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A simple expression for the nuclear absorptive potential ¥ in nuclear matter in terms
of free NN cross seciion is derived from the Brueckner theory and tested against “‘exact”
results. It is a modification of the semiclassical expression, which takes into account the
Pauli blocking and dispersive effects. It is used to calculate W and the nucleon mean free
path 4 in nuclear matter for nucleon energies up to ~ 200 MeV. Results obtained with
non-locality corrections agree reasonably well with experiment. The dependence of W
and 2 on the temperature of nuclear matter is also discussed.

PACS numbers: 21.65.+f

1. Introduction

The absorption of a nucleon in the nuclear medium plays an important role in several
nuclear phenomena. It may be characterized by the imaginary part W of the nuclear optical
potential or by the directly related quantity, the nucleon mean free path A. The magnitude
of A is decisive for choosing an appropriate approximation in describing a given phenom-
enon. A long A suggests an independent particle approximation, whereas for a short
A the fluid limit is approached.

We shall restrict ourselves to the case of nuclear matter, i.e., of an homogeneous
nuclear medium with equal number of neutrons and protons. (We shall not consider the
internal structure of nucleons, or more precisely, we shall disregard any modification
of this structure in nuclear matter.) There exist numerous calculations of W in nuclear
matter (see, e.g., [1], [2], and [3] and references therein), which start from the NN interac-
tion and lead to results for both the real and imaginary parts, ¥ and W, of the optical
potential. Calculations of this type are complicated since they involve the whole machinery
of the many-body theory. In the case of ¥, this appears unavoidable. If however, one is
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interested only in W, one may follow a much simpler procedure which goes back to the
early paper by Lane and Wandel [4], and relate W directly to the NN cross section.

To explain this simple procedure of determining W, let us consider a nucleon “0”
(a neutron) with momentum k, (in units of %), moving through nuclear matter of density o.
The probability per unit time w of changing its momentum is given by

- 2h
w = 00)a = 7 0<kGay, 1.1y
where & is the total average NN cross section,

g = %(ann"'anp)’ (12)‘

and v is the relative velocity between the projectile nucleon “0”” and the target nucleon “1””
of nuclear matter (with momentum k,),

v = |hko/M —hk M| = 2hk[M, 1.3)
where

k = (ko—ky)[2 (1.4)

is the “0”-1” relative momentum. The averaging over nucleon momenta (i.e., over &,)
in nuclear matter is denoted by {J,,.
The lifetime of the k, state of nucleon “0” is 7 = 1/w, and the mean free path

;{' = DT = UO/Q<06>AV = k0/29<k6>Av’ (1.5)?

where vy = hky/M is the velocity of the “0” pucleon.
The absorptive potential W is connected with w by the relation

2

W=—-Zhw=— o 2$Kan 1.6y

which follows directly from the time dependent Schroedinger equation for the motion
of the “0”” nucleon in the optical potential V+iW (see, e.g., p. 213 of [S)).

Semiclassical expressions (1.6) and (1.5) for W and A are oversimplified and lead to
erroneous results. For instance, for £, = 1.8 fm~! (which corresponds to the energy of
about 25 MeV of the incoming nucleon) expression (1.6) gives W 2 — 50 MeV, whereas.
the empirical value of W at this energy is about —5 MeV. The point is that expressions-
(1.6) and (1.5) disregard important many-body effects: the Pauli blocking and dispersive
effects (momentum dependence of ¥).

It is very easy to incorporate both these effects by a simple modification of expres-
sion (1.6).

Let us denote by kg and k] the final momenta of the nucleons “0”” and ““1* after their
scattering, and introduce the exclusion principle operator Q which vanishes whenever
kg or kj (or both) are smaller than the Fermi momentum kg of nuclear matter (otherwise
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Q = 1). To take into account the Pauli blocking in (1.6), we simply replace (kG),, by
QG 4,

For the nucleon single particle (s.p.) energies in the final states (i.e., states above
the Fermi sea), we assume the effective mass approximation,

e(ky) = h*k¢[2M* +const, L7

which is the simplest way of representing the dispersive effects. Now, the probability w is
proportional to the density of final states, which in turn is proportional to the effective
mass M*. Consequently, to take into account the dispersive effects, we multiply expression
(1.6) by M*/M.

Our modified expression for W is then:

2
W=~ %(14*/M)Q<Qk5>m. (1.8)

The scattering in nuclear matter of the projectile nucleon “0” on the target nucleon
obeys the energy conservation:

“I’i

e(ko) +e(k,) = e(ko)+e(k'), (1.9)

where the function e(ky), which determines the s.p. energy of a nucleon with momentum
ky, in general is different for states in the Fermi sea (ky = k,) and for the states above
the Fermi sea (ky = ko, ko, k1) and consequently

k' <k, (1.10)

where k’ is the final relative momentum. (Only if the same form of e, Eq. (1.7) with a con-
stant M*, is assumed also for the states in the Fermi sea, one gets the equality & = &',
typical for the free NN scattering.)

As we shall see in the next Section, expression (1.8) can be derived from the Brueckner
theory. Thus corrections to this expression, in principle, are calculable. Still, it is difficult
to estimate precisely the accuracy of expression (1.8). In the present paper, we restrict
ourselves to a comparison of the results for W obtained with the help of expression (1.8)
with the results of J.-P. Jeukenne et al. {6] who calculated W by applying the Brueckner
theory. The result of this comparison is encouraging. Needless to say, however, that the
accuracy of the scheme applied in {6] is not quite certain either. Actually we believe that
expression (1.8) is quite reliable. It is intuitively simple, its accuracy is probably not worse
than that of the more sophisticated approaches, and because of its simplicity no additional
approximations — often hidden in the more sophisticated approaches — are required.

