposite directions (the nearly ‘‘back-to-back™ configuration). The physical
picture for this process in QCD is roughly as follows. The virtual photon that was produced
in the electron-positron annihilation decays into a quark and an antiquark that have
large, exactly back-to-back momenta. The quarks are, however, substantially off shell.
Each quark therefore begins to emit bremsstrahlung gluons. These gluons can have large
momenta directed in roughly the initial quark direction (we will call these collinear gluons),
or they can have small momenta (we will call these soft gluons). The quarks can also absorb
gluons, and the gluons can combine with each other, or split up into more gluons, or split
up into collinear quark-antiquark pairs. One thus obtains two back to back jets of quarks
and gluons. Finally, the quark and gluon jets decay into hadron jets, in which are found
hadrons A and B.

* Based, in part, on lectures presented at the XXIII Cracow School of Theoretical Physics, Zakopane,
Poland, May 29 — June 12, 1983.
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The two observed hadrons will not usually be exactly back to back. Each will have
some transverse momentum relative to the original quark momentum because of the trans-
verse momentum transfers in the bremsstrahlung process. That is to say, the gluon radiation
broadens the transverse momentum distribution of the quarks and gluons, and thus of the
observed hadrons. As the total c.m. energy Q of the annihilation is increased, the original
quarks are further and further off shell. More gluons are emitted, and the gluons carry more
transverse momentum. Thus the width of the hadron transverse momentum distribution
should increase as Q is increased.

The ease of emission of bremsstrahlung gluons in QCD is characteristic of gauge
theories. In a gauge theory, both collinear and soft gluons are produced with a big ampli-
tude in the high energy limit. One can contrast QCD with the all scalar ¢ theory in 5+ 1 di-
mensions, which, like QCD, is asymptotically free and behaves like the parton model in
the high energy limit. In this theory, only collinear particles are produced with a big matrix
element at high energy. (One thus finds only one factor of In (Q;/Q) for each order of per-
turbation theory, instead of the two factors of this logarithm found in QCD). In ¢? theory,
the only effect of increasing @ is that the maximum value of transverse momentum P;
allowed by the kinematics increases in proportion to Q. Near this maximum Py the P;
distribution turns over and goes to zero. But the shape of the Py distribution in the region
Py < Q is independent of Q [1]. That is, in ¢* theory, in contrast to QCD, the transverse
momentum distribution does not become broader as Q is increased. It is therefore of great
interest to compare the theoretical predictions of P; broadening in QCD to exper-
iment.

The prospects for experimental tests are encouraging. The recent upgrading of the
PETRA accelerator to provide over 40 GeV of collision energy, Q, should allow a wide
enough range of Q to test the theory quantitatively, albeit with rather low precision.
In the not too distant future, results at @ ~ 100 GeV should be available from the Stanford
Linear Collider and from LEP, making more stringent quantitative tests possible.

2. Py broadening and the two particle inclusive cross section

What is a good way to look for the Py broadening effect described above ? One rather
obvious method is to measure, at different energies, the distribution dN/dP%, where Pr is the
component of a hadron momentum transverse to the jet axis of an event. One must, of
course, choose an algorithm for determining the jet axis for each event. For instance, the
jet axis can be the so called “thrust axis” of the event. This method has a disadvantage,
however: it is difficult to incorporate the algorithm for choosing the jet axis into the
theoretical description of the process. Of course, if the theoretical description is a Monte
Carlo program that generates complete events, there is no problem with choosing the jet
axis. However, at present such Monte Carlo programs make use of rather crude approxima-
tions to QCD, and the approximations are generally not under complete control. No
systematic method is yet known for improving these approximations. Thus we seek a measu-
rable quantity that does not require a complete specification of the final state for its descrip-
tion.
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Consider, for this purpose, the two particle inclusive cross section for e*+e-
-+ A+B+X:

doldx,dxgd cos 8. 2.1)

Here x, and x5 are the momentum fractions carried by the two hadrons:

xs = 2EA/Q, x5 = 2E4/Q. (2.2)

The angle 0 is the angle between P, and —Pg. Thus 6 = 0 is the back to back direction.
When 6 is small, it is related in a simple fashion to the hadron transverse momenta
measured relative to any jet axis that makes a small angle with P, and Py:

(_1_ PI+ 1 p;) = Q7% sin® (0/2). (2.3)

xA xB

(The badron masses have been neglected here.) Thus by measuring 6, one measures a linear
combination of hadron transverse momenta without having to know where the jet axis was.

What does QCD predict for the cross section (2.1) ? We will discuss the detailed predic-
tion later, but the qualitative features should already be clear. Let us change variables
from cos (0) to

ky = Qsin(6/2) 2.4)
which, as we have just seen, is a measure of the transverse momenta of the observed hadrons.
Consider the k% distribution

do|dx dxgdk?
dojdx,dxy

(2.5)

Because of the transverse momentum transfers caused by increased gluon bremsstrahlung
at high Q in QCD, we expect the k3 distribution (2.5) to be broader at high Q than it is at
lower Q.

