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One-loop counterterms in the first order quantum gravity formalism are found on the
basis of the background field method. The structure of one-loop renormalization is investi-
gated.
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1. The present paper is devoted to the investigation of one-loop divergences in the
first order formalism quantum gravity. The first order formalism, where the fields g,,,, I’ b
are independent, is equivalent on the classical level to the Einstein gravitation theory [1].
However, in the quantum domain it is an alternative formulation of gravity, because of the
shell there is no connection between the fields 'g,,, I’ ﬁv necessary for the second order
formalism. Gravitation theory in the first order formalism contains before renormalization
only one interaction vertex in contrast to the second order formalism, where there are
an infinity of them. Therefore, it may turn out that the first order formalism is preferable
when making quantum calculations.

The main method for finding one-loop counterterms in the quantum gravitation theory
is the background field method [2, 3]. In the framework of this method the divergences
structure in the pure gravity [4-7] and in the gravity with matter [8-10] was investigated.
In this paper the counterterms of first order quantum gravity formalism are found by means
of the background field method.

2. According to the background field method the one-loop contribution to the effective
action is given.

e”(d’) = jd(pdadcei[sz(‘pﬂp)+SGF(¢»‘P)+SGH(@;C»C)]. (1)

Here 9 is the set of classical fields, ¢ is the set of quantum fields, ¢, ¢ are the fields of ghost
particles, S,(®, ) is bilinear over the fields ¢ part of the expression S(®, ¢)—S($)—S'(P)e.
Ser is the gauge fixing action, Sgy is the action of the ghost particles. For the calculation
of one-loop S-matrix we must substitute the external field @ which satisfies the classical
equation of motion in the expression for J(P).
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The gravity action in the first order formalism has the form

SN =—-= JV d"x N =~ (0.1 4= 0,T sy + T AT~ I A)g™. )]

The decomposition of the fields g, I' into the classical fields @ = (g, I') and quantum
fields ¢ = (h, ) is performed in the following way: g — g"'+xh*, I't, > I'i, +xyh,.
Further it is convenient to pass over to the fields #** = (5‘”,,3—%-g‘“gw)ﬁ“” carrying out
the local change of variables into the functional integral (1). The expression Sy(g, I'; &, 7)
is written in the form:

S,(g, T3 h,y) = ‘“‘;’ j d'x \/—_g {h‘wAllu\mufiha“ﬂ
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Here I'*,,(g) is the Christoffel symbol which is the basis for constructing the covariant
derivatives V,, R,,(I') is the Ricci tensor built only from I'j,. Note that 4, is the tensor,
Let us choose the gauge condition so that the terms Sgp, Sgy may have the form

Sgr = "";‘j d"x \/_—g haﬂgvﬁvavﬂhuv’
Sgu = [ d"x \/:—g & (gw+Ry)C". @

As the action S,(g, I'; A, y) is bilinear over the fields and the coefficient 4, (3) is local
and does not contain derivatives, in the functional integral (1) we may perform integration
over the fields y. After the integration we shall get

U(gyf) jdlzdcdce"52‘" ,I'3h) +SGu(g, 0,0)) (5)

Here
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The structure of expression (6) is suitable for using the general Fradkin-Vilkovisky
algorithm [11, 10] finding divergences J(g, I'). We shall give only the final result

Jailg, I) = — 32; jd“x V=g {6R—8R,(Ig" + AL (45" ;8"
— 0" 808" 8+ 5810+ 12815 AL}

— m;i” d*x v/ —g {— 32 R, R™ +12L R~ 5g" ¢ R, (I)R,4(I")
+1% Rg"R,(I')+8R¥V, A%, — 13 RV 43, +(V,45,)
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+ Py AP AL AL+ F 50 AT AL AL, Ay
+F0eR Al AL, ). Q)
Here L? is the regularization parameter [11, 10]. The transition to generally used
2
dimensional regularization is carried out in the following way: L? — 0, In L?/u® — i—n’
F\, F,, F,, F,, Fs are expressions depending only upon g,,, the explicit form being not
written. The action of one-loop counterterms differs from Jy; (g, I') in the sign. Note
that expression (7) does not contain all the invariants which may be constructed from the
fields g, I' taking into account dimensions and general covariants.
3. One-loop divergences of S-matrix are obtained from the expression Jy;(g, I')

(7) when the ficlds g, I satisfy classical equations of motion R,(I') = 0, 45, = 0. Then
it is evident that the one-loop S-matrix is finite, similar to the second order formalism [4].
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The expression for the counterterms (7) shows that though before the renormaliza-

tion the action was polynomial over the fields g** = v —gg*’, I'g, and had only one interac-
tion vertex, after the renormalization it becomes essentially non-linear.
Let us rewrite the expression from the counterterms (7) in the form

2 2

L
x*S(g, — | d* A K¥(g, T
Se = 1 ¥*S(e, D+ x v/ —g 4,K"(g, T)
ln Lzl‘uz 4 §139 t By,
o | x v =g {R,(")M*(g, [+ AL, N"(g, )}. ®

The explicit form of K, M, N can be easily found from the comparison of equalities (8)
and (7). After some transformations one may show that the action S(g, I')+S.(g, I') is
obtained from the classical action S(g, I') (2) with the help of the renormalization of the
gravitational field.

kE In I?/u?

g’ =g+ oo M"(gg, I'g)

-2 o KRLZ 12 ﬁ KR In LZ/“ laﬁ Ao

Im = A Ryy™ T AZZyv,lo' (8R» I'y)+ AT A22uv,).o' (gr, I'n) ®
32n 2
and the renormalization of the gravity constant
szg

= 1 . 10
"' KR/ + 16 Y] ( )

Bquality (9) shows that the renormalization of gravitational wave functions is a non-
-linear reparametrisation. This agrees with Voronov and Tyutin’s general results [12]
that renormalization in quantum gravity contains (generally speaking, non-linear) repara-
metrisation of the wave function. From expression (10) follows a confirmation of the
Fradkin-Vilkovisky hypothesis about the possible absence of the zero-charge problem
in the gravity theory [18].

Note that a different variant of the renormalization is possible when the gravitational
constant is not renormalized and the whole renormalization reduces only to the repara-

metrisation of the wave functions. In this variant one should exclude equality (10) and add
2

k?gk’” to the expression g* (9).

It is interesting to consider the structure of the counterterms (7) in the sector of the
fields g (the classical equation of motion for the fields I' is performed: 43, = 0) and in the
sector of the fields g (the equation of motion for the fields g is performed: R,/(I') = 0).
In the first case we shall obtain the counterterms

r In I? /u

Se=——5 |d**xV—gR-
162 xv—g gR ;3

f d'x =g (2 RLRHIGERY. (D
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The difference of coefficients at R,,R*" and R? from those of paper [4] is accounted for
by a different parametrisation of the quantum field. The counterterms in the sector of the
field I" are not polynomial and depend upon the fields g. From this it follows that for the
renormalization of the Green functions of operators depending only upon the fields I" (for
example, the curvature tensor R%,;) it is necessary to include the terms depending upon
the fields g in the renormalized action.

The authors are grateful to G. A. Vilkovisky, I. V. Tyutin, E. S. Fradkin for numerous
discussions.
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