Expression (1.8) with M* = M is the original expression used by Lane and Wandel
[4]. It takes into account the Pauli blocking but ignores the dispersive effects. Expression
(1.8) with a2 momentum dependent effective mass was used in [7]. However, within the
approximations applied there, relation (1.10) was replaced by k = k’. In this way one of
the consequences of the dispersive effects was disregarded. Recently, expression (1.8)
in the case of k = k’ was discussed by Kohler {8].
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The purpose of the present paper is to justify expression (1.8), and to utilize its simplic-
ity in discussing the absorptive optical potential and the nucleon mean free path in nuclear
matter, and their dependence on the nucleon energy, and on the density and temperature
of nuclear matter.

Before comparing our results with experiment, we take into account the necessary
non-locality corrections, pointed out by Fantoni, Friman and Pandharipande [9], and
by Negele and Yazaki [10] (see also [11]). This correction is particularly important in calcu-
lating the nucleon mean free path.

The paper is organized as follows. In Section 2, we derive the simple expression for the
absorptive potential, Eq. (1.8), from the Brueckner theory. In Section 3, we adjust phenom-
enologically the parameters of the s.p. energies in nuclear matter for states in and above
the Fermi sea, and apply our s.p. energies in the energy conservation equation for NN
collisions in nuclear matter. In Section 4, we describe the simple parametrization of the
NN cross section, used in our calculations. In Section 5, we test expression (1.8) against
the “exact” results of J.-P. Jeukenne et al. [6]. In Section 6, we define the equivalent local
absorptive potential and derive the expression for the nucleon mean free path in nuclear
matter. In Section 7, we present our results for the absorptive potential and for the mean
free path, and compare them with experiment. In Section 8, we discuss the temperature
dependence of the absorptive potential and of the mean free path. Section 9 contains our
conclusions and final comments. In Appendix A, the effect of the anisotropy of the NN
cross section on the expression for W is described. In Appendix B, we derive the expression
for the angle averaged exclusion principle operator for finite temperatures.

2. The absorptive potential W

We start with the Brueckner theory expression for the s.p. energy of the “0” nucleon
in nuclear matter (see, e.g., [3]):

e(ko) = h2kZ2M +¥ (ko), Q.1

where the s.p. (optical) potential

<kp

¥ (ko) = Viko)+iW(ko) = j

dk,
Gy <K Tro (1= Pk

<kp

=1 E QT+1) g j-——dk‘s kSm,T\ A |kSm,T, (2.2)
(2m)
T S"ls

where P,, is the exchange operator. Since ¥ does not depend on the spin and isospin
quantum numbers of the “0”’ nucleon, we may extend the summation over the spin-isospin
states of nucleon 1> to those of nucleon <0 and introduce a factor 1/4. This leads to the
appearance of & Tr,,. This trace in the spin-isospin space of the two nucleons is performed
n the represen tation of total spin S, its z-component m,, and the total isospin T (notice
ihat the matrix elements of % do not depend on T3).
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The reaction matrix X is defined by

— A, (2.3)

where v is the NN potential, @ is the exclusion principle operator (a projection operator
onto. states above the Fermi sea), and

o = e(ky)+e(ko)—e(ky)—e(kp), (2.4)
where ’
e(ky) = Re {e(kn)} = &(kn)+ V(kn), (2.5)

where e(ky) = h?k%/2M, and k;, and k; are momenta in the intermediate states. Singularities
in Qfa, i.e., real energy conserving transitions NyN, — NgN; are expected to occur. The
infinitesimal parameter + iy guarantees that only outgoing waves appear in states degener-
ate with our initial state (ground state of nuclear matter + nucleon “0” with momentum
ko). This means, we consider the decay of our initial state, i.e., the absorption of the nucleon
“0” in nuclear matter.

From Eq. (2.3), we get for the hermitian conjugate matrix % the equation:

A = vt 2y, (2.6)
a—iy
from which we have
-1
u=[l+.7£’+ Q. ] . 2.7
o—in
By inserting this expression for v into Eq. (2.3), we obtain the identity
+ + Q Q . +
H—H"=H — - — | = —2inA " Qd(a)A, (2.8)
e+in o—ipy

which leads immediately to the optical theorem:
—21Im <kSm,T|H|kSm,T) = (2n)"* | dK'Q(K, k')5(cx)

x Y KK'Sm.T| A kSm,TH|2 2.9

Here K is the conserved total momentum,
K = ky+k, = ky+ki, (2.10)
and
k' = (kg—k}))2 2.11)
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is the relative momentum in the intermediate state. By Q(K, k'), we denote the exclusion
principle operator in the total and relative momentum representation,

Q(K, k') = [1—nq(ko)] [1—no(k1)]
= [1—no(i K+Kk'D] [L—no(i5 K—k')], (2.12)

where n, is the s.p. distribution function of the ground state,

no(kn) = (kg —ky). (2.12%)
We approximate Q(K, k') by its angle average:
oK, k')~ QK, k') = (4n)~* [} dRQ(K, k). (2.13)

The explicit expression for Q(K, k') is given in Eqs (B.5a, b) of Appendix B. Notice that
without approximation (2.13) Q would introduce into the /" matrix equation a coupling
of different orbital angular momenta [12], [13].

In the effective mass approximation, explained later,

a = —h?k'*/Mv+terms indep. of k', (2.14)

where v = M*/M is the ratio of the effective to the real nucleon mass for states above
the Fermi sea. With this form of «, we can perform the £’ integration in (2.9), and obtain

= =Ly
Im kSm,T| A \kSm,TY = —Lv O h)z (K, k")

x Y [ dk'|<k'SmT|H |kSm, T2, (2.15)

where k' is determined by the energy conservation equation a = 0.
Let us introduce the total NN cross section in nuclear matter in the isotopic spin

state T
a"™M(T) = 2 Z ( ) Jdk"(k Sm.T|A |kSm,T|%, (2.16)

and the np and nn total cross sections in nuclear matter:
ony = oNM('I‘ = 1)+o"™(T = 0), Q.17
ot = 26™"™(T = 1). (2.18)

Because of the antisymmetrization, the nn scattering amplitude is equal 2 times the T = 1
scattering amplitude, and the nn differential cross section is equal 4 times the T = 1 differen-
tial cross section. However, because the two neutrons are indistinguishable, the total nn
cross section is obtained from the nn differential cross section by integration over all
directions of k' and division by 2. Consequently, the factor 4/2 = 2 appears in (2.18).
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If we put in Eq. (2.3) Q@ = 1 and a = «, (where «, is defined as o, Eq. (2.4), with all the
s.p. energies e replaced by pure kinetic energies ¢), then Eq. (2.3) becomes an equation
for the free NN scattering matrix 2", and (2.17-18) become expressions for total (elastic)
np and nn cross sections, o,, and o,,, for isolated np and nn pairs.

