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BONDS FOR THE KOBAYASHI-MASKAWA MIXING
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Relation between the weak mixing angles, the Kobayashi-Maskawa phase and the
masses of pseudoscalar mesons are derived in a model with hierarchical symmetry breaking.
A relation between 6; and 8, is found. Limits on 8, are also given. It is shown that sign (cos 6)
= —sign (tan 8,). Flavor nonconservation at intermediate stages of hierarchical symmetry
breaking leads to CP-breaking terms in the Hamiltonian density of the Gell-Mann, Oakes
and Renner (GMOR) model.

PACS numbers: 12.10.En, 11.30.Ly

1

The problem of the quark mixing and the hierarchy of the chiral symmetry breaking
have been investigated by many authors [1-9] since the Cabibbo angle has been intro-
duced into SU,; symmetry to explain the suppression of processes with strangeness non-
conservation [10]. The GIM mechanism [11], a discovery of mesons with the charm and
the beauty and of a universality between quarks and leptons have extended the symmetry
of a strong interaction to SU,. At the four-quark level the relation between the mixing
angle and quark masses (tan®0; = my/m,) is well known and agrees well with the ex-
perimental data. The mixing is connected with d and s quarks. A simultaneous mixing
in (d, s) and (u, ¢) sectors has also been taken into account [6, 7], but due to the large
mass of the ¢ quark, the influence of the mixing in the (u, c) sector can be treated as a per-
turbation. At the six-quark level the quark mixing is described by three Cabibbo-like
flavor mixing angles and the phase parameter responsible for CP-nonconservation [12].
The charged weak current in the SUg x SU¢ chiral symmetry

d
Jp = (_3 6: E)Yu(l "'?S)U § (1)
b

\
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is described by a unitary matrix U, which can be put in 21 different forms [13], however
only the standard Kobayashi-Maskawa matrix [i4] will be used further.

Ci» 31C3, 5183
i "
U=|—s, €1€3C3—S,55€", €1C83+5,¢587 |, 2)
. is i3
5152, —01S203—0253e N -01S283+6233e

where s; = sin6;, ¢; = cos 0.
The matrix (2) can be expressed as follows

1 0 0 1 00 c; 8 Off1 0 0
U == 0 c2 32 O 1 0 “"Sl cl 0 0 C3 S3 Y (3)
0 —s, c,{]0 0 €° 0 0 1§10 —s53 5
U=U,U,U,Us,, (3a)

and it can mix quarks either in the negative or in the positive electric charge subspace.
A simultaneous mixing in both spaces was also considered [9].

From the form of the matrix (3) the following variants of the quark mixing are
allowed:

A: U = U,y(s—=b)U,U(d—s)Us(s—b) @)
B: U = Uy(c—t)U,U(d—s)U,(s—b) (5)
C: U = Uy(c—t)U,U (u—c)Us(s—b) (6)
D: U = Uy(c—t)UU,(u—c)Us(c—t), N

where U,{x—y) denotes the mixing of x and y quarks by the matrix U,. It is known that
the Cabibbo angle cannot be explained by the mixing in the (u—c) sector only [6, 7], so
the variants C and D must be rejected. Let us examine the variant B.

2

The charged weak current (1) with the matrix (2) for the variant B can be expressed
as follows

J, = RJ,(OR™}, 8)
where
d
Ju/0) = (u,c, )y, (1—ys) {s |, ®
b
R = e—2i03Q2‘e—2i81Q7e—iXae2iGzQ32’ (10)
X = g L g (1)
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where Q" is the 6 x 6 matrix representation of the k-th generator of SUj group. To gest
the values of the angles 6; the Gell-Mann-Oakes-Renner model will be used [15].

If the electromagnetic mass splitting of u-d quarks is neglected the Hamiltonian den-
sity breaking the chiral SUgx SUg symmetry is given as follows

0 15 24 5
HO = Col +08u8+015u +Cy4u +c35u3 > (12)

where ¢, ..., ¢35 are the symmetry breaking parameters, ' (i = 0,1, ..., 35) are the scalar
components of the (6,6)+(6,6) representation of the chiral SUgx SUg group.