This effect should be visible in the k2 distribution at values of k3 that are small com-
pared to Q2. It is also possible to look at the average of kZ. However, if one looks only at
(k%», much valuable experimental information is thrown away. Furthermore, the QCD
prediction for (k}) is dominated by the behavior of the k2 distribution at large values of
k%, k7 ~ Q2. But the region k% ~ Q2 is not the region of interest for seeing the distinctive
effects of gluon bremsstrahlung.

3. The energy-energy correlation function

For some purposes is useful to consider the moments of the cross section (2.1):

1 1

do\g(M, N) M N do(e*e” —» ABX)
dcos 8 dx,dxgd cos 8

(3.1)

0o
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The M = 1, N = 1 moment, summed over all hadron flavors A and B and muitiplied by
a conventional normalization factor 1/4, is of special interest. It is the energy-energy correla-
tion function [2, 3]:

1 1
az da(e*e™ - ABX)
- = L E d d . 2
dcos® * j A%A J %8 dxadxgd cos 0 (3:2)
AB 0

o

The theory of dX/d cos 6 is simpler than that of the differential cross section. In the QCD
prediction for the differential cross section, parton decay functions

dA/a(x; ) 3.3)

appear. These decay functions tell the probability that a parton of type a will decay into
a hadron of type A carrying a fraction x of the parton’s momentum. The decay functions
obey the sum rule [4]:

Oy o

%

which says that the sum of the energies of the decay products of the parton equals the
energy of the parton. The advantage of the energy-energy correlation function is that,
because of the sum rule (3.4), the parton distribution functions drop out of the QCD for-
mula for this quantity. If one works instead with the differential cross section (2.1) or one
of the other moments (3.1) of the cross section, then one must insert into the QCD formula
the parton decay functions as measured experimentally (in, say, e*+e- — A+X).

We have just seen that there is some advantage in theoretical simplicity at high Q in
looking at the energy-energy correlation function, the (1,1) moment of the cross section.
However, there is also a problem with the (1,1) moment. Low energy particles in the final
state, say those with energies less than some energy E, ~ 1 GeV, are not reliably described
by the theory, which is designed to describe the production of particles that carry a non-
-zero fraction of the c.m. energy Q. The energy weighting in the energy-energy correlation
function suppresses the contribution of low energy particles at large Q: the contribution
of the low energy particles at a given angle 8 is proportional to Ey/Q. However, when
Q is not very large, this suppression is not very effective. For instance, when @ = 17 GeV,
a simple parton model estimate based on (PZ>'/2 = 300 MeV suggests that the energy-
-energy correlation function at small angles is dominated by final state particles with energies
less than 1 GeV.

One can still use QCD to describe the energy-energy correlation function at modest
values of Q, but extra care and some reliance on the parton model are necessary. We discuss
these issues in Sect. 3.

dxxdy,(x;u) =1 34

4. The QCD formula

In this section we will consider the formula obtained in QCD for the cross section
do/dx,dxgd cos 0 in the high energy limit, with 0 < 0 < =/2 [5].
Let us consider the standard factorization result that one obtains when 0 is not
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small [6]:
1 do(e*e”™ = ABX) dé,
or dxadxgd cos 0 Z j 7. darl8a; Q) z J —= dyb(Ea; Q)
Xa
T -0, 4.1
X <5A N Q; 5(9), Q) (8.1

Here the d’s are the parton decay functions that we have met already. The function T (not
to be confused with Tin the DDT formula) is called the hard scattering function. It describes
the cross section for e*+e~ going to partons a and b plus anything, but with infrared
singularities removed and put into the parton decay functions.

The hard scattering function can be calculated perturbatively. It has the form

N
T ~ Z T ["‘—%2—)] . (42)

This expansion is useful when § is not small, since x(Q) is small when Q2 is large. However,
the expansion is not useful when 6 is small. The functions 7™ have the small angle behavior

2N-1
T [1'1—((23—— (4.3)

Since In (0) is large when 6 is small, the high order terms in Eq. (4.2) are not small compared
to the low order terms when 0 is small.

Thus, at small §, one needs a different form of factorization. The first step in obtaining
a useful factorization while keeping the good features of the standard factorization in the
finite 0 region is to write

+ - ABX 2 ~1
1 do(e* +e” > ) Q_GE%%) W+Y, (4.4

or dx,dxgdcos0 8n

j
where the sum runs over flavors j of quarks and antiquarks, j = w,u,d, d, .... Here W
contains the dominant part of the cross section at small 6 and Y is a finite 6 correction.