Now, we may write Eq. (2.15) as

k
Im Z kSm,T\H \kSm,Ty = —4h%y o Q(K, k")a™(T). (2.19)
Smy
This expression inserted into Eq. (2.2) leads to the result:
<kp
dk k
W(ky) = —2h? L O(K, k') — 2T + 1)a™(T
(ko) v (2n)3Q( )MZ( +1e(T)
T
<kp
dk k
= —4h? L Q(K, k') — &M, 2.2
iy J o o )Mo (2.20)
where
™ = (ol +onh)/2. (2.21)

Now, we make the crucial approximation:
M = G = (0pp+0an)/2, 2.22)

which enables us to express W through the experimental cross sections o,, and o,,:

<kg

W(ko) = “"4ilzv J\

2

dk K, K kKoo _ 2 K, k')k& 2.23
Q( ’ )X/I”G“__M"VQ<Q( 3 )0>Av' ( )

2n)’

This expression is identical with expression (1.8) for W, discussed in Section 1. It differs
from the semiclassical expression, Eq. (1.6), by the presence of the exclusion principle
operator Q, and the effective mass factor v which together with the energy conservation
equation o = 0 takes care of the dispersive effects,

Approximation (2.22) amounts to replacing ) by ", in (2.20). In principle, one could
calculate corrections to this approximation, using the equation

X = Ao+ A o[QN(a+in)—1f(ag+in)]A . 2.24)

Attempts in this dir:ction were made in [7]. Still, it is hard to present a fully convincing
justification of approximation (2.22), especially at low energies which we consider. For
this reason the first approach to the problem of W [4], in which approximation (2.22)
was applied, was called the ““frivolous model”. In the present paper, in Section 5, we shall
test approximation (2.22) by comparing our results for W with the “exact” results of
Jeukenne et al. [6].
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3. The s.p. energies and the energy conservation in the NN collisions in nuclear matter

The energy conservation equation,
a = e(ko)+e(k,)—e(ko)—e(ky) = O, (3.1)

and the total momentum K conservation, Eq. (2.10), enable us to determine the final
relative momentum k', Eq. (2.11), in the NN scattering in nuclear matter in terms of the
initial momenta.

For the s.p. energy e(ky), Eq. (2.5), we assume the effective mass approximation:

s(kp)/u+D  for ky < kg,

elk) = {e(kN)/v-i-C for  ky > kg, G2

where the ratio of the effective to the real nucleon mass, M*/M, is denoted by u for ky < kg
and by v for ky > kg.
We determine p and D from two conditions:

7 Cekn) +e(kn)av = E[A, 3.3
e(ky) = OE|0A = E|/A+} ked(E[A)/dkg, (3.4)

where E/A is the energy per nucleon of nuclear matter. Eq. (3.3) is the Brueckner theory
expression for Ef4, and Eq. (3.4) represents the assumption that e(kg) is equal to the nucleon
separation energy.

We assume the validity of the two conditions with the “empirical” value of E/4 which
is a function of the density g, or of the Fermi momentum kg (¢ = 2k¢/37n2). In the limit of
very small density, the interaction energy vanishes and E/4 approaches 3e(kg)/5. Further-
more, we know that Ef4 attains its minimal value of ¢, (the volume energy of nuclear
matter) at the equilibrium density ¢ = go (ky = kgo). To satisfy these requirements, we
make the Ansatz:

EjA = f(kg) = % e(ke)+b(kg/kgo)® + c(kr/kro)", (3.5

with
b = de,q—3 e(kpo), ¢ = 3 e(kpo) —3eyor- (3.6)
In the present paper, we use the values: kgo = 1.35fm! and ¢, = —15.8 MeV.

The resulting values of b and ¢ are: b = —108.5 MeV and ¢ = 70.1 MeV.

Notice that the nuclear compressibility obtained with expression (3.5), kgo(d%f/dkg)o
= 6e(kgo)/5— 12¢,, = 240 MeV, agrees nicely with empirical estimates (see, e.g., the review
by Blaizot [14]). If we replaced the last term in (3.5) by a term proportional to a higher
power of kg/kgo, the resulting compressibility would be too big (compare [15]).

With EjA4 given by Eq. (3.5), Eqgs (3.3) and (3.4) lead to the following results for D
and pu:

D = 2b(kg/kgo)® +% clk/kgo)*, (3.7)

po= 1[1+(uo ' —1) (kelkpo)*1s (3.8)
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where
o = p(kpo) = 1/[1+3 cle(kgo)]. 39

Values of D and u at kg = kg are: Dy = —112 MeV, pu, = 0.4.
The constant C of the s.p. potential for ky > kg is fixed by the assumed continuity
of e(ky) at ky = kg:
C = (1ju—1/v)e(kg)+D. (3.10)

To estimate v, we notice that Eq. (3.2) implies the following dependence of V = e—e¢
on e:

V= (1=v)e+vC. (3.11)

On the other hand, the optical model analysis of nucleon-nucleus scattering for energies
below 100 MeV suggests that the real part of the optical model potential at the center
of nuclei, i.e. ¥, can be represented (see, e.g., p. 237 of [5]) by

V = 0.3e—52 MeV. (3.12)

Comparing (3.12) and (3.11), we conclude that vy, = v(kgo) = 0.7. With this value of v,,
we get for voCy = —49 MeV (C, = ~70 MeV) which is reasonably close to the value
of —52 MeV of Eq. (3.12).