From the GMOR model, neglecting the vacuum expectation values of operators
u* (k = 8, 15,24, 35) and the spectral density ¢ as proportional to the squared param-
eters of the symmetry breaking [7, 16], we get the approximate relation for masses of
the pseudoscalar mesons

. 1 (¢ N
m2f26% = \75"(\/—5 +c8da8b+clSda15b+cl4da24b+c35da35h> (%o, (13)
where f, are the decay constants, d,;, — symmetric constants of the SUg group, (u®), —
the vacuum expectation value of the operator u°.
From (13) we obtain

(e e o
wemiit = (G- R ) 0
D =mofg = \%(\0/03 26\8/3 f/% * \71:) \/15>( o> (16)
B = mafy = %(% * 2c\7§ + 2Ci/56 - 23:/250 \/15>( Doy 1n
T = mifs = \_/13 <\c/3 26\8/3 26\1/56 2(1710 f;;)( Do (18)

By the symmetry breaking, the massless quark x can become massive if it is mixed
with the other massive y. The rotation angle is then described by the masses of pseudo-
scalar mesons. If the SU, x SU, symmetry with the exact SU, x SU, subsymmetry is broken
to the exact SU,_; x SU,_,; symmetry, the rotation angle is a function of masses of
a pseudoscalar meson belonging to n-multiplet of the SU, x SU, group and the meson
which has become massive [19]. We demand the quarks to become massive due to the
hierarchical symmetry breaking, so the highest exact symmetry of the Hamiltonian den-
sity, which can be assumed, is SU, x SU, (at least one quark in the each sector must be
massive). Oakes and the others [1, 17, 18], in order to get the Cabibbo angle value in the
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SU; xSU; or SU, xSU, symmetry, have rotated the Hamiltonian density breaking the
chiral symmetry in the same way as the weak charged current. In a model with hierarchical
symmetry breaking such a procedure cannot be used. Let us notice that from the form
(5) of the rotation operator R it follows that the quarks are mixed in the following se-
quence: (c-t), a phase rotation, (d-s), (s-b), so for the exact SU, x SU, symmetry the mass-
less quarks d and s would be mixed as the first (in the negative electric charge subspace)
and then the generation of their masses would not be possible. The quark s would become
massive in the next stage of the symmetry breaking after the mixing with the massive
quark b. So, in order to get the massive both d and s quarks, they should be mixed in the
inverse sequence. In the first stage of the symmetry breaking the exact SU, x SU, symmetry
is broken to the exact SU, x SU, symmetry, in the second stage even the SU, x SU,
symmetry is no longer exact. The next mixing stages are connected either with the mass
generation of the ¢ quark (variant B) or with the repeated mixing of massive s and b quarks
(variant A). In our procedure the Hamiltonian density breaking the chiral SUgx SUj,
symmetry will be rotated in the inverse sequence in comparison with the rotation of the
weak charged current.

Hg = RxHoRfl, 19

where
i 32 - ¥ ¥ 21
R, = 10207 pmiX0, = 210107, 2i6:0% (192)

The exact SU, x SU, symmetry implies the following relations
Cs = 015 = 0, (20)
J3eotess = 0. (21)

So, the SU, x SU,, invariant Hamiltonian density is given as

Hg = ¢ou°—./5 u35)+c24(u24—\/—§ u*?), (22)
or equivalently
Hg = P4¢q¢s—Vqsqs, (23)
where
_ 5
P=\/1200+V, V = ——= ¢ (24

J10

The symmetry-breaking Hamiltonian density
Hgp = RlHERl_l (25)
retaining the flavor-conservation part only is given as follows

Hgy = ‘76016136%—‘75‘15V032,+54514PS§“‘7343V‘3§S§—quzsts?z,- (26)
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Let us notice that the phase transformation does not produce terms gg, since the
operator (11) commutes with the scalar components #*. The flavor-conservation on each
stage of the symmetry breaking has been assumed. The Hamiltonian density (26) can be
written as a function of the operators #*, so the coefficients of #*’s are given as

co = Co» @n
¢y = %sfsg, (28)
cg = 2 \/3 (2¢is3—sisd), (29)
Cis = \/6 (3P32+Vs3), (30)
Cha = 5 \/10(4V 5Vsi+Ps?), 31
chs = _..(5P+V 6Ps?). (32)

NIE

Now, after the symmetry breaking, the pseudoscalar masses (14-18) will be described as
functions of the coefficients ¢; (i = 0, 3, 8, 15, 24, 35) [7].

n = ZVsis3, (33)
K = ZVsi(1-1s}), (34)
= —Z(Ps3—1 Vsish), (35)
B = ZV(1-s3(1—3%sD), (36
= —Z(Pc:—1 Vsisd), 37D
where
Z=- 5’"—\1/3(“0)"' (3%)

The Cabibbo angle 6, is expressed in the same form as at four-quark level in the
SU, xSU, symmetry [7, 19].