(We have changed normalization conventions for W and Y from Ref. [5]). The function
Y has an ordinary factorized form,

d B
Y ~ z j EA dA/a(fA) Q) 3-‘ Jv f dB/b(éB’ Q)

szab(xA _——’ ,Q g(Q) Q) (4'5)
o B
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Here R is just T with the

——— (const. or In"0
sin’ (6/2) ( )
pieces removed. These pieces are put into W. The function W is a large Q, small 0 approxi-
mation to the cross section, with “higher twist” terms, which are suppressed by powers
of mass/Q or ky/Q = sin (0/2), thrown away.
It proves very useful to work with the Fourier transform of W [7],

W(ba Qa an xB) = (27[)—2 I dzk'l' Cxp (lkT : b)W(k7 Q9 an xB)’ (46)

where ky = Q sin (8/2). Now, of course, W has an ordinary factorized form that is useful
when Q and 1/b are large, with Qb finite. But at order oY, the hard scattering factor in this
factorization contains In (Qb) to the power 2/N. Thus this factorization is not useful when
Qb is large. What is needed now is to write W in a factorized form that is useful when
Q is large and, in addition, 0b> 1.

We will not repeat the derivation [5] of the required result, but will be content to
describe it and to point out some of its important features. We write the result in a form
that is somewhat more convenient than that used in [5]. This form, along with some discus-
sion of the derivation, can be found in [8] (for the case of the Drell-Yan process instead
of electron-positron annihilation).

Notice that a function W of four variables x,, xg, b, Q and of the particle types A and
B could, in general, have quite a complicated structure. In QCD, however, the form of Wis

quite simple. One finds that
C22Q2

- d—-Z CZ 2
W(b; Q; xa, xg) ~ €xp {— f —ﬁ%— [ln (—é%) A(g(), m,lii; Cy)

Cy2/b?
+B(g(@), mJi; Cy, cz)]}
x }j:e,?PA,,(xA, b; C,/C,)Py3(xp, b; C4/Cy). .7

Here C, and C, are constants of order 1 that are inserted in order to allow the optimiza-
tion of perturbation theory — that is, to allow one to keep high order terms in perturba-
tion theory, which will contain logarithms of C, and C,, reasonably small by adjusting
these constants. If the reader wishes, he may just set C, and C, equal to 1. The functions
A and B have conventional perturbative expansions. They may depend on quark masses
m,. When b < 1/4 one can neglect the dependence of 4 and B on light quark masses.
Then these functions are simply power series in the coupling g(x) with numerical coeffi-
cients:

0

A= A(g@); C)) = ¥ AMC) [a(@)/n]", (4.8)

N=1

B = B(g(@); Cy, C,) = él B(C,, C,) [a(@)/nT. 49)
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The functions P may be thought of as being the Fourier transforms of the “intrinsic”
P, distributions of the hadrons produced in the parton decay. There is a further factoriza-
tion of these functions that is useful when the detected hadron has large transverse mo-
mentum (that is, when b < 1/4):

d
Pyji(x, b; C,/C)) = Z f 'g Caj(x/‘f’ b; g(C,/b), C/b; C,/C;)

X dp(€; Cy/b)+ O(mass x b), (4.10)

where d(£) is the parton decay function discussed earlier, evaluated at a renormalization
scale 4 = C,/b. The hard scattering function C has a conventional perturbative expansion
in powers of afu), p = C,/b:

Caj(é/x b; g(u), u; C4/Cy) = 5(5/3‘7‘1)5:&

+ 3 CE/x, b, 1y CC2) [o(p)/7]". (4.11)
The first term in this expansion is a delta function, so that
PA/,‘(X, b; C1/Cy) = daji(x; C1/b)+0((Cy/b)). (4.12)

We now discuss how the factorization (4.7) can be used when Q2 is large. We consider
two different regions of b,b < 1/4 and b > 1/A.

When Q > A and b < 1/4, one can use the perturbative results for the functions 4 and
B. In addition, one can use the perturbative relation between P and d. This leaves the parton
decay functions d(x; C./b), which cannot be perturbatively evaluated and must be taken
from experiment. Notice that there are no large logarithms, In (Qb), to compromise the
usefulness of the low order perturbative results, since each function that is evaluated per-
turbatively is either a function of the scale u, or a function of b, but never a function of
both z and b. '

When @ > A but b > 1/A, one cannot use the small-b, perturbative form of W.
Instead, one has available only the structural information contained in the large-b form
of W, Eq. (4.7). However, this structural information is quite useful.