For the dependence of v on g, we use the form [15]

v = 1/[1+(vs '~ Defeo]- (3.13)

With e(ky) given by Eq. (3.2), energy conservation equation (3.1) and the total mo-
mentum conservation give (notice that k, < kg, and k,, kg, and k) are bigger than kg):

k' = {k*—3 (vlu—1) (kE—kD}'2. (3.14)

Contrary to the case of free NN scattering, k' < k, except for the case of k, = kg, in
which k' = k. Obviously ¥’ = k if v = u, i.e., if the s.p. energies are purely quadratic
functions of nuclear momenta.
For k' < k the Pauli principle blocks more of the final nucleon states and thus reduces
[W| more strongly than in the case of k' = k. To illustrate it, let us consider the case of
k; =0, and ko = 1.8 k¢ (e = 26 MeV) for krp = kgo. The final nucleon momenta are
ko
ki
where x = Kk’, K = k, and k' is determined by Eq. (3.14) with k, = 0. The results obtained
for ko and kj as functions of x are shown as solid curves in Fig. 1 which also contains the
corresponding results (broken curves) obtained under the assumption that u = v (k' = k).
The Pauli principle requires that both kg and k) are bigger than kg. Thus only the ranges
of x values indicated by the corresponding arrows are allowed, and we notice that the range
in the case of p < v (solid arrow) is smaller than the range in the case of u = v (broken
arrow). Notice that any form of e(ky) with an effective mass M*(ky) = h2ky/(Oe/0ky)
increasing with increasing ky would lead to a similar situation.

} = @ K2 +K2£KKx), (3.14)
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-1 0 X 1

Fig. 1. Final nucleon momenta as functions of x = K&’ for k, = 0 and ko = 1.8 kg at kg = 1.35fm*

To calculate W{k,), Eq. (2.23), we have to perform the k, integration. The cross section
G is a function of k. The arguments &k’ and K of the Q operator are determined by k and
k, : k' by expression (3.14), and K by

K = 2{3 (K} +k5)— K>}/, (3.15)

Thus the k&, integration involves a function of k, and k, and may be performed according
to the formula:

ke (ko+k1)/2
8
f dkF(k,, k) = {- J dke k, J dkkF(k,, k). (3.16)
® 3 {ko—k1]/2

4. The NN cross section
For the total elastic cross sections, 6,, and o,,, we use the parametrization [17]
Gon = (1.063/8%—2.992/8 +4.29) fm?,
Oup = (3.41/B* —8.22/B+8.22) fm?, 4.1)
where f is the relative NN velocity in units of ¢,
B = vjc = QE/Mc*)'? = 2hk/Mec, 4.2)

where the laboratory energy E; is the kinetic energy of the scattered nucleon in the rest
frame of the target nucleon.
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We apply parametrization (4.1) for laboratory energies E; > 20 MeV, and for
E. < 20 MeV the effective range approximation,

Oan = 27‘(]’[[(2 +(1/asnn - rsnnk2/2)2}a
Oup = n{l/[kz + (l/asnp - rsnpkzlz)z] + 3/[k2 +(1/amp - rmpszlz)z}}? (43)

with the following values (in fm) of the respective singlet (s) and triplet (t) scattering lengths
(a) and effective ranges (r): Gy, = —16.1, rg, = 3.2, a,, = —23.714, r,,, = 2.704,
@y = 5.4, and r,, = 1.73.

A comparison with elastic NN scattering data listed in [18] and [19] shows that
parametrization (4.1) is correct up to E; ~ 400 MeV, i.e., well above the threshold for
7 production (300 MeV).

We shall calculate W, Eq. (2.23), for e < 200 MeV, i.e., for ky < 3 fm~! (see Eq.
(3.2)). For k, = 3 fm™, the maximum relative momentum needed in calculating W is
(see Eq. (3.16)) kpuy = (ko+kp)/2 = 2.2 fm~t. The corresponding laboratory energy
ET™ = 2h%k2,. /M ~ 400 MeV. The corresponding average quantities are: k,, = 0.5(k2
+0.6k3)!/2 = 1.6 fm~!, EfY = 212MeV. Both EF™* and E2' lie within the range of
validity of parametrization (4.1).

5. Test of the approximation

To test our approximate expression (2.23) for W(k,) (with Eq. (3.14) for k'), we
apply it to the case of the Reid hard core NN interaction [20], and compare our results
with those of Jeukenne, Lejeune, and Mahaux [6] who calculated W using Brueckner theory
and the Reid hard core interaction. We shall refer to the results of [6] as to the “exact”
results.

In our test calculation, we adopt for the Fermi momentum the value kg = kg
= 1.4 fm~? used in [6]. The corresponding values of the parameters of the s.p. energy are:
o = 0.4, Dy = —116 MeV, v, = 0.7, and voCy, = —52 MeV.

The o,, and o,, cross sections have been obtained from the nuclear bar phase shifts
of the Reid hard core potential, given in [20] for 20 < E; < 350 MeV. Similarly as in
the “exact’ calculations of [6], all S and D partial waves with J <{ 2 and P waves were
included. For E; < 20 MeV, expressions (4.3) were applied with a,,, = a,, = —16.7 fm,
Faan = Penp = 2.87 fm, a,,, = 5.397 fm, and r,,, = 1.724 fm, which are the values of the
scattering parameters of the Reid hard core potential (actually, the shape parameters P,
and P, given in [20] were also included). To stay within the range of E; < 350 MeV,
considered in [20], we keep ko < 2.7fm™, ie., kolkp < 1.9 (see Section 4).

The results of our approximation for W, Egs. (2.23) and (3.14), together with the
“exact” results of [6], are shown in Fig. 2. The agreement bstween our approXximation
and the “exact” results is very satisfactory, except for the region of ky/kg = 1.9. However,
according to the results of [6] for V, the effective mass is slowly increasing with increasing
nucleon momentum k,, and for ko/kp = 2 the value of v, is about 0.8, whereas in our
approximation we use a constant value of v, = 0.7. This appears to be the main reason
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for the difference between our approximation and the “exact” results for kofky 2 1.9.
Let us also mention that in the region of ko/ks 2 1.9, we relied partly on an extrapolation
of the phase shifts given in [20].