2n
2 39
51 2K+n (39
because
2= — (40)
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bence
T
K+ —
=t (41)
7 K+B '’

In an agreement with our prediction the angle 6, connected with the mixing of s and b
quarks is expressed by the parameters of the strange and beautiful mesons. The angle
6, however, connected with mixing d and s quarks and breaking of the SU, xSU, sym-
metry is expressed by the masses of the pion and the kaon. The angle 8, connected with
the mixing in the (c-t) sector is given as

s
D— —
2

R
D+T—m=

“42)

Let us notice that if we do not demand the flavor-conservation on each stage of the
symmetry breaking, after the rotation around the 2lIst axis the terms §sq;, gsgs in the
broken Hamiltonian density arise. In the second stage (the rotation around the 7th axis)
there will be in Hgy the following terms: §sqs, §aqs, G293, 9392, 4295, Gs92. Because

[X’ 63‘15] = i521—3CI5, (43)
[X,dsq5] = —i6gsq3, (44)

after the phase rotation there will arise in the Hgy the following terms: g 1€, Gsqse” ", ... .
In the variant B the matrix U, has mixed ¢ and t quarks so that in the flavor-conservation
part of the broken Hamiltonian density the phase factor ¢’ cannot appear. But if the
matrix U, mixes s and b quarks again, due to the following relations

—2i6:,Q2% 2i0.Q21
5€

e g9 = qs‘]sé‘és‘]ﬁ%*’%(4_15‘15“‘?3‘13) sin 20,, (45)

— 2i02Q21 —_

‘15(1392“9&21

e = 54365 — 429555 +% (G595 — G343) sin 20, (46)

in the broken Hamiltonian density the terms

55115ews QSQSe_ia, 53‘13ei63 ‘73‘139-”
will exist.
We assume that the symmetry is broken by the quarks mixing in the following se-
quence: (s-b), (d-s), a phase rotation, (s-b) and the flavor will not be conserved in the
intermediate stages of the symmetry breaking, but it will be conserved in the broken

symmetry taken as a whole. The assumptions given above are consistent with the variant A.
Let us take it into account.
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3

We assume the exact SU, xSU, symmetry. The Hamiltonian density is given by
Eq. (23). After symmetry breaking, the flavor conserving part of the broken Hamiitonian
density Hgy is given as

Hr=0y = 6q6P—q5q5V(a~A)—G3q:V(B+A)—329,V7, “n

where
a = cisasi4cicl, (48)
B = cic3si+siel, (49)
y = sis3, (50)
= 4 cos 8, sin 20, sin 20; cos 8. (51)

Since
at Bty =1 (52)

a can be eliminated from (47).
The coefficients by the operators u* are as follows

ch = co 53)
14

¢y = - " (54)
: Y (2p+24— 55
¢ =3 \/3( B+24—7), (55)
) 14

€15 = — ﬁé(ﬂ+A+v), (56)
€24 = 5 \/10(4 5(B+A+v), &)
s = =502 ey (58)

Let us notice that the functions f and 4 occur in Egs. (55-57) as a sum ff+ 4 only. So,
only two functions can be expressed independently. Because there is no mixing in the posi-
tive electric charge subspace we shall not use relations describing mesons D and T. The
following relations are obeyed

n = ZVy, 39

K=2zv (B+A+ -;) (60)

B=ZV(1—/3—A-%) (61)
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so we immediately obtain

2.2 n
= 62
5153 K+B (62)

as in the variant B, but at the moment the angles 8, and 6, cannot be calculated separately.
Putting the experimental value

cos 8, = 0.9737 (sin 8, = 0.2278) (63)
as an input [20], we get
sin#; = 0.136 (05 = 7.8°) (64)
for
m, = 0.139 GeV, f, =1, (65)
mg = 0.495 GeV, fi = 1.28 [21], (66)
my = 52 GeV, fz = 0286 [22]. (67)

The angle 0, was calculated by Fritzsch [6] also for the following quark masses ratios:
mmg:mgim, = 1:1.78:35.7:285 (68)
and the limit for the angle 0,
6, < (m/m)'’? = 0.33. (69)
For the assumptions given above Fritzsch obtained the following boundary
sinf, < 0.09 (85 < 5°).

However there is no agreement between descriptions of the quark masses ratios. The other
authors [23] give smaller difference between quark masses

mymg:mgm, = 1:1.1:6.4:23.6, (70)
Thus for the ratio (70) we get the following limit for the angle 0,
sin 6, < 0.163. )

The value of the angle 65 (64) is consistent with the boundary (71). The value (64) is close
to the value given by Bialas [8] and consistent with results in Refs. [24, 26] as well as the
experimental boundary:

sin 0, < 042 [27], (72)

+0.21

|sin 053] = 0.28 —028

[20]. (73)
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Let us consider the relation between the angle 0, and the phase parameter 4. From (59)-(61)
we obtain