There is a convenient trick [5] for making a smooth interpolation between the pertur-
bative, b < 1/A, region and the nonperturbative, b > 1/4, region, while keeping the valuable
structural information contained in the factorization formula (4.7). One defines a function
b, (b) which approximately equals & when b is small, but which stays smaller than some
specified value b, when b is large. One chooses the value of b, sufficiently small so
that one can trust a perturbative expansion in powers of o (C;/b.,,). We have used the
function

by(b) = b/[1+b2/bmax]1/2' (4.13)

Now we use the trivial identity,

o) = Wby D) (4.14)
; O o)



1054

‘where W, is the contribution to W in Eq. (4.7) from quark flavor j. In the first factor, W(b,),
-one can use a finite order of perturbation theory in the small-b form of W, since o (C,/by)
is always small. In the second factor, we use Eq. (4.7), which gives the structure of W;(b)
for all 5. Eq. (4.7) implies that the second factor has the form

Wj(b; Q; Xa, Xp)
Wi(b*; Q; Xa, Xp)
(The parameter Q, is inserted here to keep the dimensions consistent. Its value can be

chosen arbitrarily.) We know that Wy(b)/W;(bs) > 1 as b~ 1 as b — 0, since b, — b
as b—- 0. Thus

= exp {—ln (Qz/ Qg)f 1(b) —fA/j(xA’ b) —fn/i(xna b)}- (4.15)

f1(b) -0
JSajj(*asb) >0 as b 0. (4.16)
J5(xs, ) = 0

While we know how the functions f should behave for small b, we can only speculate
:about how they behave in the non-perturbative regime, b > 1/A. Their role is quite similar
to that of the parton decay functions d(x) or of the parton distribution functions f(x) that
are measured in deeply inelastic lepton scattering. We do not know how to compute these
functions in QCD, so we measure them experimentally. Then we use the measured values
to make predictions for different experiments or different energies. In the case of the func-
tions f(b), one can measure the functions in et+e~ - A+B+X at two energies. One then
has a prediction at any third energy.

In the case of the energy-energy correlation function, Eq. (4.15) is slightly modified
to read

W(b, Q)/W(by, Q) = exp (—In (Q*/Q3)f1(b)—f2(b)). 4.17)

5. Parton model correction for the energy-energy correlation function

In this section, we examine the contribution to the energy-energy correlation function
from particles that carry low energy. On the basis of this examination, we construct a cor-
rection that should be applied to the asymptotic formula described above in order to account
approximately for the contribution from low energy particles when Q is not large enough
(less than 40 GeV, say).

We will be interested in the contribution to the energy correlation function from events
in which one or the other of the observed hadrons has an energy F that is less than some
value E,, so that E is too small to be in the range for which the asymptotic QCD formula
was designed. We assume that Q is sufficiently large so that the energy weighted probability
that both observed hadrons have energy less than E, is small enough to be neglected. Thus,
we assume that one of the two hadrons has energy larger than E,.

We will work by comparing the general asymptotic formula with a phenomenological
fit to the production of low x hadrons.
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The production of low x hadrons at moderate values of Q is fairly well described by
the parton model. Let us consider the cross section do/dx,dxzd cos @ when x, is small
and xg is of order 1. We use, following [2], the following distribution for the low energy

hadrons
3

dN, = _c_i_E_p Xadasi(Xa) <;T> exp (“P%KP%»- é.1)
Here x, denotes the energy fraction 2E,/Q and Py denotes the momentum components
transverse to the jet axis, which we take to be along the direction of the high energy hadron
B. It is assumed that the hadron distribution function dj;(x,) behaves like const/x for
small x. The parameter {P%) could, in principle, depend on x5, but we shall assume that
it is a constant, e.g. 300 MeV.

We now use this model to construct the cross section do/dx,dxgd cos . We multiply
by the cross section (47roc”/Q2)eJ?Z to produce a quark of flavor j, multiply by the decay
probability dy;;(xg)dxy to observe hadron B in the decay of the quark of opposite flavor j,
and sum over flavors j = u, 4, d, d, .... This gives

do = (47ro:2/Q2) Y eldy;(xp)dxg

d3p

E AdA/,(xA) €Xp (—P%KP%»-

<Pr>
Finally, we replace Py by E, sin 6 = 5 Qx, sin 0 and d3p/E by 1 nQ%x,dx,d cos 8. This
gives the result we need for the cross section in the parton model:

doldxdxyd cos 0 = (4na?/Q%) ¥ ejsz,j(xA)dB,;(xB)
x (xAQ*/2(P) exp { —x2Q? sin” ()/4(P})}. (5.2)

We can use Eq. (5.2) to obtain a parton model estimate for the contribution from
low energy particles to the energy correlation function. We multiply by x, and xg, integrate
over x, from 0 to 2E,/Q and over x5 from 0 to 1, sum over flavors A and B and multiply
by the normalization factor 1/4. This gives the contribution to the energy correlation func-
tion from events in which particle A has energy less than E,. To this we add an equal
contribution for the contribution from events in which particle B has low energy. Thus
we obtain a parton model estimate for the contribution to the energy correlation function
from events in which either one or the other particle has energy less than E,:

A(1for)dZ[d cos 0 = 2A(0) (Eo/Q) (E3[{ PINf(E] sin® 6/<(PD)), (5.3
where

f(2) =22 [ dyy'/?e™?, 54
0
and the constant A4(0) is defined as the small x limit of

A(x) = ; XdA/a(x§ Q2) (5.5)

Here we assume that the parton distributions behave (approximately) like 1/x for small x.
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We now examine the small x behavior of the asymptotic QCD formula as given in
Sect. 4. There are two cases to consider: finite angles 6 and small angles 8 (6 < 1). We
consider the small angle case first.