In calculating the width I'y of the £ hyperon in nuclear matter in [21], [22], the additio-
nal approximation V(k,) & {¥V>,, was used for the s.p. potential of nucleons in the Fermi
sea. Results obtained for W with this additional approximation are also shown in Fig. 2.
They approach zero with k, — kz much too fast, because the additional approximation
introduces a gap in the s.p. energy spectrum at the Fermi surface. For calculating W{(k,)

20

O f P} i 1 i 1 i i
1 1.5 2
K,/ ke

Fig. 2. Our results for W for the Reid hard core potential (at kg = 1.4 fm—!), compared with the ‘“‘exact’”
results of [6]

at k, close to kg, the additional approximation is certainly unjustified. On the other hand,
in the problem of I'y, this approximation might work better because of the large mo-
mentum release in the XN — AN process.

If we put © = vand C = D in (3.2) (i.e., extrapolate empirical relation (3.11) to states
below the Fermi surface), we obtain further simplification of our procedure. In this case
k' = k, and the value of C is irrelevant for calculating W(k,). Results for such simplified
calculation (with v = 0.7) are also shown in Fig. 2. They overestimate |W| by about
10-209. But within this accuracy, the u = v approximation has the advantage of great
simplicity.

A similar test of approximate expressions for ¥ and W has been presented recently
by Kéhler [8]. Obviously, the problem of calculating both ¥ and W is much more difficult,
and to achieve an agreement with the “exact” results, Kohler suggests an approximation
(M) which appears computationally complicated.
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6. The equivalent local absorptive potential and the mean free path

To compare our results with phenomenological absorptive optical potentials, which
usually are assumed to be local, we introduce an equivalent local potential W, . The necessity
of introducing W, was pointed out by Fantoni, Friman and Pandharipande {9}, and by
Negele and Yazaki [10] (see also [11]).

The local potential Wy is defined as equivalent to W in the sense that it gives the
same result for the mean free path 1. Now, as it was explained in Section 1, 4 is equal to
the lifetime © = 1/w of the nucleon state with momentum k, times the nucleon velocity.
The important point is that it is the group velocity

v8 = h " 19e(ky)/Oky = hko/M* = vy/v, (6.1)

which in a dispersive medium like nuclear matter differs from the phase velocity v,. Thus,
with the help of (1.6), we get

h h2k,
A=vlw=— ?uo/vW =~ o vW. (6.2)

In the case of a local optical potential ¥V, +iW,, we have M* = M and v} = v, and

b= =52 W (6.3)

By comparing (6.2) and (6.3), we get the relation:
W, = vW. (6.4)

This relation may also be derived in different ways [9], [10] (see also [23)]).

7. Results for W, W, and A

The results for Wi(k,) at the equilibrium density of nuclear matter (kg = kgo
= 1.35 fm~1) are shown in Fig. 3. To visualize the factors which affect the magnitude of
W, we show in Fig. 3 not only the results of our approximation for W (Egs. (2.23) and
(3.14) with all the parameters determined in Section 3), but also three other curves. By
putting @ = 1 and v = 1 in Eq. (2.23), i.e., by applying expression (1.6) for W, we get
the upper curve. The curve ¢ = v = 1 differs from the upper curve by the presence of the
exclusion principle operator Q (this is the approximation of Lane and Wandel [4]).
Obviously the mere effect of Pauli blocking is the most important factor in drastically
reducing |W], especially at low momenta k,. By putting 4 = v = 0.7 (and C = D in (3.2))
we have the case of the same form of e(ky), quadratic in ky, for ky > kg and ky < kg, in
which k' = k. The corresponding values of W differ from W(u = v = 1) exactly by the factor
v = 0.7. At higher momenta k,, this factor represents the main effect of the momentum
dependence of V. A further reduction in |W| is introduced in our approximation in which
k' < k, and consequently the final nucleons are slowed down, and the role of the exclusion
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principle in reducing |W/| is increased. As is seen from the two lowest curves in Fig. 3,
this additional reduction is particularly important at low momenta k,.

The depth of the phenomenological local optical potential is determined in nucleon-
-nucleus scattering experiments as a function of the projectile energy. Hence, to be able
to compare our results with the empirical ones, we present our calculated values of Wy,
Eq. (6.4), as functions of the energy e. In the case of neutron scattering, the connection
between the projectile neutron momentum k, in nuclear matter and the neutron energy

40 T
Q=1,V=x

“—our approx.

1 5 h/ke 2

Fig. 3. Results for W(ky) at kg = kgo = 1.35 fm™!

e(k,) (which is equal to the kinetic energy of the projectile neutron before it enters the target
nucleus) is given by Eq. (3.2) (for ko = ky > kg), and we have

ko = A7 [2Mv(e—C)]"2 (7.1)

Our results for W at ¢ = g, are shown as the solid curve in Fig. 4 which also contains
empirical estimates of the central depth of the imaginary optical potential. The dotted
curve is from the compilation of Bohr and Mottelson (p. 237 of [5]), and crosses are from
recent proton scattering on 2°*Pb and “°Ca (Nadasen et al. [24]). The proton energy e,
used in [24] is connected with e by:

N-Z
A

e, = e+Uc—1% U, (1.2)

where Ug is the average Coulomb potential, and U, is the symmetry potential.
For a uniform charge distribution within the sharp radius R = r,43, we have
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Uc = 1.2(e*[ro)Z|AY3. With ro = 1.12fm, we get Uc = 11 MeV for “°Ca and 25 MeV
for 208Pb. In the case of 2°8Pb the symmetry potential term, —0.25[(N-2Z)/A]U,
= —0.05 U,, has to be considered. At low energies U, ~ 100 MeV, and we have ¢, = ¢
+(25—5) MeV. Although U, decreases with increasing energy, we disregard it, and find
it sufficiently accurate in Fig. 4 to place the results of [24] for p—Pb at energies e = ¢,
—20 MeV. Similarly for p—Ca, we use e = e,— 10 MeV. Thus, we use the same energy
corrections as those used in [9].

