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ON SOLUTIONS OF THE DIRAC EQUATION IN THE FIELD OF
DIRAC’S ELECTRIC MONOPOLE
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The electromagnetic potential of Dirac’s electric monopole is treated as an external
field in the Dirac equation. The resulting mathematical problems are described and partially
solved. It is shown that when the absolute value of the electric charge is equal to the absolute
value of Dirac’s magnetic charge, the Dirac equation has no solutions having the Floquet
property, very natural in the context.

PACS numbers: 14.80.Hv

1. Introduction

In the previous paper [1] we derived an electromagnetic field which has a finite electric
charge and simultaneously is a quantized magnetic flux. In this paper we wish to perform
the analogue of the Aharonov-Bohm analysis for the magnetic flux in question. As it is
well known, there is a special relationship between the so called Aharonov-Bohm effect
and the Dirac charge quantization condition: the cross-section for the Aharonov-Bohm
effect vanishes exactly when the magnetic flux is a multiple of the Dirac value 2r/e. In our
analysis we shall assume from the very beginning that the magnetic flux has the Dirac
value; one would expect then, by analogy with the Aharonov-Bohm effect, that such a flux
is completely unobservable i.e. it does not scatter point charges. We shall see that a result
of this kind can really be proved but on the assumption that a certain differential equation
has physically acceptable solutions. The assumption is not obvious; moreover, we shall
see that for certain values of charge the differential equation in question does not have
physically acceptable solutions.

2. The equation to be solved
The potential derived in [1] has the form
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Here O 1s the Heaviside step function, e is the elementary charge, Q is the total charge
of the field; ¢ and ¢ are cylindrical coordinates such that

x' = gcos ¢, x* = gsin g.
The ficld changes quickly in time so that to perform the Aharonov-Bohm analysis one
has to use the Dirac equation. ,

Omitting an elementary algebra we shall simply state that the Dirac cquation with
(1) as an external field is reducible to a single equation for one unknown function :
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1 is a coordinate proportional to x°—x3.

It is a simple matter to see that Eq. (2) can have only trivial solution » = 0: to multiply
J(r) by v one has to assume that (7, o, ¢) is continuous for v = 0; integrating then
Eq. (2) over an infinitesimal segment —e <<t <& one has i[y(e, o, ¢)—p(—¢, 0, @)]
+2r20y(0, o, ¢) = 0 which is a contradiction unless (0, ¢, ¢) = 0; but (0, o, ¢) =0
and Eq. (2) imply together that u(7, ¢, ) = 0 for all .

This difficulty was investigated by Dr Wojciech Karas in his Ph. D. Thesis [2], from
which the above analysis is taken. Dr Karas finds that one can define generalized solutions
of first order equations like Eq. (2), if one approximates the d-function by a less singular
function, solves the equation and takes the limit in the solution.!

In accordance with Dr Kara$’ prescription we replace é(z) in Eq. (2) by

0 for 1 <0,

01) =<31/e for O <t<eg

0 for 1>

Eq. (2) becomes the two-dimensional Schrédinger equation in which the static potential
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is turned on for T = 0 and turned off for T = ¢ and it is obvious, in principle, how to handle
the problem.

There remain technical difficulties, however, and we shall presently solve the first
one. The potential (3) is discontinuous and the magnitude of discontinuity is very large.
It is well known [3] that for discontinuous potentials there are qualitative differences

4

1 1t should be noted that this prescription, apparently obvious, does not work for higher order
equations for which a similar contradiction occurs. Thus, there is no simple way to define generalized solu-
tions for the equation ¥’ (v)+Ad'(1)y(r) = 0, 2 = const,
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between the classical and the quantum mechanical motion. The difference relevant for the
solution of our problem consists in the following: in the quantum mechanics a large
discontinuity of potential acts as an impenetrable barrier both in the repulsive case and
in the attractive case while in the classical mechanics only a large repulsive discontinuity
is impenetrable. Therefore the problem of motion in the potential (3) can be simplified
as follows.

A particle moves freely in two separate domains, the domain in which

e tg(tenE—%<p> =0
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and the domain in which
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At the boundary of each domain we impose the Dirichlet boundary condition ¢ = 0
corresponding to complete impenetrability. Denote by % a complete set of stationary
states in the first domain and by ¢! a complete set of stationary states in the second
domain, E{® and E{!’ being the corresponding energies. (The notation does not imply,
of course, that the energy spectrum is discrete). The time evolution of the wave function
for 0<<t<eis
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c{? and ¢{" being constants. It is seen that for ¢ = & the wave function reproduces exactly
the value it would have for the vanishing potential, which means that the force which acted
for 0 <{t < ¢ left no observable changes.

This is exactly what one would expect by analogy with the Aharonov-Bohm effect.
However, our argument was based on the assumption that there are physically acceptable
stationary states: this assumption is investigated in the next section.