Recall that the cross section, differential in x, and xg, is given by

1 do(e*+e¢~ —» ABX 2 -1
1 dole"+e > )~9—<%Ze,?) W+Y. (5.6)

or  dx,dxgd cos0 8n

J

The Y term is important only at finite angles, so we may ignore it in the present discussion.
The W term has the form

W(ky, Q, Xa, xp) = | d2b exp (—iky - )W(b, Q, X4, Xg), .7
where kg = @ sin (6/2) and
W(b; Q5 xp, X) = Y € Wyeri(ba)
x exp {—In (Q*/Q0)f1(b)—fass(*as b)—Foji(*s, b)}, (5.8)

with me given by Eqgs. (4.7) and (4.10) with low order perturbation theory used for the
coefficients 4, B, and C. The parameter b, Eq. (4.13), is approximately equal to b for
small b and is always small compared to 1/A4.

The behavior of the functions f must be determined from a model or from experiment.
The function exp {—f,/;(xa, b)} may be interpreted as the Fourier transform of the trans-
verse momentum distribution of hadron A in parton j; note, however, from Eq. (5.7)
that the variable b is Fourier conjugate to ky = (Q/2)0 instead of the true transverse
momentum of the detected low energy hadron, which is Pr = x(Q/2)8. Thus we propose
the following model for f} ;(xa, b):

€xXp (_fA/j(xA’ b)) = exp {— (P%-)b2/4x,2‘}. (5.9

Notice the factor 1/x? in the exponent.

Consider now what happens to W(b; Q; x,, xz) when one of the x’s, say x,, becomes
small while Q@ and xg are held fixed. We see that, when x is small enough, the behavior
of W is dominated by the factor exp {— (PZ>b?/4x2} in P,/{(xa, b). Compared to this
factor, the function me in Eq. (5.8) is a slowly varying function (except at very small
values of b, b < 1/Q, which are not important in the small angle case that we are consider-
ing). Our numerical studies suggest that the P factor becomes dominant compared to the
Sudakov factor in me when x < 0.1 at Q = 30 GeV. Therefore, when we integrate over
b, we may set me equal to its value at small b, where b = b,, that is,

Wpert,j(b*) = dA/j(XA; Q)dB/j(xB; D+ O[Ws(Q)]- (5.10)

(We will consider the Ofa,] corrections below, but neglect them for now.) Thus we have

W(b; Q; Xa, xp) ~ da/(xa)dpj(x) €xp {— (PEb?/4x3}.
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Taking the Fourier transform, Eq. (5.7), inserting the result into Eq. (5.6) arid multiplying
by o gives
do[dx,dxgd cos 0 ~ (4na?[Q%) Y e}d,i(xa)dp3(x5)

x (xaQ*/2¢PD) exp {—xak1/<P1)}, (5.11)

where ky = Q sin (6/2). As long as 6 is small, so that sin (6/2) ~  sin 0, this is just the
parton model ansatz we used in Eq. (5.2). Integration over the x’s then produces the same
contribution from low energy paricles to the energy correlation function that we obtained
in the parton model, Eq. (5.3).

We are left with a conclusion that is somewhat surprising. The asymptotic QCD for-
mula that we have been using was derived under the assumption that the momentum frac-
tions x to be considered are not very small, but are of order I as Q — 0o. Presumably,
corrections would be needed in order to “sum up” the log x factors that occur in perturba-
tion theory and are important at small x when Q is very large [9]. However, we are interested
here in values of @ that are not particularly large. We have found that, for moderate values
of Q in a reasonable model, the nonperturbative factors in the QCD formula take over
from the perturbative Sudakov exponential at values of x, x &~ 0.1, that are not so small
that one must worry about summing the factors of log x in the perturbative factor. The
nonperturbative factors can, if we choose a suitable model for them, have just the right
form to reproduce the parton model result at small angles. Thus we conclude that no
correction is needed in the QCD formula in order to account, at small angles, for the
contribution to the energy correlation function from low energy particles.

At this point, we make a small digression. We use the model (5.9) for the functions
Jai(x, b) to obtain the corresponding behavior at small b of the nonperturbative function
f2(b) in Eq. (4.17) for the energy correlation function. We will find that f£,(b) receives a con-
tribution that behaves like b at small b from the 1/x? singularity in fj,;(x, b). We use the
definitions of Sect. 4, neglecting the order «, contribution to the coefficient C, Eq. (4.11).
This gives

1
exp (—7/2(b) = i; dxA(x) exp (—<PP>b*[4x?),
where A(x) is defined in Eq. (5.5). For small b this is approximately
1 1
exp (—z/2(b)) { dxA(x)—A(0) {) dx{1—exp (—(PPb*[4x")}