T
k=7
A=— = 74
B+ K+B (74)
or equivalently
K+ =
REELCHCE)
- L =2{1+y(1-5)) +4 (75)
K+B s st
denoting
(++3)-3
2) &
=y 2/ 5 76
¢ K+B (76)
n 2
=1+ 1- =], 77
" K+B( sf) (77
@ = 3 cos 0, sin 20, (78)
we get
Y
cos § = =521 (19)
o sin 20,

It is worth noting that if we take the constraint on the Cabibbo angle 8; from the four-
-quark level [7, 19], which is the same as given by Eq. (39), the parameter & (76) will be
exactly equal to zero, hence we get

cosd = — n tan 6,. (80)
20

Because [cos 8] << 1, so from (80)

2
16,] < |arc tan =2 (80a)
L
and we get also a boundary on the angle 0,
sinf, < 0.265 (0, < 15.4°). 81)
The value (81) is in a good agreement with the results given by Fritzsch [6]
9° <6, < 19°, 82)

Biatas [8]
sin 8, = 0.23, 83)
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Shrock, Treiman, Wang [20]
[sin 8] < 0.25 for m, = 15 GeV, (84)
Barger, Long, Pakvasa [24]
sinf, < 0.5 for m, = 30GeV, (85)

and experimental limits [27].
The Eq. (79) can be written as follows
x2(n* +40® cos? 8) —2x(&n+20% cos? §) +&2 = 0, (86)
where
x = sin® 0,. (87)

‘To get a real value of the angle 0, the determinant of the square equation (86) cannot be
negative, so

1602 cos? 8(&n+ o> cos? 6—¢%) >0, (88)
hence
1 >cos?8 > 2 (89)
0
For (63, 64) we get
n = 0.9647, o = 0.1309. (90)

If the parameter &, which can be identified with a change of the Cabibbo angle descrip-
tion by a transition to the higher symmetries, is slightly less than zero, the phase parameter
.6 will be bounded (|¢| should be nearly zero, as the Cabibbo angle description should
not change strongly by a transition to higher symmetries, on the other hand the Eq. (89)
gives a boundary on the parameter &

¢ > —-0.0175. C2))
From (80)
sign (cos §) = —sign (tan 8,) 92)

T
80, for the angle 6, lying in the first quadrant, it follows 0 < 6 < n and from (91) there
is a lower limit for the phase J. For an input given by the Eqgs. (63, 64, 66)’we get

¢ = 0.002, 93)

80 there is no boundary on J, since sign £ = +1. Let us notice, that a small change of the
Jx can change the sign of the parameter £. Following Fuchs [25], in a chiral perturbation
theory at the SU; x SU, level

fo _ ., Yod-md)

A
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where p? is the average meson squared mass and A is a cut-off parameter, which is estimated
to be near 4 m, it implies

Jxlfy = 1.15 (95)
50

¢ = —0.00179 (96)
and we get

cos? & > 0.1. ¢2)]

Taking into account (92) we obtain
109° < & < 180°, 98)

Since fx is treated as a variable and can depend on the energy scale via A parameter and
the symmetry breaking parameters ¢, the boundary of the phase due to the Eqs. (76, 89)
can be expected. For sign (cos §) = — 1 there is a lower limit of the angle 0, also. A variant
cos & > 0 is allowed but the angle 0, corresponding to this variant is too severely limited
and it is not consistent with the experimental data [27].

4

In this paper we have shown that the weak mixing angles at the six-quark level can
be estimated in terms of the masses of pseudoscalar mesons. The caiculation of mixing
angles is possible by using the hierarchical symmetry breaking leading to a quark masses
generation. A number of independent mixing angles that can be calculated on the ground
of the given above model is equal to a number of degrees of freedom connected with the
symmetry breaking and the quarks mixing in the fixed electric charge subspace (let us notice
that in the variant B after the rotation around the 21st axis and next around the 7th one,
even the exact SU, x SU, symmetry did not remain; however the angle 8, connected with
the mixing in the positive electric charge subspace could be calculated).

An assumption that in the hierarchical symmetry breaking the flavor does not have
to be conserved on each stage of the symmetry breaking, while it is conserved in the broken
symmetry taken as a whole, has allowed the author to introduce to the broken Hamilto-
nian density a phase angle responsible for CP-nonconservation.

The experimental value of the Cabibbo angle treated as an input has allowed the author
to calculate the angle 6; and to find the relation connecting the angle 6, and the phase
parameter 5. Limits of trigonometric functions values imply boundaries on the angle 6,
and the phase . The kaon decay constant is a sensitive parameter, which can introduce
CP-nonconservation to the chiral perturbation theory. Boundaries for the angle 0, and
the phase & vs. fy can be also found.

I would like to thank Prof. W. Tybor for inspiration.
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