We see in Fig. 4 that our calculated W, agrees with empirical results, favouring
slightly the newer results of Nadasen et al. [24). Needless to say that without the correction
for non-locality we could not achieve this agreement: calculated values of W, shown as
the dashed curve in Fig. 4, stay well above the empirical points.

The dependence of Wi(e) on the density of nuclear matter ¢ is shown in Fig. 5 in
which the numbers at each of the Wi (e) curves are equal to g/g,. At low energies |Wy|
decreases with increasing g, because the role of the exclusion principle increases with

T P 1
//// Bohr & Motlelson
W\/// /'

| 1
0 100 e[MeV] 200

Fig. 4. Values of Wy calculated at ¢ = g, (solid curve) compared with empirical estimates

0 100 e[MeV] 200

Fig. 5. Wi(e) calculated at different densities o. Numbers at each curve indicate the value of g/go



1110

increasing g. (Notice that also v decreases with increasing ¢, Eq. (3.13)). At higher energies
{and not too high densities), Q = 1, k = ko/2, and the most important factor determining
Wi, Egs. (2.23) and (6.4), is v2g, and consequently | W, | is increasing with increasing ¢ (for
e < Qo)

Another way of visualizing this density and energy dependence of Wy is presented
in Fig. 6. For two fixed energies, ¢ = 25 and 150 MeV, we show the dependence of Wy on
0. We notice that Wi (o = go) > Wi(e = 00/2) et e = 150 MeV, and W;(¢ = go)
< Wi(e = go/2) at e = 25 MeV. This is in agreement with the phenomenological analyses
of the optical potential, which suggest the absorptive potential which is proportional to
¢ at higher energies, and is peaked at nuclear surface at lower energies.

Calculated values of the mean free path A, Eq. (6.3), for ¢ = g, are shown as the
solid curve in Fig. 7 which also contains empirically determined values of 1. The dotted
curve was obtained from the corresponding dotted curve in Fig. 4 by applying Eq. (6.3)
with k, determined by Eq. (7.1). In the same way the crosses in Fig. 7 were obtained from
the corresponding crosses in Fig. 4. Thus the dotted curve and the crosses represent values
of A determined from phenomenological optical potentials.

T [} 1 T
10+ B
_}150 Mev/
=z €725 Mev
)
£ 5F N
|
0 A 1 1 1
0 0.5 ¢/% 1

Fig. 6. The dependence of WL on ¢ at fixed energies e

10 |
= . ]
i B —_— ]
I ‘ mmmug -
> i
ol . ) ] 1
0 100 e[Mev] 200

Fig. 7. The calculated mean free path of a nucleon in nuclear matter at ¢ = g, (solid curve) compared
with empirical estimates
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Let us notice that the precise way of obtaining A from a phenomenological local
energy dependent optical potential V| +iWy, consists in solving the Schroedinger equation

hz
(_EA—lA+VL+iWL>w= ey. (1.3)

By inserting the plane wave solution

v = exp Li(ko+if22)z], (71.4)
we get for A expression (6.3), and for k,:
2M 2My
k=322 = 33 (e~W) = 53 (e=0), (1.5)

where in the last step expression (3.11) for the energy dependence of ¥; was used. By
solving Egs. (7.5) and (6.3) for k, we get

ko = h™'[2Mv(e—O)}'*[1+1 y2 (1 +y»)'/3]H3, (7.6)
where
y = —W/v(e~C). (1.7

For y? < 1, i.e, for ko > A-1, expression (7.6) goes over into expression (7.1). (E.g., for
e=0 and |W_| < 5SMeV, we have y? < 1/100.)

The shaded band in Fig. 7 denotes the range of 4 values determined by Nadasen et al.
[24] from p —“°Ca reaction cross section. In drawing this band, we used the energy
correction e = e,— 10 MeV.

We see that for e 2 50 MeV the calculated mean free path is within the range of
empirical estimates. Possible reasons for the discrepancy at lower energies will be mentioned
in Section 9.

8. The temperature dependence of W and i

We want to discuss the dependence of W and 4 on the temperature 7 (in units of MeV)
of nuclear matter in the range of low temperatures. Among the factors which contribute
to the temperature dependence of W and A, we consider only the change in the occupation
of the s.p. states. This means, we use for small temperatures T of nuclear matter the same
s.p. energies we used for the ground state (T = 0). The point is that the change in the s.p.
energies due to finite temperatures is quadratic in 7 and may be neglected at low tempera-
tures (see, e.g., p. 19 of [25]).

Furthermore, in discussing finite temperatures, we use what we previously called the
[ = v approximation, i.e., we assume that the s.p. energies are given for all values of ky by

e(ky) = e(kn)/v+C, 8.1)

where v and C are constants fixed at T = 0.
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The standard procedure (see, e.g., Chapt. X of Tolman [26]) of determining the distri-
bution n(ky), i.e., the probability that the ky state is occupied, consists in maximizing the
thermodynamical probability under the constraint of constant number of nucleons, and
constant energy,

OE = | dkyg(kn)e(kn)on(ky), (83.2)

where g(ky) is the density of the s.p. states in the ky space, i.e., g{ky)4ky is the number
of the s.p. states in Adky (glkn) = 4Q/(2n)*, @ = volume of the periodicity box). The
result is:

n(ky) = 1/{1+exp [(e(kn) ~2x)/vT T} (8.3)

where the constant &, determined from the condition 4 = { dkygn, is

; N LA 8.4

Ep = & ——— el .

eyt s (8:4)
where &y = e(kg).