3. The problem of stationary states

We have to investigate the following problem: a nonrelativistic particle moves freely
in the part of Euclidean plane bounded by two logarithmic spirals
4 d p+n
— an = go€Xp —
P 2¢Q ¢ o €Xp 2¢0
at the boundary it is elastically reflected It is useful to investigate first the classical motion.
The logarithmic spiral meets all its radii at the same angle [4]; using this basic property
one can easily show that apart from the obvious energy integral there is another integral
of motion
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Here E is the kinetic energy, ¢ is time, J is the angular momentum and m is the mass. The
same integral exists also in the more general case when the potential is constant on both
sides of the logarithmic spiral and has a finite discontinuity across the spiral so that the
particle’s trajectory can be reflected or refracted. The integral [ is not a Noether integral
so that its existence is rather unexpecied. One feels that the existence of the second integral
of motion should play a role in the quantum case. The integral [ is not directly applicable
because it does not commute with the energy: in the quantum mechanics

E I N 1 @ . 1 &
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and [E, I] = {iE. Let us take, however, the identity [5]
P 1 1
e”Be = B+ ;[A,B]'i‘ E—‘[A,[A,B]]+

and put B = E, A = ¢l, where ¢ is a constant. Then
ec‘IE — EeCIe-Ic

and, putting ¢ = 2nn, n being an integer, we find that the operator exp (2nnl) does commute
with the energy.
To apply the operator exp (2znl) to stationary states we note that if

[4,B] = ¢B, ¢ = const,
then

1
exp(A+B) =exp A4 -exp—(l—e °)B. @
c

I suppose this identity is known although I cannot indicate a reference; when ¢ is so
small that its square can be neglected, the identity becomes the Baker-Hausdorff identity.

Take
a=2mliegl + Lo 41
=2nn|ieQ — + — [0 — ,
ag 2 \% a0

B = 2nnEt
so that

2rnl = A+B, [A,B] = —2nniB.
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Applying the identity (4) we have
R, i 0
exp2nnl = exp2nn|ieQ — + —|o-— +1})]|.
dp 2

Guided by the classical analogy we pose the eigenvalue problem

62 + 10 L1 1 & E )
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where E and A, are eigenvalues.
It will be convenient to change coordinates in such a way that the operator in the expo-
nent is transformed into a simple differentiation operator. To this end we put

e = QoezeQ{-*- ;9

¢ = —£+2e0(,

where ¢ and { are the new coordinates and g, is a constant introduced for dimensional
reasons; it may be put equal to g, in the equation of the logarithmic spiral. Then

and Eq. (6) becomes
(&, {+mni) = 4,9(¢, D),

which means that the stationary state is a function which is, up to a factor, periodic in { with
the imaginary period in. Solutions of this kind are known in the theory of ordinary differen-
tial equations as the Floquet solutions [6]. Guided by analogy with the Floquet theory
we put

PHED = T n@, ™

where v is the characteristic exponent to be determined. The Helmholtz equation (5) in
the new coordinates is

2

0 0
e—2(2eQ§+E)( aé”’ + Jf) +[1+(2eQ)*Joo2mEy = 0;

the boundary condition is

4
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Making a translation in the {-direction (such a translation does not change the boundary)
we can reduce the Helmholtz equation to the form

. oy Py
P ( o ) +[1+(260)]y = 0. ®
Note that in Eq. (8) all dimensional parameters have disappeared; this reflects the fact
that the logarithmic spiral contains no dimensional parameters with which the de Broglie
wave length could be compared.

Putting the series (7) into the Helmholtz equation (8) we obtain

Yo (O +vyo(8) = 0, O]
P (E)+2n+v) () +[1+(200)°]e**%y,_4(8) = 0. (10)
These equations and the boundary conditions
T
p(6)=0 for (=0 and §=i:(—2;Q—)2, i

n=012,..,

should determine the sequence yo(&), ¥,(&), w.(8), ... . In particular, the characteristic
exponent is determined as

v=m[l+(2e0)?], m=12,...

We choose v > 0 to make the solution regular at the origin; for each natural number
m we obtain a formal solution. Thus the integral exp (2nnl) is seen to play the role of the
angular momentum, namely it splits the energy degenerate problem into states which .are
not degenerate anymore.

The convergence of the formal series determined by Eqgs (7), (9), (10) and (11) seems
to be a difficult question; we hope to be able to comment upon it in a separate paper.
In this paper we wish to indicate only that for certain values of charge the series in question
is not even formally constructible.

The first term is

vo(§) = sin ()

and, of course, can be always determined. The second term is (I put § = 2¢Q to save
space)

() = m e*$[Bm cos v —(m+1) sin v¢]
cos 2n exp 2np
2 2
~Bm cos (v+2)¢+pm 1+5 > L sin (v+2)¢3.
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We see that we have to assume that 2 # 1; for f2 = 1 the formal Floquet solution does
not exist.
The value 2 = 1 is physically remarkable; for 2 # 1

e0* # 1.
Since, from the Dirac relation which obviously holds also in our case,

e2g? =1,
we conclude that

Q2 ¢ g2_
Thus the present theory, which is simply the Aharonov-Bohm theory for the magnetic
flux in question, excludes the equality of electric and magnetic charges and thus excludes
the exact symmetry between electricity and magnetism which was originally the motiva-
tion to introduce magnetic charges.

Investigating higher terms one sees that all rational values of 2 have to be excluded?;

for irrational §? the formal series (7) is constructible. The question of its convergence is, of
course, open and seems to be a difficult one.
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2 Except 2 = 0, of course; the case f* = 0 is solvable by means of the Bessel functions.