= 1—3 A(0)n'>(PTY /b,
where y = (Pi>1/2pj2. Thus we identify
f2(b) ~ A0)n'/2(P2>2p 4+ O(b?). (5.12)

We now return to the main line of our argument. We consider the contributions to
the QCD asymptotic formula for the energy correlation function arising from low energy



1058

particles when the angle 0 is not small. First, we consider the function W(b). Since we are
interested in values of kv = Q sin (6/2) that are of order Q, we need only consider values
of b that are of order 1/Q. In this region of b, b, & b and a simple perturbative expansion
of me(b*) may be used. However, there is a significant higher twist contribution because
of the 1/x? factor in f,,(x, b). We therefore retain the nonperturbative factors and make
the following approximation:

W =Y el[da(xa; Q)dpi(xp; Q)+ (o (Q)/m)TELL * dj * dy]
x exp {—1n (Q*/Q2)f.(b)}exp { — < P2yb*/dxi —(PEyb?[axE}. (5.13)

Here ’T‘s[,lg}, is a certain constant times the first order perturbative contribution to the Fourier
transform of the part of 7, Eq. (4.1), that is at least as singular as 1/sin? (6/2) as 8 — 0.
(Recall that the less singular remainder, R, of T is in the Y term in Eq. (5.6), according to
Eq. (4.5)). The *’s indicate convolution of ’T;[ii,]g with parton decay functions, as in Eq. (4.1).

Consider first the contribution at zeroth order in «,, which we obtain by neglecting
the TL] term. We cannot neglect the third factor, even though it tends to 1 as b becomes
small. This is because we are integrating over x’s and there are 1/x? singularities in the
exponent, which make this factor more important at small b after integrating over the
x’s than it was at fixed values of the x’s. After performing the x integrals, as in Eq. (5.12),
we obtain a factor that behaves like 1+ const x [62]!/2 at small b. With b of order 1/Q at
finite angles, the order b term is power suppressed compared to the order «, term in the
first factor — it is ““higher twist”. Nevertheless, numerical estimates indicate that this
power suppressed term is roughly as large as the perturbative term in the interesting energy
range Q =~ 20 GeV. Thus we retain the contribution from the zero order perturbative term
times the third factor in Eq. (5.13).

We shall assume that f,(b) behaves like b at small b, so that the contribution from the
second factor when b &~ 1/Q is negligible even at Q ~ 20 GeV. Of course, this assumption
should be verified by measuring f;(b) experimentally.

It may be helpful to discuss the contribution from the third factor as a function of
angle 6, after Fourier transforming. Because of the nonanalytic behavior at small 4, the
Fourier transform of this factor has a long tail extending from small angles out to the finite
angle region in which we are interested. (The Fourier transform behaves like [sin (6/2)]3.)
The contribution from this tail is suppressed compared to the perturbative terms by a power
of Q — it is “higher twist” — but it is numerically important at moderate values of Q.

In summary, then, the contribution to W at zeroth order in &, may be approximated
by the quark decay functions d times the third factor in Eq. (5.13).

Now we turn to the contribution to W, that is proportional to «,(Q). Since this contri-
bution is already small, we shall not worry about the higher twist corrections to it: we
replace the second and third factors in Eq. (5.13) by 1.

We can now assemble our result for the energy correlation function as given by the
QCD formula. There are first of all perturbative contributions proportional to «, from
W and from Y in Eq. (5.6). These terms give the contribution, according to first order QCD
perturbation theory, to the energy correlation function from three jet events, in which there
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is a hard gluon emission from one of the quarks. Such a contribution is, of course, expected,
although it is not included in the parton model (5.2) for the cross section.

Next, there is the contribution from the higher twist term, proportional to «f, that.
we have isolated in W:

AW = Z ejz dasi(xas Q)dy5(xp; Q)
x exp { —(PPb’[4x] — < PT)b*|4xg}. (5.14)

Consider this contribution when one of the x’s, say x,, is small and the other x is finite.
Then performing the Fourier transformation gives the contribution to the cross section:

Adoldx,dxgd cos 0 = (4na®[Q%) Y. eld, ;(x2)dpj(xp)
x (x3Q%/2¢PTy) exp { —xXQ7 sin® (0/2)/<P>}. (5.15)

This order «? term is to be compared to the two jet parton model expression (5.2). We
see that they are almost identical. The only difference is that, because of the small angle
approximations made in deriving the QCD formula, the higher twist contribution from
the QCD formula has 2 sin (6/2) replacing sin (6) in the exponent. This makes no difference
in the small angle case that we investigated earlier, but it does make a difference at finite
angles.