To determine the thermal excitation energy of nuclear matter, 6,+E = E(T)— E(0),
at a low temperature 7, we use the expression

6rE = [ dkng(kn)e(kn)drn(ky) (8.5)
for the small change in the energy associated with the small change in the distribution,
orn(kn) = n(kn)—no(kn), (8.6)

where no(ky), Eq. (2.12') is the distribution for T = 0. (Notice that in expression (8.5),
which leads to the resulting §E ~ T2, only the s.p. energies e at T = 0 appear!)

After inserting into (8.5) expression (8.1) for e, we obtain (details of the calculation —
with obvious modifications — are the same as in [26]):

A 2 v
OrE[A = (—) — T2 3.7
2) &
In the case of a finite temperature 7, expression (2.23) for W takes the form
dk, k _
Wiko) = —4h%y J P n(kQx(K, k) 74, (8.8

where Qr(KX, k) is the angle averaged exclusion principle operator at temperature T (see
Appendix B). Notice that k' = k in the y = v approximation used here. In applying
Eq. (8.8), we use for n(k,) expression (8.3) with &; = ¢f.

For the mean free path of a nucleon in nuclear matter of temperature 7, we have

(see Eq. (6.3)):

) hik
Ap = — 2M° /vWT. (8.9)
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To visualize how the finite temperature of nuclear matter affects the mean free path,
we present our results in the form of the ratio of Aip/Ay, where 4, is the mean free path
at zero temperature. In Fig. 8, the ratio A;/A, for ¢ = golky = kgo = 1.35 fm~1) is shown
at three fixed values of T as functions of the energy e and k, (the connection between e.and
ko is given in Eq. (8.1). In Fig. 9, the ratio Ap/A, for ¢ = g, is shown at four fixed values
of e as function of T" and the corresponding thermal excitation energy per nucleon 5,E/A,
Eq. (8.7).

For ky — kg, we have A4flo — 0, because 1, = o0, and A, remains finite. In spite of
this big reduction of Ar at k, & kg, Ar has a maximum at k, = k5, and at low energies
is a decreasing function of energy. And the minimum value of Ay is reached at energies
where the reduction is already small (for the low temperature range considered). For

N 1.5 ko/keg 2
(<° i T 7 :10 Mev ’
\'_05 TTT——T =5 MeV .
< 7= 2.5 Mev
0 1 1 1 11
0 e [Mev] 100 200

Fig. 8. The ratio Ar/A, for g = go as function of the energy e (lower scale) and the corresponding nucleon
momentum ko, in nuclear matter (upper scale) at T = 2.5, 5, and 10 MeV

1o 5 T [MeV] 10
]
S
<
NG
r..
<
O 1 1 1 I 1
0 51 2 3 4

5.E/A [MeV]

Fig. 9. The ratio Ay/4, for ¢ = g, as function of T (upper scale) and the corresponding thermal excitation
energy per nucleon (lower scale) at fixed values of e. Numbers at each curve indicate the value of e in MeV
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instance, for T'= 10 MeV, we have Ay = 10.8 fm at k, = kg, and the minimum value of
Ar = 4.8 fm is reached at ky/kg (¢ = 80 MeV).

We conclude that for energies e = 50 MeV, where A = 5fm, thermal excitations
d1E/A up to ~ 5 MeV/nucleon (T~ 10 MeV) shorten A insignificantly. For smaller energies
-, in spite of a significant shortening of 4 caused by thermal excitation, A is increasing with
decreasing energies e.

These conclusions concerning the effect of the temperature T on A4/1, agree with the
results obtained by Collins and Griffin [27]. However, these authors apply the Fermi gas
model (M* = M), i.e., disregard the dispersive effects. In this way, they miss one factor
v present in our Eq. (2.23) for W, and another factor v present in our Eq. (6.2) for 1. Con-
sequently, their values of i are about two times (v> ~ 1/2) shorter than ours.

To see how the dispersive effects (M* < M) affect the T dependence of Ar, let us
consider Ay at a fixed value of the nucleon momentum k, in nuclear matter. In the present
jt = v approximation, v21; is then a function of the product v7, since both n(k;) and @y
depend only on this product. Thus the ratio A/, is a function of the product v7T. This
means that Ar/A, calculated with M* = M (i.e., with v = 1) at the temperature T has the
same value as Ar/l, calculated with M* = vM (with v < 1) at the corresponding lower
temperature v7. Consequently, the effect of the temperature on 4, i.e., the shortening of
A with increasing T (at a fixed value of k), is reduced by the introduction of the effective
mass M* < M. (The situation at a fixed value of e is more complicated: it depends on the
assumed relation between e and k, for M* = M. Notice that putting v = 1 in (8.1) would
contradict empirical relation (3.12).)

A similar scaling law applies to the dependence of 1r/1, on the thermal excitation
energy. Relation (8.7) implies that ir/4, at a fixed value of k, depends only on the product
vorE/A.

9. Conclusions and final comments

We have calculated the imaginary part of the optical potential W (and of the equivalent
local potential W;) and the mean free path A of a nucleon in nuclear matter using simple
expressions which involve free NN cross section and phenomenologically adjusted s.p.
energies. Our results reproduce quite well the empirical values of W and A. (Although,
we should be aware of possible ambiguities in these empirical values (see [11]).)

There is a considerable spread in the empirical values of Wy and A shown in our
Figs 4 and 7. Still it appears that as k, — kg, our calculated W approaches zero too fast,
and A increases too fast. One reason for it is the neglect of nucleon-nucleon correlations
in the ground state of nuclear matter (see, e.g. [28]). Because of them, the nucleon momen-
tum distribution n(ky) deviates from the step function ny(ky) = O(kg—ky), and at k, = kg
the Pauli blocking is not complete. Thus with a diffused distribution n(ky), similarly as in
the case of nonzero temperature, W(k, = kg) # 0. Consequently, also the mean free path
A does not ipcrease infinitely as ko — k.

Another reason for our results being less reliable at very low energies is our simplified
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treatment of the effective mass M*. Without going into a more sophisticated discussion
of the effective mass (see [3] and [29]), we notice that an increase in v = M*/M at k, = kg
in our expressions (2.23), (6.4), and (6.3) would lead to an increase in | W] and a decrease
in 4 at k, = ky. (Also at higher energies, we expect M* to increase, which might affect
our results at e ~ 200 MeV.)

In the present paper, we considered only elastic NN scattering. As we saw in Section 4,
at e ~ 200 MeV our expression (2.23) for W involves & at E; partly already above the
threshold for pion production. To calculate W (and i) for higher energies e, we could
simply apply semiclassical expression (1.6) with & equal to the total (elastic + reaction)
cross section, arguing that at high energies the Pauli blocking is not important. However,
when a pion is produced the two colliding nucleons are slowed down, and the Pauli blocking
might be relevant in reducing the contribution to W of nonelastic scattering for energies
not too far above the threshold. A quantitative estimate of this Pauli blocking is complicated
because of the additional pion in the final state. Obviously, the same remarks apply when-
ever a new channel is opened.

In our calculation of W and A, we neglected the angular distribution of the NN cross
section. Of course, one might easily take into account the anisotropy of the cross section
(see Appendix A). Calculations of this type performed in [27] suggest that for ¢ S 200 MeV
the isotropic approximation introduces only a small error of about 5%.

In Section 8, we have calculated the mean free path A; of a nucleon in nuclear matter
at small thermal excitations. At the temperatures considered (7 < 10 MeV) Ay is only
slightly reduced by the thermal excitation, except for nucleons with momenta k, = kg,
whose mean free path still remains long. The restriction to low temperatures simplified
the calculations because we could use the T = 0 s.p. energies. Notice also that considering
higher temperatures would require NN cross section at correspondingly higher energies.

Our general conclusion is that one may get a reasonably accurate estimate of the
absorption rate of a nucleon in nuclear matter by applying the simple modification, Eq.
(1.8), of the semiclassical expression, Eq. (1.1).

APPENDIX A

The effect of the anisotropy of the NN cross section

By approximating the exclusion principle operator Q(K, k') by its angle average
O(K, k), Eq. (2.13), we neglect the angular distribution of the NN cross section. Without
approximation (2.13), we would have (see Eq. (2.15))

MK’
1 Z QT+1) Z tm CKSm,TIA ST = =7 o 1 z QT +1)
T Sms T

xL Y {dk'Q(K, K'Y |Kk'SmT|H |kSm,T )| (A.D)

Smemg’
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Let us introduce the differential NN cross section (in the CM system) in nuclear
matter in the isotopic spin state T

. kK[ M )2
de™(T)jdk’ = } Z —k—<4nfl2> K'Sm.T\A |kSm,T)|?, A.2)

Smoms’

and the corresponding nn and np cross sections:

d™™dk' = 4dd™(T = 1)/dk’, (A3
. K[ M\? 2
dong'ldk’ = & E " (m) E (K'Sm.T| X |kSm,T)
T
Smem;’ T

= ; doe™™(T)/dk' + X, (A4)

where X is the T = 0-T = 1 interference term:

K M ? ’ ’ + *
)\ K'Sm.T = 1|4 |kSm,T = 1)

Smems’

x (k'Sm, T = 0|4 |kSm,T = 0>+cc.. (A.5)

X =

e

Notice that if in Egs (A.3-4) we substitute 2", for £, these equations become expressions
for differential nn and np cross sections (in the CM system).
With the help of the above cross sections, we may write Eq. (A.1) as

32 T+1) Y ImCkSm,T| A |kSm,T)
T

Smg

= —4vh? % '[ dk'Q(K, k') L Y 2T+ 1)de™(T)/dk’
T

= —4vh? % f dk'Q(K, k') {da™/dk'— % X}, (A.6)
where
de™|dk’ = 1 [dot/dk’ +1 donm'/dk] (A7)

is the average NN differential CM cross section in nuclear matter. The factor 1/2 at do’?/dk’
reflects the indistinguishability of the two neutrons. For the same reason, the total nn cross
section

oM = 1 { dk'da/dk, (A.8)
and we have (see Eq. (2.11):
{ dk'(ag™|dk’) = &™. (A9
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Since Q(K, k) is an even, and X an odd function of k', the k' integration of the QX
term in (A.6) vanishes. Thus for W, we get from Egs (2.2) and (A.6):

<kg

W(k,) = —4h?y f dk'Q(K, k")de™™/dk’. (A.10)

(27)

APPENDIX B
The operator Qr
The operator Qr(K, k) is defined by (see Eq. (2.12)):
Qr(K, k) = [1—n(13 K+k)] [L—n(i7 K—k})]
= 1—[14exp pr(x)]" ' —[1 +exp yr(—x)] !

+{[1 +exp yr(x)] [1+exp ye(—x)1} "7, (B.1)
where
y = R22MvT, «k(x) = K*/4+k®>+Kkx—kZ, (B.2)
and x = kK.
The angle averaged operator Qp(K, k) is (see Eq. (2.13)):

1 1
0K, k) =3 _fl dxQ(K, k) = £ dxQr(K, k), (B.3)

where in the last step we use the invariance of Q;(K, k) uder changing of k into —k (or
X into —Xx).
After performing the elementary x-integration, we obtain:

Q1(K, k) = {exp 2yx(0)/[1 —exp 2yx(0)]}
{1+(kK) ™! In ([1 +exp yx(—D]/[1 +exp y(1)])}
cth 3 yx(0) cth ka+1}

= ——[1+cth 7(0)] In {

29Kk (B.4)

% 7x(0) cth £ yKk—1

In the limit of T — 0, one may easily obtain from expression (B.4) the well known
result for Qr., = Q-

for K/2 < kg:
0K, k) =0 for k< (ki—K*4)'72,
=1 for k> K/2+kg,
= x(0)/kK otherwise, (B.5a)
for K/2 > kg:
OK,k)=1 for |k—K/2| > kg,

= k(0)/kK otherwise. (B.5b)
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