It is easy to correct the QCD formula for this difference. The contribution to the
QCD formula for the energy correlation function from the higher twist term (5.15) in-
tegrated over the region in which either one or the other of the detected particles has
energy less than a cutoff E; is given by Eq. (5.3) with sin (#) replaced by 2 sin (6/2). We
have merely to subtract this expression from the QCD formula, then add back the correct
expression (5.3) as given by the parton model. Therefore we add to the asymptotic QCD
formula for the energy correlation function the net higher twist correction, which is
important only at finite angles 6,

A(1/or)dZ|d cos 6 = 24(0) (Eo/Q) (EF/<PTY)
x { f(E§ sin® 0/CP7Y)—f(E34 sin® (0/2)[{P))}, (5.16)
where
f@) = 2"3/252 dyy'’?e™?, (5.17)
1}
and the constant 4(0) is defined as the small x limit of

A(x) = ¥ xdy(x; 0%). (5.18)

A

Experimentally [10], A(0) = 4. The results should not be sensitive to the choice of the cutoff”
E,; a reasonable choice might be £, ~ 600 MeV.
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6. Summary of results for do(M, N)/d cos 0

In this section, we summarize the results discussed in Section 4 for the two particle
inclusive cross section. We state the results for the (M, N) moment of the cross section
instead of for the cross section as a function of x, and xg since the results take their simplest
form when presented in this manner. We will summarize the results for the energy-energy
correlation function, including the parton model corrections, in the following section.

In this section on the (M, N) moment, we state the values of the perturbative coefficients
that have been calculated previously and of three coefficient functions that we have calcu-
lated at first order in «, in order to complete the formula at this order.

The (M, N) moment of the inclusive cross section for ete~ - A+ B+ X is defined by

1 1
do (M, N) M y do(e*e” — ABX)
DA |4 d :
dcos @ XaXa *%p dx dxgd cos 0 1)
0 0

In this section we can, if we like, broaden the meaning of the notation to allow A and B to
denote not just particle types but types of idealized detectors. That is, A can denote a de-
tector that detects only protons, A = proton, or A can denote a detector that detects all
particles, A = all, or A can denote a detector that detects all charged particles, A = all
charged, et cetera. One goes from the case of A = particle flavor to the other cases by per-
forming the appropriate sum over particle flavors and then redefining the nonperturbative
functions that appear in the formula.
Our result for the cross section is

1 dosg(M, N)
or dcosf

2 -1
- g_ (% z e,?) [ d?be™ "
i

]

C22Q2

d-—2 CZ 2
X exx){—- [ —:::;[ln<—:~t—€f—)d(g(ﬁ);cl)+3(g(ﬁ);Cl, Cz):l}

Iy
Cy z/ baz

x 2o 5 CunM, by (1), 3 CilC2)dar (M5 1)
X Z‘; Coi(N, by g(), p; C1/Cr)dpp(N; 1)

x exp {—1n (Q*/Q3)f1(b)~fa/ (M, b)—fa/(N, b)} + Y(M, N; 6). (6.2)

‘We will come to the wide angle term Y in a moment. The sums over j run over quark flavors
and antiflavors, j = u, u, d, d, ... . The sums over a and b run over all parton types: quark
flavors and antiflavors and gluon, g. The parameters C; and C, should be of order 1, and



1061

may be adjusted to improve the convergence of perturbation theory. The transverse mo-
mentum ky is defined by ky = @ sin (0/2). The adjusted transverse position b, may be
taken as b, = b/(1+b%b2,)"?, with b, of order 1 GeV-1,

The functions d,,,(M; u) are moments of parton decay functions at renormalization
scale y, defined as in [4] using MS renormalization. They must be measured experimentally,
for instance in et4+e- — A+X; their u dependence follows from the Altarelli-Parisi
equation. The non-perturbative functions f,(b) and f, ;(M, b) must also be measured experi-
mentally, with the constraint that these functions vanish as b — 0. The function f; is the
most important of these functions because it gives the Q dependence of the non-perturba-
tive factors in the cross section and is also numerically important at very high energies
when In (Q?) is large. Notice that this function is independent of hadron type and of mo-
ment number.

The functions 4, B, and C have perturbative expansions of the form

F(g(u), p) = Z F®u )[“‘(”)] (6.3)
N

The expansions for 4 and B start at order «,. The order « coefficients are [9, 7, 11]
AY =%, (6.4)
C
BW = 8qp| ZL L v-3/4 ,
3 C, 7€ (6.5)

where y is Euler’s constant, y = 0.577... . An expression has also been given by Kodaira
and Trentadue [11] for the second order contribution to A:

7 33-2N
AD =81 19 N,+—g-( B ‘) In(C,%e. (6.6)

The expansions for C start at order al:
CONN, by; p; CyCp) = b, (6.7)

The first order contributions to C can easily be calculated by combining the results of [5]
with the calculation of [12}:

1
1+2° b
S}(N b*’#aclcz)"’ékj%‘j dZZN{ [ Z:] ln(u_te‘)') +__;_(1_Z)
- +

n? C,
d1-2)] — -2 —In 134
ra-2)| g = - (i) |

N N+
1 1
(33 e
n=1 n=3
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N N+2
. 1+ 1 N 1
n* n? 3 2AN+1D(N+2)
n=1 n=1

2 C
S
1
Z*-2Z+2 b
CENN. bas 5 C1[Cy) = § | dzz" - “ 225w (£ ) +4 2
Z 2Z
0

1 2 2
=4 (== - = + =) ubse’
3{ (N+2 N+1 N) 0 (7 kbee’)

_( L2 2 1 } 6o
(N+2)? (N+1)2+iv'2)+2(~+2)‘ (69)

The value of the MS renormalization scale u in C and d in Eq. (6.2) may be chosen
at will (C times d is a renormalization group invariant). In order to keep high order terms
in C from being large, we choose p = C,/b,.

We now turn to the large angle term Y in Eq. (6.2). It has a factorized form

Y(M,N;0) = Zb R.(M, N, 0, Q; g(p), 1) dps(M; 1)dp (N5 1) (6.10)

Here again p is arbitrary. We choose u = C,Q. The remainder function R has a perturba-
tive expansion beginning at order a,. The first order coefficient functions R™ can be calcu-
lated simply by taking the well known expressions [13] for the cross section for e*e~ annihi-
lation into two partons, taking moments of these functions, and subtracting the terms
that behave like 1/sin? (6/2) times possible logarithms as § — 0. The result is most simply
expressed in terms of the functions

M N

F(Z;M,N,I) = ! M H" Ny
(Z: M. N, )'[1—Z]M+N+1Zm!(M—m)!(' ) zm( )
m=0 n=0
x {B(m # netl) o [Z"= 2" ]+ 6(m = n+I)Z”'ln(—;—)}. (6.11)

One finds

R{D(M, N, 6, 0; )

-1 1 .
== ejz (-% z e,z) 51‘5 -g' Z’m) {F(smz (0/2), M, N+ 2, 0)
i
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+F(sin® (6/2); M+2, N, 0))}

-1 1 1
—e2l L 2} 5.2 1
K ( Z "‘) N3 Fsin? (672) {2 ! (smz (6/2)>

DI D Y DI S

RP(M, N, 6, Q; p) = RGN, M, 8, Qs )

-1 1
=L i) 3
0 (Ze) > 4sin” (0/2) cos® (6]2)

x {F(sin*(6/2); M+2, N—1, 1)+ F(sin? (6/2); M, N—1,1)
—2 cos? (8/2)F(sin® (8/2); M+1, N, 1)
+cos* (8/2)F(sin® (6/2); M +2, N+1, 1)}

21 A 1_._.{_2__._2._+ 1 6.13
—e’<ize‘) 3 4sin’ (6)2) N+1 Eﬁi} (6.13)

R = 0.

7. Summary of results for energy-energy correlation function

In this section we bring together the results discussed in the previous sections in the
case of the energy-energy correlation function defined in Eq. (3.2).

We first of all divide the correlation function into two parts, a QCD part and a parton
model correction that is designed to account for the contribution of low energy final state
particles. The parton model correction is not important when Q is large or 6 is small.

1 dz 1 4z
aTdcosB— o1 d cos 0 jocp

Eo E? E} E?
+2 ° A(0) 55 {f((PT> sin 9) - f(<PT> 4sin (9/2))} 1.1

fx)=z7%2 I dyy*'*e™. (1.2)
[+]

The QCD contribution is further divided into a small angle (i.e. small P;) part and a finite
angle correction Y:

2
[_1_ dz ] _9 J‘ d2be=" ¥ (b, Q)+ Y(b, ). (1.3)

or dcosf T 167
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Here ky = Q sin (6/2). The finite angle correction may be computed from Egs. (6.12)
and (6.13) and is [2, 7}:

w(CD(1[/3 4 3 5 1
Y =4 —{= = -\ St
C—— x|\F S n x+ Y R

1-2x[/12 16 4 12 107 1
- =-Z4+2) o+ —[nx+27%, 4
8x [(ys > y3) nxE y* y3] Tl x+z]} 74

where x = sin? (6/2) and y = 1—x = cos? (/2). We write
W(b, Q) = W(bs, Q)per xp (—In (Q%/Q3) £1(D) —£2(B)), (1.5)

where
by = b+ ([1 - bz/b:ux] 12 (7.6)

and the functions f,(b) and f,(b) are to be fitted to experiment with the constraint that

fx(o) =f2(0) = 0.
The QCD perturbative part is given by

€202

d—2 CZ 2
W(bx, Qpere = €XP {-— f ﬁiz [ln ( ;2Q ) A(g(ﬂ))+3(g(ﬁ))]}

CxZ/b.Z

x [C(g(C,/b )T, (7.7

where 4 and B are as given in Sec. 6 and C is the appropriate sum of first moments of the
coefficient C given in Sec. 5:

- 4]

N
C(g) =1+ z C“’[%] , (7.8)

N=1
2
T C
e 43T g <~C—l%e7'3/“). 19)
2
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